Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 477(19): 3867-3883, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32955078

RESUMO

Hereditary hemochromatosis (HH), an iron-overload disease, is a prevalent genetic disorder. As excess iron causes a multitude of metabolic disturbances, we postulated that iron overload in HH disrupts colonic homeostasis and colon-microbiome interaction and exacerbates the development and progression of colonic inflammation and colon cancer. To test this hypothesis, we examined the progression and severity of colitis and colon cancer in a mouse model of HH (Hfe-/-), and evaluated the potential contributing factors. We found that experimentally induced colitis and colon cancer progressed more robustly in Hfe-/- mice than in wild-type mice. The underlying causes were multifactorial. Hfe-/- colons were leakier with lower proliferation capacity of crypt cells, which impaired wound healing and amplified inflammation-driven tissue injury. The host/microflora axis was also disrupted. Sequencing of fecal 16S RNA revealed profound changes in the colonic microbiome in Hfe-/- mice in favor of the pathogenic bacteria belonging to phyla Proteobacteria and TM7. There was an increased number of bacteria adhered onto the mucosal surface of the colonic epithelium in Hfe-/- mice than in wild-type mice. Furthermore, the expression of innate antimicrobial peptides, the first-line of defense against bacteria, was lower in Hfe-/- mouse colon than in wild-type mouse colon; the release of pro-inflammatory cytokines upon inflammatory stimuli was also greater in Hfe-/- mouse colon than in wild-type mouse colon. These data provide evidence that excess iron accumulation in colonic tissue as happens in HH promotes colitis and colon cancer, accompanied with bacterial dysbiosis and loss of function of the intestinal/colonic barrier.


Assuntos
Colite , Neoplasias do Colo , Disbiose , Microbioma Gastrointestinal , Hemocromatose , Proteobactérias/crescimento & desenvolvimento , Animais , Colite/genética , Colite/metabolismo , Colite/microbiologia , Colite/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Disbiose/genética , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/patologia , Hemocromatose/genética , Hemocromatose/metabolismo , Hemocromatose/microbiologia , Hemocromatose/patologia , Proteína da Hemocromatose/deficiência , Proteína da Hemocromatose/metabolismo , Camundongos , Camundongos Knockout , Proteobactérias/classificação
2.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G966-G979, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32308038

RESUMO

Iron overload induces intestinal-permeability defect (gut leakage), and gut translocation of organismal molecules might enhance systemic inflammation and sepsis severity in patients with thalassemia (Thal). Hence, iron administration in Hbbth3/+ mice, heterozygous ß-globin-deficient Thal mice, was explored. Oral iron administration induced more severe secondary hemochromatosis and gut leakage in Thal mice compared with wild-type (WT) mice. Gut leakage was determined by 1) FITC-dextran assay, 2) spontaneous serum elevation of endotoxin (LPS) and (1→3)-ß-d-glucan (BG), molecular structures of gut-organisms, and 3) reduction of tight-junction molecules with increased enterocyte apoptosis (activated caspase-3) by immunofluorescent staining. Iron overload also enhanced serum cytokines and increased Bacteroides spp. (gram-negative bacteria) in feces as analyzed by microbiome analysis. LPS injection in iron-overloaded Thal mice produced higher mortality and prominent cytokine responses. Additionally, stimulation with LPS plus iron in macrophage from Thal mice induced higher cytokines production with lower ß-globin gene expression compared with WT. Furthermore, possible gut leakage as determined by elevated LPS or BG (>60 pg/mL) in serum without systemic infection was demonstrated in 18 out of 41 patients with ß-thalassemia major. Finally, enhanced LPS-induced cytokine responses of mononuclear cells from these patients compared with cells from healthy volunteers were demonstrated. In conclusion, oral iron administration in Thal mice induced more severe gut leakage and increased fecal gram-negative bacteria, resulting in higher levels of endotoxemia and serum inflammatory cytokines compared with WT. Preexisting hyperinflammatory cytokines in iron-overloaded Thal enhanced susceptibility toward infection.NEW & NOTEWORTHY Although the impact of iron accumulation in several organs of patients with thalassemia is well known, the adverse effect of iron accumulation in gut is not frequently mentioned. Here, we demonstrated iron-induced gut-permeability defect, impact of organismal molecules from gut translocation of, and macrophage functional defect upon the increased sepsis susceptibility in thalassemia mice.


Assuntos
Citocinas/metabolismo , Duodeno/metabolismo , Microbioma Gastrointestinal , Hemocromatose/metabolismo , Mediadores da Inflamação/metabolismo , Ferro/metabolismo , Macrófagos/metabolismo , Sepse/metabolismo , Talassemia beta/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Duodeno/imunologia , Duodeno/microbiologia , Feminino , Óxido de Ferro Sacarado , Hemocromatose/induzido quimicamente , Hemocromatose/imunologia , Hemocromatose/microbiologia , Heterozigoto , Humanos , Lipopolissacarídeos , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade , Sepse/induzido quimicamente , Sepse/imunologia , Sepse/microbiologia , Adulto Jovem , Globinas beta/genética , Talassemia beta/genética , Talassemia beta/imunologia , Talassemia beta/microbiologia
3.
Blood ; 130(3): 245-257, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28465342

RESUMO

The iron-regulatory hormone hepcidin is induced early in infection, causing iron sequestration in macrophages and decreased plasma iron; this is proposed to limit the replication of extracellular microbes, but could also promote infection with macrophage-tropic pathogens. The mechanisms by which hepcidin and hypoferremia modulate host defense, and the spectrum of microbes affected, are poorly understood. Using mouse models, we show that hepcidin was selectively protective against siderophilic extracellular pathogens (Yersinia enterocolitica O9) by controlling non-transferrin-bound iron (NTBI) rather than iron-transferrin concentration. NTBI promoted the rapid growth of siderophilic but not nonsiderophilic bacteria in mice with either genetic or iatrogenic iron overload and in human plasma. Hepcidin or iron loading did not affect other key components of innate immunity, did not indiscriminately promote intracellular infections (Mycobacterium tuberculosis), and had no effect on extracellular nonsiderophilic Y enterocolitica O8 or Staphylococcus aureus Hepcidin analogs may be useful for treatment of siderophilic infections.


Assuntos
Infecções Relacionadas a Cateter/imunologia , Hemocromatose/imunologia , Hepcidinas/imunologia , Sobrecarga de Ferro/imunologia , Ferro/metabolismo , Infecções Estafilocócicas/imunologia , Animais , Ligação Competitiva , Infecções Relacionadas a Cateter/metabolismo , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/mortalidade , Modelos Animais de Doenças , Resistência à Doença , Expressão Gênica , Hemocromatose/metabolismo , Hemocromatose/microbiologia , Hemocromatose/mortalidade , Hepcidinas/agonistas , Hepcidinas/deficiência , Hepcidinas/genética , Humanos , Ferro/imunologia , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/microbiologia , Sobrecarga de Ferro/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Oligopeptídeos/farmacologia , Ligação Proteica , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus , Análise de Sobrevida , Transferrina/genética , Transferrina/metabolismo , Yersinia enterocolitica/efeitos dos fármacos , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/metabolismo
4.
Biometals ; 25(5): 883-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22580926

RESUMO

The composition of the gut microbiota is affected by environmental factors as well as host genetics. Iron is one of the important elements essential for bacterial growth, thus we hypothesized that changes in host iron homeostasis, may affect the luminal iron content of the gut and thereby the composition of intestinal bacteria. The iron regulatory protein 2 (Irp2) and one of the genes mutated in hereditary hemochromatosis Hfe , are both proteins involved in the regulation of systemic iron homeostasis. To test our hypothesis, fecal metal content and a selected spectrum of the fecal microbiota were analyzed from Hfe-/-, Irp2-/- and their wild type control mice. Elevated levels of iron as well as other minerals in feces of Irp2-/- mice compared to wild type and Hfe-/- mice were observed. Interestingly significant variation in the general fecal-bacterial population-patterns was observed between Irp2-/- and Hfe-/- mice. Furthermore the relative abundance of five species, mainly lactic acid bacteria, was significantly different among the mouse lines. Lactobacillus (L.) murinus and L. intestinalis were highly abundant in Irp2-/- mice, Enterococcus faecium species cluster and a species most similar to Olsenella were highly abundant in Hfe-/- mice and L. johnsonii was highly abundant in the wild type mice. These results suggest that deletion of iron metabolism genes in the mouse host affects the composition of its intestinal bacteria. Further studying the relationship between gut microbiota and genetic mutations affecting systemic iron metabolism in human should lead to clinical implications.


Assuntos
Sistema Digestório/metabolismo , Sistema Digestório/microbiologia , Ferro/metabolismo , Metagenoma , Animais , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Fezes/química , Fezes/microbiologia , Hemocromatose/genética , Hemocromatose/metabolismo , Hemocromatose/microbiologia , Proteína da Hemocromatose , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Homeostase , Humanos , Proteína 2 Reguladora do Ferro/deficiência , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Minerais/metabolismo
5.
J Leukoc Biol ; 81(1): 195-204, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17038583

RESUMO

Iron (Fe) acquisition is essential for the growth of intracellular Mycobacterium tuberculosis (M.tb). How this occurs is poorly understood. Hereditary hemochromatosis is an inherited disease in which most cells become overloaded with Fe. However, hereditary hemochromatosis macrophages have lower than normal levels of intracellular Fe. This suggests M.tb growth should be slower in those cells if macrophage intracellular Fe is used by M.tb. Therefore, we compared trafficking and acquisition of transferrin (Tf)- and lactoferrin (Lf)-chelated Fe by M.tb within the phagosome of monocyte-derived macrophages (MDM) from healthy controls and subjects with hereditary hemochromatosis. M.tb in both sets of macrophages acquired more Fe from Lf than Tf. Fe acquisition by M.tb within hereditary hemochromatosis macrophages was decreased by 84% from Tf and 92% from Lf relative to that in healthy control macrophages. There was no difference in Fe acquired from Tf and Lf by the two macrophage phenotypes. Both acquired 3 times more Fe from Lf than Tf. M.tb infection and incubation with interferon gamma (IFN-gamma) reduced macrophage Fe acquisition by 20% and 50%, respectively. Both Tf and Lf colocalized with M.tb phagosomes to a similar extent, independent of macrophage phenotype. M.tb growth was 50% less in hereditary hemochromatosis macrophages. M.tb growing within macrophages from subjects with hereditary hemochromatosis acquire less Fe compared with healthy controls. This is associated with reduced growth of M.tb. These data support a role for macrophage intracellular Fe as a source for M.tb growth.


Assuntos
Hemocromatose/genética , Quelantes de Ferro/farmacologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Estudos de Casos e Controles , Hemocromatose/microbiologia , Humanos , Interferon gama/farmacologia , Lactoferrina/química , Lactoferrina/farmacocinética , Macrófagos/metabolismo , Microscopia Confocal , Fagossomos/metabolismo , Fagossomos/microbiologia , Transporte Proteico , Transferrina/química , Transferrina/farmacocinética
6.
J Biol Chem ; 277(51): 49727-34, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12399453

RESUMO

Mycobacterium tuberculosis multiplies within the macrophage phagosome and requires iron for growth. We examined the route(s) by which intracellular M. tuberculosis acquires iron. During intracellular growth of the virulent Erdman M. tuberculosis strain in human monocyte-derived macrophages (MDM), M. tuberculosis acquisition of (59)Fe from transferrin (TF) provided extracellularly (exogenous source) was compared with acquisition when MDM were loaded with (59)Fe from TF prior to M. tuberculosis infection (endogenous sources). M. tuberculosis (59)Fe acquisition required viable bacteria and was similar from exogenous and endogenous sources at 24 h and greater from exogenous iron at 48 h. Interferon-gamma treatment of MDM reduced (59)Fe uptake from TF 51% and TF receptor expression by 34%. Despite this, intraphagosomal M. tuberculosis iron acquisition in IFN-gamma-treated cells was decreased by only 30%. Macrophages from hereditary hemochromatosis patients have altered iron metabolism. Intracellular M. tuberculosis acquired markedly less iron in MDM from these individuals than in MDM from healthy donors, regardless of the iron source (exogenous and endogenous): 36 +/- 3.8% and 17 +/- 9.6% of control, respectively. Thus, intraphagosomal M. tuberculosis can acquire iron from both extracellular TF and endogenous macrophage sources. Acquisition of iron from macrophage cytoplasmic iron pools may be critical for the intracellular growth of M. tuberculosis. This acquisition is altered by IFN-gamma treatment to a small extent, but is markedly reduced in macrophages from hemochromatosis patients.


Assuntos
Hemocromatose , Hemocromatose/microbiologia , Interferon gama/farmacologia , Ferro/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , Transferrina/química , Células Cultivadas , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Ferritinas/metabolismo , Hemocromatose/metabolismo , Humanos , Interferon gama/metabolismo , Macrófagos/metabolismo , Receptores da Transferrina/biossíntese , Fatores de Tempo , Transferrina/metabolismo
7.
Rev Med Chil ; 125(8): 917-21, 1997 Aug.
Artigo em Espanhol | MEDLINE | ID: mdl-9567396

RESUMO

Yersinia enterocolitica is a gram-negative bacillus that thrives in conditions associated with iron overload. We describe an unusual case of a diabetic patient with a previously unrecognized hemochromatosis presenting with Y. enterocolitica septicemia. He was admitted because of a 10 day history of abdominal pain, fever and jaundice. Blood cultures grew Y. enterocolitica. The abdomen CT scan showed multiple liver and splenic abscesses. Antibiotic treatment with ciprofloxacin (2 months) resulted in a good clinical response. Serum iron studies showed iron overload. Liver biopsy revealed moderate fibrosis and early cirrhosis with large amounts of hemosiderin granules deposited in hepatocytes and bile duct epithelium. This report reviews the literature and highlights that iron overload must be ruled out in Yersinia septicemia patients.


Assuntos
Abscesso/microbiologia , Hemocromatose/complicações , Abscesso Hepático/complicações , Esplenopatias/microbiologia , Yersiniose/complicações , Yersinia enterocolitica , Hemocromatose/microbiologia , Humanos , Abscesso Hepático/etiologia , Masculino , Pessoa de Meia-Idade
8.
Rev Med Interne ; 18(12): 932-8, 1997.
Artigo em Francês | MEDLINE | ID: mdl-9499996

RESUMO

A retrospective multicentric study was conducted to determine the real prevalence of underlying iron overloads during Yersinia bacteremias. Ninety-seven cases of bacteremias (84 Yersinia enterocolitica, 13 Yersinia pseudotuberculosis) were registered between 1990 and 1996 in eastern France. Available data were collected in 70 cases (72.2%). Laboratory investigations of iron status were done in 53% (37/70). Three patients had a past record of known hemochromatosis, meanwhile in nine other cases an iron overload was discovered during the Yersinia bacteremia. Two cases of hemochromatosis were confirmed by liver histology. In all of these 12 cases, Yersinia enterocolitica was the causal agent. The effective prevalence of underlying iron overload in Yersinia bacteremias is 40% when researched, greater than data commonly published (1.8-14%), showing both epidemiological and clinical under estimation of iron's importance in Yersinia infection pathogenesis. A Yersinia bacteremia must be considered as an indicator of possible iron overload. Yersinia infection must be suspected in febrile hemochromatosic patients. A multicentric study must be conducted to evaluate incidence and characteristics of bacteremias in hemochromatosic patients.


Assuntos
Bacteriemia/complicações , Hemocromatose/complicações , Yersiniose/complicações , Idoso , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Feminino , França/epidemiologia , Hemocromatose/epidemiologia , Hemocromatose/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Yersinia/isolamento & purificação , Yersiniose/epidemiologia , Yersiniose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA