Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Eur J Neurosci ; 59(10): 2502-2521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38650303

RESUMO

The emergence of compulsive drug-seeking habits, a hallmark feature of substance use disorder, has been shown to be predicated on the engagement of dorsolateral striatal control over behaviour. This process involves the dopamine-dependent functional coupling of the anterior dorsolateral striatum (aDLS) with the nucleus accumbens core, but the mechanisms by which this coupling occurs have not been fully elucidated. The striatum is tiled by a syncytium of astrocytes that express the dopamine transporter (DAT), the level of which is altered in individuals with heroin use disorder. Astrocytes are therefore uniquely placed functionally to bridge dopamine-dependent mechanisms across the striatum. Here we tested the hypothesis that exposure to heroin influences the expression of DAT in striatal astrocytes across the striatum before the development of DLS-dependent incentive heroin seeking habits. Using Western-blot, qPCR, and RNAscope™, we measured DAT protein and mRNA levels in whole tissue, culture and in situ astrocytes from striatal territories of rats with a well-established cue-controlled heroin seeking habit and rats trained to respond for heroin or food under continuous reinforcement. Incentive heroin seeking habits were associated with a reduction in DAT protein levels in the anterior aDLS that was preceded by a heroin-induced reduction in DAT mRNA and protein in astrocytes across the striatum. Striatal astrocytes were also shown to be susceptible to direct dopamine- and opioid-induced downregulation of DAT expression. These results suggest that astrocytes may critically regulate the striatal dopaminergic adaptations that lead to the development of incentive heroin seeking habits.


Assuntos
Astrócitos , Corpo Estriado , Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Comportamento de Procura de Droga , Heroína , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Masculino , Ratos , Comportamento de Procura de Droga/fisiologia , Comportamento de Procura de Droga/efeitos dos fármacos , Heroína/farmacologia , Heroína/administração & dosagem , Dopamina/metabolismo , Motivação/efeitos dos fármacos , Motivação/fisiologia , Dependência de Heroína/metabolismo , Ratos Sprague-Dawley
2.
Neuroendocrinology ; 114(3): 207-222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37848008

RESUMO

INTRODUCTION: Relapse is a major treatment barrier for opioid use disorder. Environmental cues become associated with the rewarding effects of opioids and can precipitate relapse, even after numerous unreinforced cue presentations, due to deficits in extinction memory recall (EMR). Estradiol (E2) modulates EMR of fear-related cues, but it is unknown whether E2 impacts EMR of reward cues and what brain region(s) are responsible for E2s effects. Here, we hypothesize that inhibition of E2 signaling in the basolateral amygdala (BLA) will impair EMR of a heroin-associated cue in both male and female rats. METHODS: We pharmacologically manipulated E2 signaling to characterize the role of E2 in the BLA on heroin-cue EMR. Following heroin self-administration, during which a light/tone cue was co-presented with each heroin infusion, rats underwent cued extinction to extinguish the conditioned association between the light/tone and heroin. During extinction, E2 signaling in the BLA was blocked by an aromatase inhibitor or specific estrogen receptor (ER) antagonists. The next day, subjects underwent a cued test to assess heroin-cue EMR. RESULTS: In both experiments, females took more heroin than males (mg/kg) and had higher operant responding during cued extinction. Inhibition of E2 synthesis in the BLA impaired heroin-cue EMR in both sexes. Notably, E2s actions are mediated by different ER mechanisms, ERα in males but ERß in females. CONCLUSIONS: This study is the first to demonstrate a behavioral role for centrally-produced E2 in the BLA and that E2 also impacts EMR of reward-associated stimuli in both sexes.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Humanos , Ratos , Masculino , Feminino , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Heroína/farmacologia , Sinais (Psicologia) , Extinção Psicológica/fisiologia , Recidiva
3.
Psychopharmacology (Berl) ; 241(1): 171-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37833541

RESUMO

RATIONALE: Previous studies have shown that gonadal hormones influence opioid self-administration in female rodents, but very few studies have examined these effects in male rodents. OBJECTIVES: The purpose of this study was to examine the effects of chronic hormone treatment on intravenous heroin self-administration in gonadectomized male rats using both physiological and supraphysiological doses of testosterone, estradiol, or progesterone. METHODS: Gonadectomized male rats were surgically implanted with intravenous catheters and trained to self-administer heroin on a fixed ratio (FR1) schedule of reinforcement. Using a between-subjects design, rats were treated daily with testosterone (0.175 or 1.75 mg, sc), estradiol (0.0005 or 0.005 mg, sc), progesterone, (0.0125 or 0.125 mg, sc), or their vehicles. After 14 days of chronic treatment, a dose-effect curve was determined for heroin (0.0003-0.03 mg/kg/infusion) over the course of one week. RESULTS: Neither testosterone nor estradiol altered responding maintained by heroin. In contrast, the high dose of progesterone (0.125 mg) reduced responding maintained by all doses of heroin to saline-control levels. This dose of progesterone did not reduce responding maintained by food on a progressive ratio schedule in either food-restricted or food-sated rats. CONCLUSIONS: These data indicate that exogenous progesterone or a pharmacologically active metabolite selectively decreases heroin intake in male rodents, which may have therapeutic implications for men with opioid use disorder.


Assuntos
Heroína , Progesterona , Humanos , Ratos , Masculino , Feminino , Animais , Heroína/farmacologia , Ratos Sprague-Dawley , Progesterona/farmacologia , Esquema de Reforço , Estradiol/farmacologia , Testosterona/farmacologia , Autoadministração
4.
J Neurosci Methods ; 402: 110013, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37989452

RESUMO

BACKGROUND: Despite extensive human use of inhalation for ingesting opioids, models in rodents have mostly been limited to parenteral injection and oral dosing. Methods using electronic drug delivery systems (EDDS; "e-cigarettes") have shown efficacy in rodent models but these do not faithfully mimic the most popular human inhalation method of heating heroin to the point of vaporization. NEW METHOD: Middle aged rats were exposed to vapor created by direct heating of heroin HCl powder in a ceramic e-cigarette type atomizer. Efficacy was determined with a warm water tail withdrawal nociception assay, rectal temperature and self-administration. RESULTS: Ten minutes of inhalation of vaporized heroin slowed response latency in a warm water tail withdrawal assay and increased rectal temperature in male rats, in a dose-dependent manner. Similar antinociceptive effects in female rats were attenuated by the opioid antagonist naloxone (1.0 mg/kg, s.c.). Female rats made operant responses for heroin vapor in 15-minute sessions, increased their response rate when the reinforcement ratio increased from FR1 to FR5, and further increased their responding when vapor delivery was omitted. Anti-nociceptive effects of self-administered volatilized heroin were of a similar magnitude as those produced by the 10-minute non-contingent exposure. COMPARISON WITH EXISTING METHODS: Inhalation of directly volatilized heroin successfully produces heroin-typical effects, comparable to EDDS inhalation delivery. CONCLUSIONS: This study shows that "chasing the dragon" methods of inhalation of heroin can be modeled successfully in the rat. Inhalation techniques may be particularly useful for longer term studies deep into the middle age of rats.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Heroína , Humanos , Pessoa de Meia-Idade , Ratos , Masculino , Feminino , Animais , Heroína/farmacologia , Naloxona/farmacologia , Antagonistas de Entorpecentes , Cânfora , Mentol , Água , Autoadministração
5.
Cells ; 12(14)2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37508477

RESUMO

Clinical and preclinical studies indicate that adaptations in corticostriatal neurotransmission significantly contribute to heroin relapse vulnerability. In animal models, heroin self-administration and extinction produce cellular adaptations in both neurons and astrocytes within the nucleus accumbens (NA) core that are required for cue-induced heroin seeking. Specifically, decreased glutamate clearance and reduced association of perisynaptic astrocytic processes with NAcore synapses allow glutamate release from prelimbic (PrL) cortical terminals to engage synaptic and structural plasticity in NAcore medium spiny neurons. Normalizing astrocyte glutamate homeostasis with drugs like the antioxidant N-acetylcysteine (NAC) prevents cue-induced heroin seeking. Surprisingly, little is known about heroin-induced alterations in astrocytes or pyramidal neurons projecting to the NAcore in the PrL cortex (PrL-NAcore). Here, we observe functional adaptations in the PrL cortical astrocyte following heroin self-administration (SA) and extinction as measured by the electrophysiologically evoked plasmalemmal glutamate transporter 1 (GLT-1)-dependent current. We likewise observed the increased complexity of the glial fibrillary acidic protein (GFAP) cytoskeletal arbor and increased association of the astrocytic plasma membrane with synaptic markers following heroin SA and extinction training in the PrL cortex. Repeated treatment with NAC during extinction reversed both the enhanced astrocytic complexity and synaptic association. In PrL-NAcore neurons, heroin SA and extinction decreased the apical tuft dendritic spine density and enlarged dendritic spine head diameter in male Sprague-Dawley rats. Repeated NAC treatment during extinction prevented decreases in spine density but not dendritic spine head expansion. Moreover, heroin SA and extinction increased the co-registry of the GluA1 subunit of AMPA receptors in both the dendrite shaft and spine heads of PrL-NAcore neurons. Interestingly, the accumulation of GluA1 immunoreactivity in spine heads was further potentiated by NAC treatment during extinction. Finally, we show that the NAC treatment and elimination of thrombospondin 2 (TSP-2) block cue-induced heroin relapse. Taken together, our data reveal circuit-level adaptations in cortical dendritic spine morphology potentially linked to heroin-induced alterations in astrocyte complexity and association at the synapses. Additionally, these data demonstrate that NAC reverses PrL cortical heroin SA-and-extinction-induced adaptations in both astrocytes and corticostriatal neurons.


Assuntos
Acetilcisteína , Heroína , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Heroína/farmacologia , Acetilcisteína/farmacologia , Astrócitos , Sinapses , Glutamatos , Recidiva
6.
Pharm Res ; 40(8): 1885-1899, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37344602

RESUMO

BACKGROUND & PURPOSE: Heroin (diacetylmorphine; diamorphine) is a highly addictive opioid prodrug. Heroin prescription is possible in some countries for chronic, treatment-refractory opioid-dependent patients and as a potent analgesic for specific indications. We aimed to study the pharmacokinetic interactions of heroin and its main pharmacodynamically active metabolites, 6-monoacetylmorphine (6-MAM) and morphine, with the multidrug efflux transporters P-glycoprotein/ABCB1 and BCRP/ABCG2 using wild-type, Abcb1a/1b and Abcb1a/1b;Abcg2 knockout mice. METHODS & RESULTS: Upon subcutaneous (s.c.) heroin administration, its blood levels decreased quickly, making it challenging to detect heroin even shortly after dosing. 6-MAM was the predominant active metabolite present in blood and most tissues. At 10 and 30 min after heroin administration, 6-MAM and morphine brain accumulation were increased about 2-fold when mouse (m)Abcb1a/1b and mAbcg2 were ablated. Fifteen minutes after direct s.c. administration of an equimolar dose of 6-MAM, we observed good intrinsic brain penetration of 6-MAM in wild-type mice. Still, mAbcb1 limited brain accumulation of 6-MAM and morphine without affecting their blood exposure, and possibly mediated their direct intestinal excretion. A minor contribution of mAbcg2 to these effects could not be excluded. CONCLUSIONS: We show that mAbcb1a/1b can limit 6-MAM and morphine brain exposure. Pharmacodynamic behavioral/postural observations, while non-quantitative, supported moderately increased brain levels of 6-MAM and morphine in the knockout mouse strains. Variation in ABCB1 activity due to genetic polymorphisms or environmental factors (e.g., drug interactions) might affect 6-MAM/morphine exposure in individuals, but only to a limited extent.


Assuntos
Heroína , Morfina , Camundongos , Animais , Heroína/metabolismo , Heroína/farmacologia , Morfina/metabolismo , Analgésicos Opioides/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Derivados da Morfina/metabolismo , Derivados da Morfina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Camundongos Knockout
7.
J Integr Neurosci ; 22(3): 76, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37258429

RESUMO

PURPOSE: Opioid use disorder is a significant global problem. Chronic heroin use is associated with impairment of cognitive function and conscious control ability. The cholinergic system can be disrupted following heroin administration, indicating that activation of the cholinergic system may prevent chronic heroin misuse. Donepezil as an inhibitor of cholinesterase has been reported to clinically improve cognition and attention. In this study, the inhibition of heroin self-administration and heroin-seeking behaviours by donepezil were evaluated in rats. METHODS: Rats were trained to self-administer heroin every four hours for 14 consecutive days under a fixed ratio 1 (FR1) reinforcement schedule, then underwent withdrawal for two weeks. A progressive ratio schedule was then used to evaluate the relative motivational value of heroin reinforcement. After withdrawal, a conditioned cue was introduced for the reinstatement of heroin-seeking behaviour. Donepezil (0.3-3 mg/kg, i.p.) was used during both the FR1 heroin self-administration and progressive ratio schedules. Immunohistochemistry was used to investigate the mechanism of action of donepezil in the rat brain. RESULTS: Pre-treatment with high dose donepezil (3 mg/kg) but not low doses (0.3-1 mg/kg) significantly inhibited heroin self-administration under the FR1 schedule. Donepezil decreased motivation values under the progressive ratio schedule in a dose-dependent manner. All doses of donepezil (1-3 mg/kg) decreased the reinstatement of heroin seeking induced by cues. Correlation analysis indicated that the inhibition of donepezil on heroin-seeking behaviour was positively correlated with an increased expression of dopamine receptor 1 (D1R) and dopamine receptor 2 (D2R) in the nucleus accumbens (NAc) and increased expression of choline acetyltransferase (ChAT) in the ventral tegmental area (VTA). CONCLUSIONS: The present study demonstrated that donepezil could inhibit heroin intake and heroin-seeking behaviour. Further, donepezil could regulate dopamine receptors in the NAc via an increase of acetylcholine. These results suggested that donepezil could be developed as a potential approach for the treatment of heroin misuse.


Assuntos
Dependência de Heroína , Nootrópicos , Ratos , Animais , Heroína/farmacologia , Heroína/uso terapêutico , Donepezila/farmacologia , Sinais (Psicologia) , Nootrópicos/farmacologia , Condicionamento Operante , Dependência de Heroína/tratamento farmacológico , Dependência de Heroína/psicologia , Ratos Sprague-Dawley , Receptores Dopaminérgicos , Colinérgicos/uso terapêutico , Extinção Psicológica
8.
Drug Alcohol Depend ; 244: 109799, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36774806

RESUMO

BACKGROUND: Treatment strategies that aim to promote abstinence to heroin use and reduce vulnerability to drug-use resumption are limited in sustainability and long-term efficacy. We have previously shown that environmental enrichment (EE), when implemented after drug self-administration, reduces drug-seeking and promotes abstinence to cocaine and heroin in male rats. Here, we tested the effects of EE on abstinence in an animal conflict model in males and females, and after periods where incubation of craving may occur. METHODS: Male and female rats were trained to self-administer heroin followed by 3 or 21 days of a no-event-interval (NEI). Following NEI, rats were permanently moved to environmental enrichment (EE) or new standard (nEE) housing 3 days prior to resuming self-administration in the presence of an electric barrier adjacent to the drug access lever. Electric barrier current was increased daily until rats ceased self-administration. RESULTS: We found that 21 days of NEI led to significantly greater heroin self-administration and a trend toward shorter latencies to emit the first active lever press in the first abstinence session compared to 3 days of NEI. EE, when compared to nEE, led to longer latencies in the first abstinence session. Also, EE groups of both sexes and in both NEIs achieved abstinence criteria in significantly fewer numbers of sessions. CONCLUSIONS: EE facilitates abstinence in males and females and after periods where incubation of craving may occur. This suggests that EE may benefit individuals attempting to abstain from heroin use and may aid in the development of long term treatment strategies.


Assuntos
Cocaína , Dependência de Heroína , Ratos , Masculino , Feminino , Animais , Heroína/farmacologia , Fissura , Ratos Sprague-Dawley , Cocaína/farmacologia , Autoadministração , Sinais (Psicologia)
9.
J Neurosci ; 43(10): 1692-1713, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36717230

RESUMO

The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to MOR-expressing cells. After performing anatomic and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to study the involvement of NAc MOR-expressing cells in heroin self-administration in male and female rats. Using RNAscope, autoradiography, and FISH chain reaction (HCR-FISH), we found no differences in Oprm1 expression in NAc, dorsal striatum, and dorsal hippocampus, or MOR receptor density (except dorsal striatum) or function between Oprm1-Cre knock-in rats and wildtype littermates. HCR-FISH assay showed that iCre is highly coexpressed with Oprm1 (95%-98%). There were no genotype differences in pain responses, morphine analgesia and tolerance, heroin self-administration, and relapse-related behaviors. We used the Cre-dependent vector AAV1-EF1a-Flex-taCasp3-TEVP to lesion NAc MOR-expressing cells. We found that the lesions decreased acquisition of heroin self-administration in male Oprm1-Cre rats and had a stronger inhibitory effect on the effort to self-administer heroin in female Oprm1-Cre rats. The validation of an Oprm1-Cre knock-in rat enables new strategies for understanding the role of MOR-expressing cells in rat models of opioid addiction, pain-related behaviors, and other opioid-mediated functions. Our initial mechanistic study indicates that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in male and female rats.SIGNIFICANCE STATEMENT The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to brain MOR-expressing cells. After performing anatomical and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to show that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in males and females. The new Oprm1-Cre rats can be used to study the role of brain MOR-expressing cells in animal models of opioid addiction, pain-related behaviors, and other opioid-mediated functions.


Assuntos
Dependência de Heroína , Heroína , Ratos , Masculino , Feminino , Animais , Heroína/farmacologia , Analgésicos Opioides/farmacologia , Núcleo Accumbens , Receptores Opioides/metabolismo , Ratos Transgênicos , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Dor/metabolismo
10.
J Leukoc Biol ; 112(5): 1317-1328, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36205434

RESUMO

HIV-associated neurocognitive impairment (HIV-NCI) is a debilitating comorbidity that reduces quality of life in 15-40% of people with HIV (PWH) taking antiretroviral therapy (ART). Opioid use has been shown to increase neurocognitive deficits in PWH. Monocyte-derived macrophages (MDMs) harbor HIV in the CNS even in PWH on ART. We hypothesized that morphine (MOR), a metabolite of heroin, further dysregulates functional processes in MDMs to increase neuropathogenesis. We found that, in uninfected and HIV-infected primary human MDMs, MOR activates these cells by increasing phagocytosis and up-regulating reactive oxygen species. Effects of MOR on phagocytosis were dependent on µ-opioid receptor activity and were mediated, in part, by inhibited lysosomal degradation of phagocytized substrates. All results persisted when cells were treated with both MOR and a commonly prescribed ART cocktail, suggesting minimal impact of ART during opioid exposure. We then performed mass spectrometry in HIV-infected MDMs treated with or without MOR to determine proteomic changes that suggest additional mechanisms by which opioids affect macrophage homeostasis. Using downstream pathway analyses, we found that MOR dysregulates ER quality control and extracellular matrix invasion. Our data indicate that MOR enhances inflammatory functions and impacts additional cellular processes in HIV-infected MDMs to potentially increases neuropathogenesis in PWH using opioids.


Assuntos
Infecções por HIV , Humanos , Infecções por HIV/metabolismo , Morfina/farmacologia , Morfina/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Heroína/metabolismo , Heroína/farmacologia , Qualidade de Vida , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Macrófagos/metabolismo , Receptores Opioides/metabolismo
11.
Psychopharmacology (Berl) ; 239(12): 3939-3952, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36287213

RESUMO

RATIONALE: Adolescents represent a vulnerable group due to increased experimentation with illicit substances that is often associated with the adolescent period, and because adolescent drug use can result in long-term effects that differ from those caused by drug use initiated during adulthood. OBJECTIVES: The purpose of the present study was to determine the effects of repeated heroin vapor inhalation during adolescence on measures of nociception, and anxiety-like behavior during adulthood in female and male Wistar rats. METHODS: Rats were exposed twice daily to 30 min of heroin vapor from post-natal day (PND) 36 to PND 45. At 12 weeks of age, baseline thermal nociception was assessed across a range of temperatures with a warm-water tail-withdrawal assay. Anxiety-like behavior was assessed in an elevated plus-maze (EPM) and activity was measured in an open-field arena. Starting at 23 weeks of age, baseline thermal nociception was re-assessed, nociception was determined after acute heroin or naloxone injection, and anxiety-like behavior was redetermined in the EPM. RESULTS: Adolescent heroin inhalation altered baseline thermal nociception in female rats at 12 weeks of age and in both female and male rats at ~ 23 weeks. Heroin-treated animals exhibited anxiety-like behavior when tested in the elevated plus-maze, showed blunted heroin-induced analgesia, but exhibited no effect on naloxone-induced hyperalgesia. CONCLUSIONS: The present study demonstrates that heroin vapor inhalation during adolescence produces behavioral and physiological consequences in rats that persist well into adulthood.


Assuntos
Heroína , Nociceptividade , Ratos , Animais , Masculino , Feminino , Ratos Wistar , Heroína/farmacologia , Ansiedade , Naloxona/farmacologia
12.
Psychopharmacology (Berl) ; 239(11): 3605-3620, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36112154

RESUMO

RATIONALE: The ongoing rise in opioid use disorder (OUD) has made it imperative to better model the individual variation within the human population that contributes to OUD vulnerability. Using animal models that capture such variation can be a useful tool. Individual variation in novelty-induced locomotion is predictive of substance use disorder (SUD) propensity. In this model, rats are characterized as high-responders (HR) or low-responders (LR) using a median split based on distance travelled during a locomotor test, and HR rats are generally found to exhibit a more SUD vulnerable behavioral phenotype. OBJECTIVES: The HR/LR model has commonly been used to assess behaviors in male rats using psychostimulants, with limited knowledge of the predictive efficacy of this model in females or the use of an opioid as the reward. In the current study, we assessed several behaviors across the different phases of drug addiction (heroin taking, refraining, and seeking) in over 500 male and female heterogeneous stock rats run at two geographically separate locations. Rats were characterized as HRs or LRs within each sex for analysis. RESULTS: Overall, females exhibit a more OUD vulnerable phenotype relative to males. Additionally, the HR/LR model was predictive of OUD-like behaviors in male, but not female rats. Furthermore, phenotypes did not differ in anxiety-related behaviors, reacquisition of heroin-taking, or punished heroin-taking behavior in either sex. CONCLUSIONS: These results emphasize the importance of assessing females in models of individual variation in SUD and highlight limitations in using the HR/LR model to assess OUD propensity.


Assuntos
Comportamento Exploratório , Dependência de Heroína , Humanos , Feminino , Ratos , Animais , Masculino , Analgésicos Opioides/farmacologia , Atividade Motora , Heroína/farmacologia
13.
Toxicol Lett ; 367: 88-95, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914676

RESUMO

Information regarding the metabolism of illicit drugs is under urgent need for toxicological assessment. Its development, however, is limited by the currently available animal models. To this end, we proposed three-dimensional (3D) HepaRG spheroids as an in vitro model to study the effects of illicit drugs on hepatic cytochrome P450 (CYP450) enzymes and potential drug-drug interactions (DDIs). By comparing the results from animal and cell experiments, we confirmed the significant impact of heroin, morphine, tetrahydrocannabinol, and fentanyl on CYP450 enzymes, and the 3D spheroids results were in good agreement with the animal results for 2B6, 2C19, 2D6. Using 3D HepaRG spheroids, we demonstrated DDIs between heroin as a 2B6 perpetrator and clinical medicine for cancer, depression, and illicit drug withdrawal. Specifically, the clearance rate of 5.4 µM bupropion was increased by 214 % under DDI with 5 µM heroin, highlighting the importance of DDI pre-screening and individualized medication guidance for illicit drug users. This research contributes to the growing body of evidence regarding the metabolic toxicity of illicit drugs and suggests 3D HepaRG spheroids as a high-throughput and cost-efficient platform for DDI analysis.


Assuntos
Drogas Ilícitas , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Heroína/metabolismo , Heroína/farmacologia , Drogas Ilícitas/metabolismo , Drogas Ilícitas/toxicidade , Fígado
14.
Drug Alcohol Depend ; 238: 109549, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810622

RESUMO

PURPOSE: Methadone maintenance treatment (MMT) is considered as an effective and mainstream therapy for heroin dependence. However, whether long-term MMT would improve the coupling among the three core large-scale brain networks (salience, default mode, and executive control) and its relationship with the craving for heroin is unknown. METHODS: Forty-four male heroin-dependent individuals during long-term MMT, 27 male heroin-dependent individuals after short-term detoxification/abstinence (SA), and 26 demographically matched healthy controls (HC) underwent resting-state functional magnetic resonance imaging. We analyzed the difference in coupling among the salience, default mode, and executive control networks among the three groups and examined how the coupling among these large-scale networks was associated with craving before and after drug-cue exposure. RESULTS: Compared with the SA group, the MMT group showed lower craving before and after cue exposure and stronger connectivity between the dorsal anterior cingulate cortex (a key node of the salience network) and key regions of the bilateral executive control network, including the bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and dorsomedial prefrontal cortex. Among the heroin-dependent individuals, the functional connectivity was negatively correlated with the craving before and after heroin-cue exposure. CONCLUSION: Our findings suggest that long-term MMT could increase the coupling between the salience and bilateral executive control networks and decrease craving for heroin. These findings contribute to the understanding of the neural mechanism of MMT, from the perspective of large-scale brain networks.


Assuntos
Dependência de Heroína , Imageamento por Ressonância Magnética , Encéfalo , Mapeamento Encefálico/métodos , Sinais (Psicologia) , Heroína/farmacologia , Dependência de Heroína/diagnóstico por imagem , Dependência de Heroína/tratamento farmacológico , Humanos , Masculino , Metadona/farmacologia , Metadona/uso terapêutico
15.
J Vis Exp ; (181)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35404359

RESUMO

The punishment-imposed abstinence procedure models the self-imposed abstinence that humans initiate due to the adverse consequences associated with drug-taking. This model has been implemented in experiments using different types of substances of abuse such as methamphetamine, cocaine, and alcohol. However, punishment-induced abstinence in heroin-trained animals has not been demonstrated. Furthermore, acute stress is a key trigger for relapse in humans and animal models. It was previously demonstrated that acute food deprivation robustly induced reinstatement of extinguished cocaine and heroin seeking. The procedure described here can be used to assess the effects of acute stress exposure on heroin seeking after punishment-imposed abstinence. A total of 8 rats were implanted with chronic intravenous (i.v.) catheters and trained to self-administer heroin (0.1 mg/kg/infusion) for 18 days under a seek-take chained schedule. Completing the seek link gave access to the take lever, which was paired with a heroin infusion. The seek lever was programmed with a variable interval 60 schedule of reinforcement (VI60), and the take lever was programmed with a fixed-ratio 1 reinforcement schedule (FR1). Following self-administration training, a mild foot shock was delivered on 30% of the completed seek links instead of the extension of the take lever. Footshock intensity was increased by 0.1 mA per daily session from 0.2 mA to 1.0 mA. Heroin-seeking tests were performed after 24 h of food deprivation (FD) or sated conditions. Rats under acute food deprivation condition robustly increased heroin seeking after punishment-imposed abstinence.


Assuntos
Cocaína , Dependência de Heroína , Animais , Extinção Psicológica , Heroína/farmacologia , Punição , Ratos , Recidiva , Autoadministração
16.
Exp Clin Psychopharmacol ; 30(2): 127-131, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33001695

RESUMO

Heroin intake decreases markedly during proestrus in normally cycling female rats; however, it is not known whether estradiol, progesterone, or both hormones are responsible for these decreases in heroin intake. The purpose of the present study was to examine the roles of estradiol and progesterone in heroin intake by artificially inducing a proestrus state in ovariectomized rats. To this end, ovariectomized female rats were implanted with intravenous catheters and trained to self-administer heroin (0.0075 mg/kg/infusion) on a fixed ratio (FR1) schedule of reinforcement. After 1 week of training, rats were tested at weekly intervals with estradiol (0.005 mg, sc) or vehicle 22 hr before a test session and progesterone (0.125 mg, sc) or vehicle 0.5 hr before a test session to artificially mimic the naturally occurring hormone concentrations characteristic of late proestrus. Administration of estradiol 22 hr prior to testing and progesterone 0.5 hr prior to testing significantly reduced heroin intake relative to the previous training day and vehicle control. It is interesting that this same effect was observed when only estradiol, but not progesterone, was administered. These data suggest that estradiol but not progesterone is responsible for the proestrus-induced decreases in heroin intake previously reported in normally cycling female rats. These findings differ from those reported previously with stimulants and suggest that estrogen-based pharmacotherapies may be of value to women with opioid use disorder. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Estradiol , Heroína , Animais , Estradiol/farmacologia , Feminino , Heroína/farmacologia , Humanos , Proestro , Progesterona/farmacologia , Ratos
17.
Psychopharmacology (Berl) ; 239(5): 1321-1335, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34160641

RESUMO

RATIONALE: Opioids are effective medications, but they have several key limitations including the development of tolerance, establishment of dependence, diversion for non-medical use, and the development of addiction. Therefore, any drugs which act in an additive or synergistic fashion with opioids to address medical applications have the potential to reduce opioid-related harms. OBJECTIVES: To determine if heroin and Δ9-tetrahydrocannabinol (THC) interact in an additive or independent manner to alter nociception, body temperature, and spontaneous locomotor activity when inhaled or injected. METHODS: Groups of female and male rats, implanted with radiotelemetry transmitters, were exposed to vapor generated from heroin (50 mg/mL in propylene glycol vehicle; PG), THC (50 mg/mL), or the combination for assessment of effects on temperature and activity. Thermal nociception was assessed with a warm water tail-withdrawal assay. RESULTS: Heroin inhalation increased temperature and activity whereas THC inhalation decreased temperature and activity in both female and male Sprague-Dawley rats. Effects of combined inhalation were in opposition, and additional experiments found the same outcome for the injection of heroin (0.5 mg/kg, s.c.) and THC (10 mg/kg, i.p.) alone and in combination. In contrast, the co-administration of heroin and THC by either inhalation or injection produced additive effects on thermal nociception in both male and female Sprague-Dawley and Wistar rats. CONCLUSIONS: This study shows that additive effects of THC with an opioid on a medical endpoint such as analgesia may not generalize to other behavioral or physiological effects, which may be a positive outcome for unwanted side effects.


Assuntos
Dronabinol , Sistemas Eletrônicos de Liberação de Nicotina , Analgésicos Opioides/farmacologia , Animais , Dronabinol/farmacologia , Feminino , Heroína/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar
18.
Addict Biol ; 27(2): e13117, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34802173

RESUMO

Drug addiction is a chronic brain disease characterized by the uncontrolled use of a substance. Due to its relapsing nature, addiction is difficult to treat, as individuals can relapse following even long periods of abstinence and, it is during this time, that they are most vulnerable to overdose. In America, opioid overdose has been increasing for decades, making finding new treatments to help patients remain abstinent and prevent overdose deaths imperative. Recently, glucagon-like peptide-1 (GLP-1) receptor agonists have shown promise in reducing motivated behaviours for drugs of abuse. In this study, we test the effectiveness of the GLP-1 analogue, liraglutide (LIR), in reducing heroin addiction-like behaviour, and the potential side effects associated with the treatment. We show that daily treatment with LIR (0.1 mg/kg sc) increases the latency to take heroin, reduces heroin self-administration, prevents escalation of heroin self-administration and reduces drug-induced reinstatement of heroin-seeking behaviour in rats. A 1-h pretreatment time, however, was too short to reduce cue-induced seeking in our study. Moreover, we showed that, while LIR (0.1, 0.3, 0.6 and 1.0 mg/kg sc) supported conditioned taste avoidance of a LIR-paired saccharin cue, it did not elicit intake of the antiemetic kaolin in heroin-naïve or heroin-experienced rats. Further, 0.1 mg/kg LIR did not produce great disruptions in food intake or body weight. Overall, the data show that LIR is effective in reducing heroin taking and heroin seeking at doses that do not cause malaise and have a modest effect on food intake and body weight gain.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Dependência de Heroína , Liraglutida , Animais , Sinais (Psicologia) , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Heroína/farmacologia , Dependência de Heroína/tratamento farmacológico , Liraglutida/farmacologia , Ratos , Autoadministração
19.
Nat Commun ; 12(1): 4788, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373454

RESUMO

Activity in numerous brain regions drives heroin seeking, but no circuits that limit heroin seeking have been identified. Furthermore, the neural circuits controlling opioid choice are unknown. In this study, we examined the role of the infralimbic cortex (IL) to nucleus accumbens shell (NAshell) pathway during heroin choice and relapse. This model yielded subpopulations of heroin versus food preferring rats during choice, and choice was unrelated to subsequent relapse rates to heroin versus food cues, suggesting that choice and relapse are distinct behavioral constructs. Supporting this, inactivation of the IL with muscimol produced differential effects on opioid choice versus relapse. A pathway-specific chemogenetic approach revealed, however, that the IL-NAshell pathway acts as a common limiter of opioid choice and relapse. Furthermore, dendritic spines in IL-NAshell neurons encode distinct aspects of heroin versus food reinforcement. Thus, opioid choice and relapse share a common addiction-limiting circuit in the IL-NAshell pathway.


Assuntos
Analgésicos Opioides/farmacologia , Comportamento Aditivo , Comportamento de Procura de Droga/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides , Animais , Comportamento Animal , Encéfalo/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Sinais (Psicologia) , Tomada de Decisões/efeitos dos fármacos , Ingestão de Alimentos/psicologia , Extinção Psicológica/fisiologia , Alimentos , Heroína/farmacologia , Dependência de Heroína , Masculino , Vias Neurais/fisiologia , Núcleo Accumbens/metabolismo , Ratos , Recidiva , Reforço Psicológico , Roedores , Autoadministração
20.
Drug Alcohol Depend ; 221: 108630, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33667779

RESUMO

Sub-Saharan Africa is one of the top three regions with the highest rates of opioid-related premature mortality. Nyaope is the street name for what is believed to be a drug cocktail in South Africa although recent research suggests that it is predominantly heroin. Nyaope powder is most commonly smoked together with cannabis, a drug-use pattern unique to the region. Due to the increasing burden of this drug in low-income communities and the absence of human structural neuroimaging data of combination heroin and cannabis use disorder, we initiated an important cohort study in order to identify neuroanatomical sequelae. Twenty-eight male nyaope users and thirty healthy, matched controls were recruited from drug rehabilitation centers and the community, respectively. T1-weighted MRI images were obtained using a 3 T General Electric Discovery and cortical thickness was examined and compared. Nyaope users displayed extensive grey matter atrophy in the right hemispheric medial orbitofrontal, rostral middle frontal, superior temporal, superior frontal, and supramarginal gyri (two-sided t-test, p < 0.05, corrected for multiple comparisons). Our findings indicate cortical abnormality in nyaope users in regions involved in impulse control, decision making, social- and self-perception, and working memory. Importantly, affected brain regions show large overlap with the pattern of cortical abnormalities shown in heroin use disorder.


Assuntos
Córtex Cerebral/patologia , Substância Cinzenta/patologia , Dependência de Heroína/patologia , Drogas Ilícitas/farmacologia , Abuso de Maconha/patologia , Adulto , Atrofia/induzido quimicamente , Atrofia/diagnóstico por imagem , Cannabis , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/efeitos dos fármacos , Estudos de Coortes , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/efeitos dos fármacos , Heroína/farmacologia , Dependência de Heroína/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Abuso de Maconha/diagnóstico por imagem , Neuroimagem , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA