Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Sci Rep ; 11(1): 22803, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815429

RESUMO

Numerous studies have demonstrated the key role of the Salmonella Pathogenicity Island 1-encoded type III secretion system (T3SS1) apparatus as well as its associated effectors in the invasion and intracellular fate of Salmonella in the host cell. Several T3SS1 effectors work together to control cytoskeleton networks and induce massive membrane ruffles, allowing pathogen internalization. Salmonella resides in a vacuole whose maturation requires that the activity of T3SS1 subverts early stages of cell signaling. Recently, we identified five cell lines in which Salmonella Typhimurium enters without using its three known invasion factors: T3SS1, Rck and PagN. The present study investigated the intracellular fate of Salmonella Typhimurium in one of these models, the murine hepatocyte cell line AML12. We demonstrated that both wild-type Salmonella and T3SS1-invalidated Salmonella followed a common pathway leading to the formation of a Salmonella containing vacuole (SCV) without classical recruitment of Rho-GTPases. Maturation of the SCV continued through an acidified phase that led to Salmonella multiplication as well as the formation of a tubular network resembling Salmonella induced filaments (SIF). The fact that in the murine AML12 hepatocyte, the T3SS1 mutant induced an intracellular fate resembling to the wild-type strain highlights the fact that Salmonella Typhimurium invasion and intracellular survival can be completely independent of T3SS1.


Assuntos
Proteínas de Bactérias/metabolismo , Hepatócitos/microbiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Vacúolos/microbiologia , Animais , Hepatócitos/metabolismo , Hepatócitos/patologia , Camundongos , Infecções por Salmonella/metabolismo , Vacúolos/metabolismo , Vacúolos/patologia
2.
FASEB J ; 35(6): e21680, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042225

RESUMO

Hepatitis B virus (HBV) is a human hepatotropic pathogen causing hepatocellular carcinoma. We recently obtained HBV-susceptible immortalized human hepatocyte NKNT-3 by exogenously expressing NTCP and its derived cell clones, #28.3.8 and #28.3.25.13 exhibiting different levels of HBV susceptibility. In the present study, we showed that HBV infection activated the ATM-Chk2 signaling pathway in #28.3.25.13 cells but not in #28.3.8 cells. Both the cell culture supernatant and extracellular vesicles (EVs) derived from HBV-infected #28.3.25.13 cells also activated the ATM-Chk2 signaling pathway in naïve #28.3.25.13 cells. Interestingly, EVs derived from HBV-infected #28.3.25.13 cells included higher level of mitochondrial DNA (mtDNA) than those from HBV-infected #28.3.8 cells. Based on our results, we propose the novel model that EVs mediate the activation of ATM-Chk2 signaling pathway by the intercellular transfer of mtDNA in HBV-infected human hepatocyte.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , DNA Mitocondrial/genética , Vesículas Extracelulares/metabolismo , Hepatite B/patologia , Hepatócitos/patologia , Replicação Viral , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase do Ponto de Checagem 2/genética , DNA Mitocondrial/metabolismo , Células Hep G2 , Hepatite B/genética , Hepatite B/metabolismo , Hepatite B/microbiologia , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Hepatócitos/microbiologia , Humanos
3.
Biochem Pharmacol ; 188: 114541, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812857

RESUMO

The acute phase response, as a component of the innate immune system, is part of the first line of defense against invading pathogens. The Stimulator of Interferon Genes (STING) pathway initiates innate immune responses upon recognition of exogenous bacterial and viral DNA. However, whether STING signaling pathway plays any roles in regulating acute phase response during bacterial infection remains unknown. In this study, we used STING-deficient (Tmem173gt) and wildtype mice to investigate acute phase responses to bacterial infection (Escherichia coli, E. coli) and test the effect of exogenous cyclic GMP-AMP (cGAMP, a STING agonist) treatment. Bacterial infection of STING-deficient mice resulted in an increase in mortality and bacterial dissemination. Also, inflammation-induced acute phase response was drastically reduced in STING-deficient mice, showing significant reduction in expression of cytokine TNF-α and acute phase proteins. In contrast, exogenous cGAMP treatment enhanced inflammation-induced acute phase response by increasing the expression of TNF-α and acute phase proteins. Also, cGAMP accelerated bacterial clearance and improved survival rate of wildtype mice, but not STING-deficient mice. Interestingly, cGAMP treatment mitigated bacterial infection induced liver injury in both wildtype and STING-deficient mice. Further in vitro evidence showed that cGAMP treatment retarded TNF-α-mediated hepatocyte apoptosis, potentially accelerating autophagy. Taken together, our results indicated that cGAMP/STING signaling pathway is critical for organism to initiate blood-borne innate immune-responses to defend bacterial infection, and cGAMP is envisaged as a drug candidate for further clinical trial.


Assuntos
Reação de Fase Aguda/metabolismo , Reação de Fase Aguda/prevenção & controle , AMP Cíclico/administração & dosagem , GMP Cíclico/administração & dosagem , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/prevenção & controle , Proteínas de Membrana/deficiência , Reação de Fase Aguda/genética , Animais , Escherichia coli , Infecções por Escherichia coli/genética , Hepatócitos/metabolismo , Hepatócitos/microbiologia , Masculino , Proteínas de Membrana/agonistas , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
4.
Cell Microbiol ; 21(8): e13033, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009148

RESUMO

Vibrio cholerae produced-Cholix toxin (Cholix) is a cytotoxin that ADP-ribosylates eukaryotic elongation factor 2, inhibiting protein synthesis, and inducing apoptosis. Here, we identified prohibitin (PHB) 1 and 2 as novel Cholix-interacting membrane proteins in immortalised human hepatocytes and HepG2 cells by Cholix immunoprecipitation assays. The expression level of PHB1 was decreased by Cholix after a 12hr incubation. Cholix-induced poly (ADP-ribose) polymerase (PARP) cleavage was significantly enhanced in PHB (PHB1 or PHB2) knockdown cells. In contrast, transiently overexpressed PHB in hepatocytes attenuated Cholix-induced Bax/Bak conformational changes and PARP cleavage. In addition, Cholix-induced reactive oxygen species production and accumulation of fragmented mitochondria were enhanced in PHB-knockdown cells. Furthermore, Cholix induced activation of Rho-associated coiled coil-containing protein kinase 1 (ROCK1), which was enhanced in PHB-knockdown cells, followed by actin filament depolymerisation and accumulation of tubulin in the blebbing cells. Inhibition of ROCK1 by siRNA or its inhibitor suppressed Cholix-induced PARP cleavage and reactive oxygen species generation. Our findings identify PHB as a new protein that interacts with Cholix and is involved in Cholix-induced mitochondrial dysfunction and cytoskeletal rearrangement by ROCK1 activation during apoptosis.


Assuntos
Fatores de Ribosilação do ADP/química , Toxinas Bacterianas/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Vibrio cholerae/genética , ADP-Ribosilação , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiologia , Citoesqueleto de Actina/ultraestrutura , Sequência de Aminoácidos , Apoptose/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Linhagem Celular Transformada , Fator de Iniciação 2 em Eucariotos/genética , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/microbiologia , Hepatócitos/patologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/microbiologia , Mitocôndrias/ultraestrutura , Proibitinas , Ligação Proteica , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/deficiência , Transdução de Sinais , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Virulência , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-30175075

RESUMO

In the complex microenvironment of the human respiratory tract, different kinds of microorganisms may synergistically interact with each other resulting in viral-bacterial co-infections that are often associated with more severe diseases than the respective mono-infections. Human respiratory paramyxoviruses, for example parainfluenza virus type 3 (HPIV3), are common causes of respiratory diseases both in infants and a subset of adults. HPIV3 recognizes sialic acid (SA)-containing receptors on host cells. In contrast to human influenza viruses which have a preference for α2,6-linked sialic acid, HPIV3 preferentially recognize α2,3-linked sialic acids. Group B streptococci (GBS) are colonizers in the human respiratory tract. They contain a capsular polysaccharide with terminal sialic acid residues in an α2,3-linkage. In the present study, we report that HPIV3 can recognize the α2,3-linked sialic acids present on GBS. The interaction was evident not only by the binding of virions to GBS in a co-sedimentation assay, but also in the GBS binding to HPIV3-infected cells. While co-infection by GBS and HPIV3 had a delaying effect on the virus replication, it enhanced GBS adherence to virus-infected cells. To show that other human paramyxoviruses are also able to recognize the capsular sialic acid of GBS we demonstrate that GBS attaches in a sialic acid-dependent way to transfected BHK cells expressing the HN protein of mumps virus (MuV) on their surface. Overall, our results reveal a new type of synergism in the co-infection by respiratory pathogens, which is based on the recognition of α2,3-linked sialic acids. This interaction between human paramyxoviruses and GBS enhances the bacterial adherence to airway cells and thus may result in more severe disease.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Glicoproteínas/metabolismo , Hepatócitos/microbiologia , Ácido N-Acetilneuramínico/metabolismo , Streptococcus agalactiae/fisiologia , Proteínas Estruturais Virais/metabolismo , Ligação Viral , Linhagem Celular , Coinfecção/microbiologia , Coinfecção/virologia , Hepatócitos/efeitos dos fármacos , Humanos , Interações Microbianas , Vírus da Caxumba/fisiologia , Vírus da Parainfluenza 3 Humana/fisiologia , Ligação Proteica
6.
mBio ; 9(3)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764944

RESUMO

The oxidoreductase RECON is a high-affinity cytosolic sensor of bacterium-derived cyclic dinucleotides (CDNs). CDN binding inhibits RECON's enzymatic activity and subsequently promotes inflammation. In this study, we sought to characterize the effects of RECON on the infection cycle of the intracellular bacterium Listeria monocytogenes, which secretes cyclic di-AMP (c-di-AMP) into the cytosol of infected host cells. Here, we report that during infection of RECON-deficient hepatocytes, which exhibit hyperinflammatory responses, L. monocytogenes exhibits significantly enhanced cell-to-cell spread. Enhanced bacterial spread could not be attributed to alterations in PrfA or ActA, two virulence factors critical for intracellular motility and intercellular spread. Detailed microscopic analyses revealed that in the absence of RECON, L. monocytogenes actin tail lengths were significantly longer and there was a larger number of faster-moving bacteria. Complementation experiments demonstrated that the effects of RECON on L. monocytogenes spread and actin tail lengths were linked to its enzymatic activity. RECON enzyme activity suppresses NF-κB activation and is inhibited by c-di-AMP. Consistent with these previous findings, we found that augmented NF-κB activation in the absence of RECON caused enhanced L. monocytogenes cell-to-cell spread and that L. monocytogenes spread correlated with c-di-AMP secretion. Finally, we discovered that, remarkably, increased NF-κB-dependent inducible nitric oxide synthase expression and nitric oxide production were responsible for promoting L. monocytogenes cell-to-cell spread. The work presented here supports a model whereby L. monocytogenes secretion of c-di-AMP inhibits RECON's enzymatic activity, drives augmented NF-κB activation and nitric oxide production, and ultimately enhances intercellular spread.IMPORTANCE To date, bacterial CDNs in eukaryotes are solely appreciated for their capacity to activate cytosolic sensing pathways in innate immunity. However, it remains unclear whether pathogens that actively secrete CDNs benefit from this process. Here, we provide evidence that secretion of CDNs leads to enhancement of L. monocytogenes cell-to-cell spread. This is a heretofore-unknown role of these molecules and suggests L. monocytogenes may benefit from their secretion in certain contexts. Molecular characterization revealed that, surprisingly, nitric oxide was responsible for the enhanced spread. Pathogens act to prevent nitric oxide production or, like L. monocytogenes, they have evolved to resist its direct antimicrobial effects. This study provides evidence that intracellular bacterial pathogens not only tolerate nitric oxide, which is inevitably encountered during infection, but can also capitalize on the changes this pleiotropic molecule enacts on the host cell.


Assuntos
Estradiol Desidrogenases/imunologia , Hepatócitos/enzimologia , Listeria monocytogenes/fisiologia , Listeriose/enzimologia , Oxirredutases/metabolismo , Animais , AMP Cíclico/metabolismo , Estradiol Desidrogenases/genética , Hepatócitos/imunologia , Hepatócitos/microbiologia , Humanos , Listeria monocytogenes/genética , Listeriose/imunologia , Listeriose/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , NF-kappa B/imunologia , Oxirredutases/genética
7.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437961

RESUMO

Chronic infection by hepatitis B virus (HBV) is the major contributor to liver disease worldwide. Though HBV replicates via a nuclear episomal DNA (covalently closed circular DNA [cccDNA]), integration of HBV DNA into the host cell genome is regularly observed in the liver in infected patients. While reported as a prooncogenic alteration, the mechanism(s) and timing of HBV DNA integration are not well understood, chiefly due to the lack of in vitro infection models that have detectable integration events. In this study, we have established an in vitro system in which integration can be reliably detected following HBV infection. We measured HBV DNA integration using inverse nested PCR in primary human hepatocytes, HepaRG-NTCP, HepG2-NTCP, and Huh7-NTCP cells after HBV infection. Integration was detected in all cell types at a rate of >1 per 10,000 cells, with the most consistent detection in Huh7-NTCP cells. The integration rate remained stable between 3 and 9 days postinfection. HBV DNA integration was efficiently blocked by treatment with a 200 nM concentration of the HBV entry inhibitor Myrcludex B, but not with 10 µM tenofovir, 100 U of interferon alpha, or a 1 µM concentration of the capsid assembly inhibitor GLS4. This suggests that integration of HBV DNA occurs immediately after infection of hepatocytes and is likely independent of de novo HBV genome replication in this model. Site analysis revealed that HBV DNA integrations were distributed over the entire human genome. Further, integrated HBV DNA sequences were consistent with double-stranded linear HBV DNA being the major precursor. Thus, we have established an in vitro system to interrogate the mechanisms of HBV DNA integration.IMPORTANCE Hepatitis B virus (HBV) is a common blood-borne pathogen and, following a chronic infection, can cause liver cancer and liver cirrhosis. Integration of HBV DNA into the host genome occurs in all known members of the Hepadnaviridae family, despite this form not being necessary for viral replication. HBV DNA integration has been reported to drive liver cancer formation and persistence of virus infection. However, when and the mechanism(s) by which HBV DNA integration occurs are not clear. In this study, we have developed and characterized an in vitro system to reliably detect HBV DNA integrations that result from a true HBV infection event and that closely resemble those found in patient tissues. Using this model, we showed that integration occurs when the infection is first established. Importantly, we provide here a system to analyze molecular factors involved in HBV integration, which can be used to develop strategies to halt its formation.


Assuntos
DNA Viral/metabolismo , Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Linhagem Celular , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/microbiologia , Humanos , Modelos Biológicos , Integração Viral , Internalização do Vírus , Replicação Viral
8.
PLoS Negl Trop Dis ; 12(1): e0006096, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329289

RESUMO

BACKGROUND: The control over iron homeostasis is critical in host-pathogen-interaction. Iron plays not only multiple roles for bacterial growth and pathogenicity, but also for modulation of innate immune responses. Hepcidin is a key regulator of host iron metabolism triggering degradation of the iron exporter ferroportin. Although iron overload in humans is known to increase susceptibility to Burkholderia pseudomallei, it is unclear how the pathogen competes with the host for the metal during infection. This study aimed to investigate whether B. pseudomallei, the causative agent of melioidosis, modulates iron balance and how regulation of host cell iron content affects intracellular bacterial proliferation. PRINCIPAL FINDINGS: Upon infection of primary macrophages with B. pseudomallei, expression of ferroportin was downregulated resulting in higher iron availability within macrophages. Exogenous modification of iron export function by hepcidin or iron supplementation by ferric ammonium citrate led to increased intracellular iron pool stimulating B. pseudomallei growth, whereas the iron chelator deferoxamine reduced bacterial survival. Iron-loaded macrophages exhibited a lower expression of NADPH oxidase, iNOS, lipocalin 2, cytokines and activation of caspase-1. Infection of mice with the pathogen caused a diminished hepatic ferroportin expression, higher iron retention in the liver and lower iron levels in the serum (hypoferremia). In vivo administration of ferric ammonium citrate tended to promote the bacterial growth and inflammatory response, whereas limitation of iron availability significantly ameliorated bacterial clearance, attenuated serum cytokine levels and improved survival of infected mice. CONCLUSIONS: Our data indicate that modulation of the cellular iron balance is likely to be a strategy of B. pseudomallei to improve iron acquisition and to restrict antibacterial immune effector mechanisms and thereby to promote its intracellular growth. Moreover, we provide evidence that changes in host iron homeostasis can influence susceptibility to melioidosis, and suggest that iron chelating drugs might be an additional therapeutic option.


Assuntos
Burkholderia pseudomallei/fisiologia , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Macrófagos/microbiologia , Viabilidade Microbiana , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hepatócitos/microbiologia , Melioidose/microbiologia , Camundongos Endogâmicos C57BL
9.
Artigo em Inglês | MEDLINE | ID: mdl-29075618

RESUMO

Background/Aims: The use of antibiotics to eliminate Mycoplasma contamination has some serious limitations. Mycoplasma contamination can be eliminated by intraperitoneal injection of BALB/c mice with contaminated cells combined with screening monoclonal cells. However, in vivo passage in mice after injection with contaminated cells requires a long duration (20-54 days). Furthermore, it is important to monitor for cross-contamination of mouse and human cells, xenotropic murine leukemia virus-related virus (XMRV) infection, and altered cell function after the in vivo treatment. The present study aimed to validate a reliable and simplified method to eliminate mycoplasma contamination from human hepatocytes. BALB/c mice were injected with paraffin oil prior to injection with cells, in order to shorten duration of intraperitoneal passage. Cross-contamination of mouse and human cells, XMRV infection and cell function-related genes and proteins were also evaluated. Methods: PCR and DNA sequencing were used to confirm Mycoplasma hyorhinis (M. hyorhinis) contamination in human hepatocyte C3A cells. Five BALB/c mice were intraperitoneally injected with 0.5 ml paraffin oil 1 week before injection of the cells. The mice were then intraperitoneally injected with C3A hepatocytes (5.0 × 106/ml) contaminated with M. hyorhinis (6.2 ± 2.2 × 108 CFU/ml). Ascites were collected for monoclonal cell screening on the 14th day after injection of contaminated cells. Elimination of mycoplasma from cells was determined by PCR and Transmission Electron Microscopy (TEM). Human-mouse cell and XMRV contamination were also detected by PCR. Quantitative reverse transcription PCR and western blotting were used to compare the expression of genes and proteins among treated cells, non-treated infected cells, and uninfected cells. Results: Fourteen days after injection with cells, 4 of the 5 mice had ascites. Hepatocyte colonies extracted from the ascites of four mice were all mycoplasma-free. There was no cell cross-contamination or XMRV infection in treated cell cultures. Elimination of Mycoplasma resulted in partial or complete recovery in the expression of ALB, TF, and CYP3A4 genes as well as proteins. Proliferation of the treated cells was not significantly affected by this management. Conclusion: The method of elimination of Mycoplasma contamination in this study was validated and reproducible. Success was achieved in four of five cases examined. Compared to the previous studies, the duration of intraperitoneal passage in this study was significantly shorter.


Assuntos
Descontaminação/métodos , Hepatócitos/microbiologia , Mycoplasma hyorhinis , Animais , DNA/genética , Feminino , Humanos , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos BALB C , Óleos/administração & dosagem , Parafina/administração & dosagem , RNA/genética , Fatores de Tempo
10.
Sci Rep ; 7(1): 4746, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684792

RESUMO

We previously reported the importance of induced nuclear transglutaminase (TG) 2 activity, which results in hepatic cell death, in ethanol-induced liver injury. Here, we show that co-incubation of either human hepatic cells or mouse primary hepatocytes derived from wild-type but not TG2-/- mice with pathogenic fungi Candida albicans and C. glabrata, but not baker's yeast Saccharomyces cerevisiae, induced cell death in host cells by enhancing cellular, particularly nuclear, TG activity. Further pharmacological and genetic approaches demonstrated that this phenomenon was mediated partly by the production of reactive oxygen species (ROS) such as hydroxyl radicals, as detected by a fluorescent probe and electron spin resonance. A ROS scavenger, N-acetyl cysteine, blocked enhanced TG activity primarily in the nuclei and inhibited cell death. In contrast, deletion of C. glabrata nox-1, which encodes a ROS-generating enzyme, resulted in a strain that failed to induce the same phenomena. A similar induction of hepatic ROS and TG activities was observed in C. albicans-infected mice. An antioxidant corn peptide fraction inhibited these phenomena in hepatic cells. These results address the impact of ROS-generating pathogens in inducing nuclear TG2-related liver injuries, which provides novel therapeutic targets for preventing and curing alcoholic liver disease.


Assuntos
Acetilcisteína/farmacologia , Candida albicans/patogenicidade , Candida glabrata/patogenicidade , Núcleo Celular/enzimologia , Sequestradores de Radicais Livres/farmacologia , Hepatócitos/enzimologia , Peptídeos/farmacologia , Animais , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candida albicans/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/enzimologia , Candida glabrata/genética , Candidíase/tratamento farmacológico , Candidíase/enzimologia , Candidíase/genética , Candidíase/microbiologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/deficiência , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Deleção de Genes , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Radical Hidroxila , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Cultura Primária de Células , Proteína 2 Glutamina gama-Glutamiltransferase , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Transglutaminases/deficiência , Transglutaminases/genética , Transglutaminases/imunologia
11.
Am J Pathol ; 187(5): 1059-1067, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28279656

RESUMO

Sepsis is defined as the host's deleterious systemic inflammatory response to microbial infections. Herein, we report an essential role of the fatty acid binding protein 4 (FABP4; alias adipocyte protein 2 or aP2), a lipid-binding chaperone, in sepsis response. Bioinformatic analysis of the Gene Expression Omnibus data sets showed the level of FABP4 was higher in the nonsurvival sepsis patients' whole blood compared to the survival cohorts. The expression of Fabp4 was induced in a liver-specific manner in cecal ligation and puncture (CLP) and lipopolysaccharide treatment models of sepsis. The induction of Fabp4 may have played a pathogenic role, because ectopic expression of Fabp4 in the liver sensitized mice to CLP-induced inflammatory response and worsened the animal's survival. In contrast, pharmacological inhibition of Fabp4 markedly alleviated the CLP responsive inflammation and tissue damage and improved survival. We conclude that FABP4 is an important mediator of the sepsis response. Early intervention by pharmacological inhibition of FABP4 may help to manage sepsis in the clinic.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Fígado/metabolismo , Sepse/etiologia , Tecido Adiposo , Animais , Ceco , Modelos Animais de Doenças , Infecções por Escherichia coli/fisiopatologia , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Feminino , Hepatócitos/microbiologia , Hepatócitos/fisiologia , Humanos , Interleucina-6/metabolismo , Células de Kupffer/fisiologia , Ligadura , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Pimozida/farmacologia , Punções , Sepse/mortalidade
12.
Bull Exp Biol Med ; 162(3): 331-335, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28091914

RESUMO

Experimental BCG-induced granulomatosis in mice was used to study changes in the dynamics of individual liver proteoglycan components reflecting phasic extracellular matrix remodeling, determined by the host-parasite interaction and associated with granuloma development. In the early BCG-granulomatosis period, the increase in individual proteoglycan components promotes granuloma formation, providing conditions for mycobacteria adhesion to host cells, migration of phagocytic cells from circulation, and cell-cell interaction leading to granuloma development and fibrosis. Later, reduced reserve capacity of the extracellular matrix, development of interstitial fibrosis and granuloma fibrosis can lead to trophic shortage for cells within the granulomas, migration of macrophages out of them, and development of spontaneous necrosis and apoptosis typical of tuberculosis.


Assuntos
Matriz Extracelular/metabolismo , Glicosaminoglicanos/biossíntese , Granuloma/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Proteoglicanas/biossíntese , Tuberculose Hepática/metabolismo , Animais , Matriz Extracelular/química , Glicosaminoglicanos/química , Granuloma/microbiologia , Granuloma/patologia , Hepatócitos/química , Hepatócitos/microbiologia , Hepatócitos/patologia , Interações Hospedeiro-Patógeno , Fígado/química , Fígado/microbiologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/patogenicidade , Mycobacterium bovis/fisiologia , Proteoglicanas/química , Tuberculose Hepática/microbiologia , Tuberculose Hepática/patologia
13.
Methods Mol Biol ; 1506: 283-294, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27830561

RESUMO

In an era of organ shortage, human fetuses donated after medically indicated abortion could be considered a potential liver donor for hepatic cell isolation. We investigated transplantation of fetal liver cells as a strategy to support liver functionality in end-stage liver disease. Here, we report our protocol of human fetal liver cells (hFLC) isolation in fetuses from 17 to 22 gestational weeks, and our clinical procedure of hFLC transplantation through the splenic artery.


Assuntos
Separação Celular/métodos , Transplante de Células/métodos , Doença Hepática Terminal/terapia , Transplante de Tecido Fetal/métodos , Feto/citologia , Hepatócitos/transplante , Técnicas de Cultura de Células , Separação Celular/instrumentação , Transplante de Células/efeitos adversos , Transplante de Células/ética , Transplante de Células/normas , Feminino , Transplante de Tecido Fetal/efeitos adversos , Transplante de Tecido Fetal/ética , Transplante de Tecido Fetal/normas , Rejeição de Enxerto/prevenção & controle , Hepatócitos/imunologia , Hepatócitos/microbiologia , Humanos , Terapia de Imunossupressão/métodos , Imunossupressores/uso terapêutico , Fígado/citologia , Perfusão/instrumentação , Perfusão/métodos , Guias de Prática Clínica como Assunto , Gravidez , Controle de Qualidade , Artéria Esplênica/cirurgia , Tacrolimo/uso terapêutico , Doadores de Tecidos , Coleta de Tecidos e Órgãos/ética , Coleta de Tecidos e Órgãos/métodos , Coleta de Tecidos e Órgãos/normas
14.
Arch Oral Biol ; 69: 19-24, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27214121

RESUMO

OBJECTIVE: Porphyromonas gingivalis (P. gingivalis) is a pathogen involved in periodontal disease. Recently, periodontal disease has been demonstrated to increase the risk of developing diabetes mellitus, although the molecular mechanism is not fully understood. Forkhead box protein O1 (FoxO1) is a transcriptional factor that regulates gluconeogenesis in the liver. Gluconeogenesis is a key process in the induction of diabetes mellitus; however, little is known regarding the relationship between periodontal disease and gluconeogenesis. In this study, to investigate whether periodontal disease influences hepatic gluconeogenesis, we examined the effects of P. gingivalis on the phosphorylation and translocation of FoxO1 in insulin-induced human hepatocytes. DESIGN: The human hepatocyte HepG2 was treated with insulin and Akt and FoxO1 phosphorylation was detected by western blot analysis. The localization of phosphorylated FoxO1 was detected by immunocytochemistry and western blot analysis. HepG2 cells were treated with SNAP26b-tagged P. gingivalis (SNAP-P.g.) before insulin stimulation, and then the changes in Akt and FoxO1 were determined by western blot analysis and immunocytochemistry. RESULTS: Insulin (100nM) induced FoxO1 phosphorylation 60min after treatment in HepG2 cells. Phosphorylated FoxO1 translocated to the cytoplasm. SNAP-P.g. internalized into HepG2 cells and decreased Akt and FoxO1 phosphorylation induced by insulin. The effect of insulin on FoxO1 translocation was also attenuated by SNAP-P.g. CONCLUSIONS: Our study shows that P. gingivalis decreases the phosphorylation and translocation of FoxO induced by insulin in HepG2 cells. Our results suggest that periodontal disease may increase hepatic gluconeogenesis by reducing the effects of insulin on FoxO1.


Assuntos
Proteína Forkhead Box O1/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/microbiologia , Insulina/farmacologia , Porphyromonas gingivalis/metabolismo , Western Blotting/métodos , Gluconeogênese/efeitos dos fármacos , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Doenças Periodontais/complicações , Doenças Periodontais/microbiologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
Microbes Infect ; 18(9): 565-71, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27237960

RESUMO

Recent studies have shown that infection with Porphyromonas gingivalis, a major periodontal pathogen, hastens the progression of non-alcoholic fatty liver disease (NAFLD). However, the intracellular fate of P. gingivalis in hepatocytes remains unknown. Here, using oleic-acid-induced HepG2 cells as an in vitro model for NAFLD, we found that lipid droplets increased the existence of P. gingivalis in the cells at an early phase of infection. Confocal microscopic analysis revealed that lipid droplets affected the formation of autolysosomes in infected cells. Thus, lipid droplets affect the elimination of P. gingivalis in HepG2 cells by altering the autophagy-lysosome system.


Assuntos
Autofagia , Hepatócitos/microbiologia , Hepatócitos/fisiologia , Gotículas Lipídicas/metabolismo , Lisossomos/metabolismo , Porphyromonas gingivalis/fisiologia , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Microscopia Confocal
16.
BMC Microbiol ; 16: 2, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26739172

RESUMO

BACKGROUND: Francisella tularensis, a gram-negative bacterium replicates intracellularly within macrophages and efficiently evades the innate immune response. It is able to infect and replicate within Kupffer cells, specialized tissue macrophages of the liver, and to modulate the immune response upon infection to its own advantage. Studies on Francisella tularensis liver infection were mostly performed in animal models and difficult to extrapolate to the human situation, since human infections and clinical observations are rare. RESULTS: Using a human co-culture model of macrophages and hepatocytes we investigated the course of infection of three Francisella tularensis strains (subspecies holarctica--wildtype and live vaccine strain, and mediasiatica--wildtype) and analyzed the immune response triggered upon infection. We observed that hepatocytes support the intracellular replication of Franciscella species in macrophages accompanied by a specific immune response inducing TNFα, IL-1ß, IL-6 and fractalkine (CX3CL1) secretion and the induction of apoptosis. CONCLUSIONS: We could demonstrate that this human macrophage/hepatocyte co-culture model reflects strain-specific virulence of Francisella tularensis. We developed a suitable tool for more detailed in vitro studies on the immune response upon liver cell infection by F. tularensis.


Assuntos
Técnicas de Cocultura/métodos , Francisella tularensis/fisiologia , Hepatócitos/microbiologia , Macrófagos/microbiologia , Tularemia/microbiologia , Apoptose , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Células Cultivadas , Francisella tularensis/classificação , Francisella tularensis/genética , Hepatócitos/citologia , Hepatócitos/imunologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Tularemia/imunologia , Tularemia/fisiopatologia
17.
Infect Immun ; 84(2): 573-9, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26644377

RESUMO

Listeria monocytogenes is a bacterial pathogen which establishes intracellular parasitism in various cells, including macrophages and nonhematopoietic cells, such as hepatocytes. It has been reported that several proinflammatory cytokines have pivotal roles in innate protection against L. monocytogenes infection. We found that a proinflammatory cytokine, interleukin 22 (IL-22), was expressed by CD3(+) CD4(+) T cells at an early stage of L. monocytogenes infection in mice. To assess the influence of IL-22 on L. monocytogenes infection in hepatocytes, cells of a human hepatocellular carcinoma line, HepG2, were treated with IL-22 before L. monocytogenes infection in vitro. Gene expression analysis of the IL-22-treated HepG2 cells identified phospholipase A2 group IIA (PLA2G2A) as an upregulated antimicrobial molecule. Addition of recombinant PLA2G2A to the HepG2 culture significantly suppressed L. monocytogenes infection. Culture supernatant of the IL-22-treated HepG2 cells contained bactericidal activity against L. monocytogenes, and the activity was abrogated by a specific PLA2G2A inhibitor, demonstrating that HepG2 cells secreted PLA2G2A, which killed extracellular L. monocytogenes. Furthermore, colocalization of PLA2G2A and L. monocytogenes was detected in the IL-22-treated infected HepG2 cells, which suggests involvement of PLA2G2A in the mechanism of intracellular killing of L. monocytogenes by HepG2 cells. These results suggest that IL-22 induced at an early stage of L. monocytogenes infection enhances innate immunity against L. monocytogenes in the liver by stimulating hepatocytes to produce an antimicrobial molecule, PLA2G2A.


Assuntos
Fosfolipases A2 do Grupo II/metabolismo , Hepatócitos/enzimologia , Imunidade Inata , Interleucinas/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Fígado/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Fosfolipases A2 do Grupo II/genética , Células Hep G2 , Hepatócitos/imunologia , Hepatócitos/microbiologia , Humanos , Interleucinas/genética , Listeria monocytogenes/efeitos dos fármacos , Listeriose/enzimologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Interleucina 22
18.
Cell Tissue Res ; 363(2): 449-59, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26239909

RESUMO

Francisella novicida is a surrogate pathogen commonly used to study infections by the potential bioterrorism agent, Francisella tularensis. One of the primary sites of Francisella infections is the liver where >90% of infected cells are hepatocytes. It is known that once Francisella enter cells it occupies a membrane-bound compartment, the Francisella-containing vacuole (FCV), from which it rapidly escapes to replicate in the cytosol. Recent work examining the Francisella disulfide bond formation (Dsb) proteins, FipA and FipB, have demonstrated that these proteins are important during the Francisella infection process; however, details as to how the infections are altered in epithelial cells have remained elusive. To identify the stage of the infections where these Dsbs might act during epithelial infections, we exploited a hepatocyte F. novicida infection model that we recently developed. We found that F. novicida ΔfipA-infected hepatocytes contained bacteria clustered within lysosome-associated membrane protein 1-positive FCVs, suggesting that FipA is involved in the escape of F. novicida from its vacuole. Our morphological evidence provides a tangible link as to how Dsb FipA can influence Francisella infections.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Francisella/fisiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Células Epiteliais/ultraestrutura , Francisella/ultraestrutura , Hepatócitos/microbiologia , Hepatócitos/patologia , Proteínas de Membrana Lisossomal/metabolismo , Camundongos Endogâmicos BALB C , Mutação/genética , Vacúolos/metabolismo , Vacúolos/ultraestrutura
19.
Lipids ; 50(11): 1093-102, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26399511

RESUMO

Hydroxy and oxo fatty acids were recently found to be produced as intermediates during gut microbial fatty acid metabolism. Lactobacillus plantarum produces these fatty acids from unsaturated fatty acids such as linoleic acid. In this study, we investigated the effects of these gut microbial fatty acid metabolites on the lipogenesis in liver cells. We screened their effect on sterol regulatory element binding protein-1c (SREBP-1c) expression in HepG2 cells treated with a synthetic liver X receptor α (LXRα) agonist (T0901317). The results showed that 10-hydroxy-12(Z)-octadecenoic acid (18:1) (HYA), 10-hydroxy-6(Z),12(Z)-octadecadienoic acid (18:2) (γHYA), 10-oxo-12(Z)-18:1 (KetoA), and 10-oxo-6(Z),12(Z)-18:2 (γKetoA) significantly decreased SREBP-1c mRNA expression induced by T0901317. These fatty acids also downregulated the mRNA expression of lipogenic genes by suppressing LXRα activity and inhibiting SREBP-1 maturation. Oral administration of KetoA, which effectively reduced triacylglycerol accumulation and acetyl-CoA carboxylase 2 (ACC2) expression in HepG2 cells, for 2 weeks significantly decreased Srebp-1c, Scd-1, and Acc2 expression in the liver of mice fed a high-sucrose diet. Our findings suggest that the hypolipidemic effect of the fatty acid metabolites produced by L. plantarum can be exploited in the treatment of cardiovascular diseases or dyslipidemia.


Assuntos
Ácidos Graxos/administração & dosagem , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Triglicerídeos/metabolismo , Animais , Dieta , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/microbiologia , Humanos , Hidrocarbonetos Fluorados , Lactobacillus plantarum/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , RNA Mensageiro/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Sulfonamidas , Triglicerídeos/genética
20.
Infect Immun ; 83(7): 2651-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25895972

RESUMO

Chlamydia pneumoniae is a Gram-negative bacterium that causes acute or chronic respiratory infections. As obligate intracellular pathogens, chlamydiae efficiently manipulate host cell processes to ensure their intracellular development. Here we focused on the interaction of chlamydiae with the host cell transcription factor activator protein 1 (AP-1) and its consequence on chlamydial development. During Chlamydia pneumoniae infection, the expression and activity of AP-1 family proteins c-Jun, c-Fos, and ATF-2 were regulated in a time- and dose-dependent manner. We observed that the c-Jun protein and its phosphorylation level significantly increased during C. pneumoniae development. Small interfering RNA knockdown of the c-Jun protein in HEp-2 cells reduced the chlamydial load, resulting in smaller inclusions and significantly lower chlamydial recovery. Furthermore, inhibition of the c-Jun-containing AP-1 complexes using tanshinone IIA changed the replicative infection phenotype into a persistent one. Tanshinone IIA-dependent persistence was characterized by smaller, aberrant inclusions, a strong decrease in the chlamydial load, and significantly reduced chlamydial recovery, as well as by the reversibility of the reduced recovery after the removal of tanshinone IIA. Interestingly, not only was tanshinone IIA treatment accompanied by a significant decrease of ATP levels, but fluorescence live cell imaging analysis by two-photon microscopy revealed that tanshinone IIA treatment also resulted in a decreased fluorescence lifetime of protein-bound NAD(P)H inside the chlamydial inclusion, indicating that chlamydial reticulate bodies have decreased metabolic activity. In all, these data demonstrate that the AP-1 transcription factor is involved in C. pneumoniae development, with tanshinone IIA treatment resulting in persistence.


Assuntos
Chlamydophila pneumoniae/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Hepatócitos/microbiologia , Hepatócitos/fisiologia , Interações Hospedeiro-Patógeno , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Carga Bacteriana , Células Hep G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA