Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
1.
J Virol ; 98(5): e0159623, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38587378

RESUMO

Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 ribonucleotide reductase 2 (RR2) protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident and effector memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.IMPORTANCEThe present study investigates the novel prime/pull therapeutic vaccine strategy to protect against recurrent genital herpes using the latently infected guinea pig model. In this study, we used the strategy that involves immunization of herpes simplex virus type 2-infected guinea pigs using a recombinantly expressed herpes tegument protein-ribonucleotide reductase 2 (RR2; prime), followed by intravaginal treatment with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines to recruit T cells into the infected dorsal root ganglia (DRG) and vaginal mucosa (VM) (pull). We show that the RR2/CXCL11 prime-pull therapeutic vaccine strategy elicited a significant reduction in virus shedding in the vaginal mucosa and decreased the severity and frequency of recurrent genital herpes. This protection was associated with increased frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells infiltrating latently infected DRG tissues and the healed regions of the vaginal mucosa. These findings shed light on the role of tissue-resident and effector memory CD4+ and CD8+ T cells in DRG tissues and the VM in protection against recurrent genital herpes and propose the prime-pull therapeutic vaccine strategy in combating genital herpes.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Quimiocina CXCL11 , Herpes Genital , Herpesvirus Humano 2 , Animais , Herpes Genital/imunologia , Herpes Genital/prevenção & controle , Cobaias , Herpesvirus Humano 2/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Quimiocina CXCL11/imunologia , Quimiocina CXCL11/metabolismo , Linfócitos T CD4-Positivos/imunologia , Gânglios Espinais/imunologia , Gânglios Espinais/virologia , Ribonucleotídeo Redutases/metabolismo , Vagina/virologia , Vagina/imunologia , Vacinação , Modelos Animais de Doenças , Células T de Memória/imunologia
2.
Nature ; 628(8006): 204-211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418880

RESUMO

The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina1. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.


Assuntos
Encéfalo , Olho , Sistema Linfático , Animais , Feminino , Humanos , Masculino , Camundongos , Coelhos , Bactérias/imunologia , Encéfalo/anatomia & histologia , Encéfalo/imunologia , Dependovirus/imunologia , Olho/anatomia & histologia , Olho/imunologia , Glioblastoma/imunologia , Herpesvirus Humano 2/imunologia , Injeções Intravítreas , Sistema Linfático/anatomia & histologia , Sistema Linfático/imunologia , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/imunologia , Macaca mulatta , Meninges/imunologia , Nervo Óptico/imunologia , Suínos , Peixe-Zebra , Fator C de Crescimento do Endotélio Vascular/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia
4.
Infect Genet Evol ; 96: 105136, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34775078

RESUMO

Sexually transmitted diseases (STDs) have a profound effect on reproductivity and sexual health worldwide. According to world health organization (WHO) 375 million new case of STD, including chlamydia trachomatis (chlamydia), Neisseria gonorrhoeae, HSV, HPV has been reported in 2016. More than 30 diverse pathogenesis have identified to be transmitted through sexual intercourse. Of these, viral infections (hepatitis B, herpes simplex virus (HSV or herpes), HIV, and human papillomavirus (HPV) are incurable. However, symptoms caused by the incurable viral infections can be alleviated through treatment. Antimicrobial resistance (AMR) of sexually transmitted infections (STIs) to antibiotics has increased recent years, in this regard, vaccination is proposed as an important strategy for prevention or treatment of STDs. Vaccine against HPV 16 and 18 suggests a new approach for controlling STDs but until now, there is no prophylactic or therapeutic vaccine have been approved for HSV-2 and Chlamydia trachomatis (CT); in this reason, developing an efficient vaccine is inevitable. Recently, different combinatorial forms of subunit vaccines against two or three type of bacteria have been designed. In this study, to design a combinatorial vaccine against HSV, CT, and HPV, the E7 and L2 from HPV, glycoprotein D from HSV-2 and ompA from CT were selected as final antigens. Afterward, the immunodominant helper T lymphocytes (HTLs) and cytolytic T lymphocytes (CTLs) epitopes were chosen from aforesaid antigens. P30 (tetanus toxoid epitope) as universal T-helper were also added to the vaccine. Moreover, flagellin D1/D0 as TLR5 agonist and the RS09 as a TLR4 ligand were incorporated to N and C-terminals of peptide vaccine, respectively. Finally, all selected parts were fused together by appropriate linkers to enhance vaccine efficiency. The physicochemical, structural, and immunological properties of the designed vaccine protein were assessed. To achieve the best 3D model of the protein vaccine, modeling, refinement, and validation of modeled structures were also done. Docking evaluation demonstrated suitable interaction between the vaccine and TLR5. Moreover, molecular dynamics (MD) studies showed an appropriate and stable structure of protein and TLR5. Based on immunoinformatic analysis, our vaccine candidate could potentially incite humoral and cellular immunities, which are critical for protection against HPV, HSV-2, and chlamydia trachomatis. It should be noted that, experimental studies are needed to confirm the efficacy of the designed vaccine.


Assuntos
Vacinas Bacterianas/imunologia , Chlamydia trachomatis/imunologia , Herpesvirus Humano 2/imunologia , Papillomaviridae/imunologia , Infecções Sexualmente Transmissíveis/prevenção & controle , Vacinas Virais/imunologia , Infecções por Chlamydia/prevenção & controle , Epitopos de Linfócito B/imunologia , Herpes Simples/prevenção & controle , Humanos , Infecções por Papillomavirus/prevenção & controle , Vacinas de Subunidades Antigênicas/imunologia
5.
Front Immunol ; 12: 735643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552595

RESUMO

Tissue-resident-memory T cells (TRM) populate the body's barrier surfaces, functioning as frontline responders against reencountered pathogens. Understanding of the mechanisms by which CD8TRM achieve effective immune protection remains incomplete in a naturally recurring human disease. Using laser capture microdissection and transcriptional profiling, we investigate the impact of CD8TRM on the tissue microenvironment in skin biopsies sequentially obtained from a clinical cohort of diverse disease expression during herpes simplex virus 2 (HSV-2) reactivation. Epithelial cells neighboring CD8TRM display elevated and widespread innate and cell-intrinsic antiviral signature expression, largely related to IFNG expression. Detailed evaluation via T-cell receptor reconstruction confirms that CD8TRM recognize viral-infected cells at the specific HSV-2 peptide/HLA level. The hierarchical pattern of core IFN-γ signature expression is well-conserved in normal human skin across various anatomic sites, while elevation of IFI16, TRIM 22, IFITM2, IFITM3, MX1, MX2, STAT1, IRF7, ISG15, IFI44, CXCL10 and CCL5 expression is associated with HSV-2-affected asymptomatic tissue. In primary human cells, IFN-γ pretreatment reduces gene transcription at the immediate-early stage of virus lifecycle, enhances IFI16 restriction of wild-type HSV-2 replication and renders favorable kinetics for host protection. Thus, the adaptive immune response through antigen-specific recognition instructs innate and cell-intrinsic antiviral machinery to control herpes reactivation, a reversal of the canonical thinking of innate activating adaptive immunity in primary infection. Communication from CD8TRM to surrounding epithelial cells to activate broad innate resistance might be critical in restraining various viral diseases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/imunologia , Herpes Genital/imunologia , Herpesvirus Humano 2/imunologia , Imunidade Inata , Memória Imunológica , Células T de Memória/imunologia , Pele/imunologia , Imunidade Adaptativa/genética , Adulto , Idoso , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Perfilação da Expressão Gênica , Herpes Genital/genética , Herpes Genital/metabolismo , Herpes Genital/virologia , Herpesvirus Humano 2/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/genética , Interferon gama/genética , Interferon gama/metabolismo , Masculino , Células T de Memória/metabolismo , Células T de Memória/virologia , Pessoa de Meia-Idade , Fenótipo , Pele/metabolismo , Pele/virologia , Transcriptoma
6.
J Immunol ; 206(12): 2852-2861, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34049972

RESUMO

NF-κB plays a crucial role in regulating cell proliferation, inflammation, apoptosis, and immune responses. HSV type 2 (HSV-2) is one of the most predominant sexually transmitted pathogens worldwide, and its infection increases the risk of HIV type 1 (HIV-1) acquisition and transmission. HSV-2 glycoprotein D (gD), highly homologous to HSV-1 gD, is essential for viral adhesion, fusion, entry, and spread. It is known that HSV-1 gD can bind herpesvirus entry mediator (HVEM) to trigger NF-κB activation and thereby facilitate viral replication at the early stage of infection. In this study, we found that purified HSV-2 gD triggered NF-κB activation at the early stage of infection, whereas ectopic expression of HSV-2 gD significantly downregulated TNF-α-induced NF-κB activity as well as TNF-α-induced IL-6 and IL-8 expression. Mechanistically, HSV-2 gD inhibited NF-κB, but not IFN-regulatory factor 3 (IRF3), activation and suppressed NF-κB activation mediated by overexpression of TNFR-associated factor 2 (TRAF2), IκB kinase α (IKKα), IKKß, or p65. Coimmunoprecipitation and binding kinetic analyses demonstrated that HSV-2 gD directly bound to the NF-κB subunit p65 and abolished the nuclear translocation of p65 upon TNF-α stimulation. Mutational analyses further revealed that HSV-2 gD interacted with the region spanning aa 19-187 of p65. Findings in this study together demonstrate that HSV-2 gD interacts with p65 to regulate p65 subcellular localization and thereby prevents NF-κB-dependent gene expression, which may contribute to HSV-2 immune evasion and pathogenesis.


Assuntos
Herpesvirus Humano 2/imunologia , Fator de Transcrição RelA/imunologia , Proteínas do Envelope Viral/imunologia , Células HEK293 , Células HeLa , Humanos
7.
J Immunother Cancer ; 9(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33837053

RESUMO

BACKGROUND: OH2 is a genetically engineered oncolytic herpes simplex virus type 2 designed to selectively amplify in tumor cells and express granulocyte-macrophage colony-stimulating factor to enhance antitumor immune responses. We investigated the safety, tolerability and antitumor activity of OH2 as single agent or in combination with HX008, an anti-programmed cell death protein 1 antibody, in patients with advanced solid tumors. METHODS: In this multicenter, phase I/II trial, we enrolled patients with standard treatment-refractory advanced solid tumors who have injectable lesions. In phase I, patients received intratumoral injection of OH2 at escalating doses (106, 107 and 108CCID50/mL) as single agent or with fixed-dose HX008. The recommended doses were then expanded in phase II. Primary endpoints were safety and tolerability defined by the maximum-tolerated dose and dose-limiting toxicities (DLTs) in phase I, and antitumor activity assessed per Response Evaluation Criteria in Solid Tumors (RECIST version 1.1) and immune-RECIST in phase II. RESULTS: Between April 17, 2019 and September 22, 2020, 54 patients with metastatic cancers were enrolled. Forty patients were treated with single agent OH2, and 14 with OH2 plus HX008. No DLTs were reported with single agent OH2 in phase I. Four patients, having metastatic mismatch repair-proficient rectal cancer or metastatic esophageal cancer, achieved immune-partial response, with two from the single agent cohort and two from the combination cohort. The duration of response were 11.25+ and 14.03+ months for the two responders treated with single agent OH2, and 1.38+ and 2.56+ months for the two responders in the combination cohort. The most common treatment-related adverse event (TRAE) with single agent OH2 was fever (n=18, 45.0%). All TRAEs were of grade 1-2, except one case of grade 3 fever in the 108CCID50/mL group. No treatment-related serious AEs occurred. Single agent OH2 induced alterations in the tumor microenvironment, with clear increases in CD3+ and CD8+ cell density and programmed death-ligand 1 expression in the patients' post-treatment biopsies relative to baseline. CONCLUSIONS: Intratumoral injection of OH2 was well-tolerated, and demonstrated durable antitumor activity in patients with metastatic esophageal and rectal cancer. Further clinical development of OH2 as single agent or with immune checkpoint inhibitors in selected tumor types is warranted.


Assuntos
Herpesvirus Humano 2/patogenicidade , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/patogenicidade , Adulto , Idoso , China , Terapia Combinada , Feminino , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Neoplasias/virologia , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Critérios de Avaliação de Resposta em Tumores Sólidos , Fatores de Tempo , Resultado do Tratamento
8.
mSphere ; 6(2)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910988

RESUMO

Potent systemic immunity is important for recalled mucosal immune responses, but in the defense against mucosal viral infections, it usually remains low at mucosal sites. Based on our previous findings that enhanced immune responses can be achieved by immunization with an immunogen in combination with a molecular adjuvant, here we designed chemokine-antigen (Ag) fusion constructs (CCL19- or CCL28-herpes simplex virus 2 glycoprotein D [HSV-2 gD]). After intramuscular (i.m.) immunization with different DNA vaccines in a prime and boost strategy, BALB/c mice were challenged with a lethal dose of HSV-2 through the genital tract. Ag-specific immune responses and chemokine receptor-specific lymphocytes were analyzed to determine the effects of CCL19 and CCL28 in strengthening humoral and cellular immunity. Both CCL19 and CCL28 were efficient in inducing long-lasting HSV-2 gD-specific systemic immunity. Compared to CCL19, less CCL28 was required to elicit HSV-2 gD-specific serum IgA responses, Th1- and Th2-like responses of immunoglobulin (Ig) subclasses and cytokines, and CCR3+ T cell enrichment (>8.5-fold) in spleens. These findings together demonstrate that CCL28 tends to assist an immunogen to induce more potently protective immunity than CCL19. This work provides information for the application potential of a promising vaccination strategy against mucosal infections caused by HSV-2 and other sexually transmitted viruses.IMPORTANCE An effective HSV-2 vaccine should induce antigen (Ag)-specific immune responses against viral mucosal infection. This study reveals that chemokine CCL19 or CCL28 enhanced HSV-2 glycoprotein D ectodomain (gD-306aa)-induced immune responses against vaginal virus challenge. In addition to eliciting robust humoral immune responses, the chemokine-Ag fusion construct also induced Th1- and Th2-like immune responses characterized by the secretion of multiple Ig subclasses and cytokines that were able to be recalled after HSV-2 challenge, while CCL28 appeared to be more effective than CCL19 in promoting gD-elicited immune responses as well as the migration of T cells to secondary lymph tissues. Of importance, both CCL19 and CCL28 significantly facilitated gD to induce protective mucosal immune responses in the genital tract. The above-described findings together highlight the potential of CCL19 or CCL28 in combination with gD as a vaccination strategy to control HSV-2 infection.


Assuntos
Anticorpos Antivirais/sangue , Quimiocina CCL19/imunologia , Quimiocinas CC/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Quimiocina CCL19/genética , Quimiocinas CC/genética , Feminino , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/classificação , Imunidade nas Mucosas , Memória Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Vacinação/métodos , Vagina/imunologia , Vagina/virologia
9.
J Infect Dis ; 224(9): 1509-1519, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33718970

RESUMO

Previous herpes simplex virus type 2 (HSV-2) vaccines have not prevented genital herpes. Concerns have been raised about the choice of antigen, the type of antibody induced by the vaccine, and whether antibody is present in the genital tract where infection occurs. We reported results of a trial of an HSV-2 replication-defective vaccine, HSV529, that induced serum neutralizing antibody responses in 78% of HSV-1-/HSV-2- vaccine recipients. Here we show that HSV-1-/HSV-2- vaccine recipients developed antibodies to epitopes of several viral proteins; however, fewer antibody epitopes were detected in vaccine recipients compared with naturally infected persons. HSV529 induced antibodies that mediated HSV-2-specific natural killer (NK) cell activation. Depletion of glycoprotein D (gD)-binding antibody from sera reduced neutralizing titers by 62% and NK cell activation by 81%. HSV-2 gD antibody was detected in cervicovaginal fluid at about one-third the level of that in serum. A vaccine that induces potent serum antibodies transported to the genital tract might reduce HSV genital infection.


Assuntos
Anticorpos Antivirais/sangue , Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpes Simples/prevenção & controle , Herpesvirus Humano 2/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Epitopos , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Humanos , Imunização
10.
Front Immunol ; 12: 758721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058919

RESUMO

Endogenous retroviruses (ERVs) are genomic sequences that originated from retroviruses and are present in most eukaryotic genomes. Both beneficial and detrimental functions are attributed to ERVs, but whether ERVs contribute to antiviral immunity is not well understood. Here, we used herpes simplex virus type 2 (HSV-2) infection as a model and found that Toll-like receptor 7 (Tlr7-/-) deficient mice that have high systemic levels of infectious ERVs are protected from intravaginal HSV-2 infection and disease, compared to wildtype C57BL/6 mice. We deleted the endogenous ecotropic murine leukemia virus (Emv2) locus on the Tlr7-/- background (Emv2-/-Tlr7-/-) and found that Emv2-/-Tlr7-/- mice lose protection against HSV-2 infection. Intravaginal application of purified ERVs from Tlr7-/- mice prior to HSV-2 infection delays disease in both wildtype and highly susceptible interferon-alpha receptor-deficient (Ifnar1-/-) mice. However, intravaginal ERV treatment did not protect Emv2-/-Tlr7-/- mice from HSV-2 disease, suggesting that the protective mechanism mediated by exogenous ERV treatment may differ from that of constitutively and systemically expressed ERVs in Tlr7-/- mice. We did not observe enhanced type I interferon (IFN-I) signaling in the vaginal tissues from Tlr7-/- mice, and instead found enrichment in genes associated with extracellular matrix organization. Together, our results revealed that constitutive and/or systemic expression of ERVs protect mice against vaginal HSV-2 infection and delay disease.


Assuntos
Retrovirus Endógenos/imunologia , Herpes Genital/imunologia , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/imunologia , Doenças Vaginais/imunologia , Doenças Vaginais/prevenção & controle , Animais , Retrovirus Endógenos/genética , Feminino , Herpes Genital/genética , Herpesvirus Humano 2/genética , Camundongos , Camundongos Knockout , Doenças Vaginais/genética
11.
mSphere ; 5(6)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361122

RESUMO

High-intensity focused ultrasound (HIFU), a noninvasive ablation therapy that has been widely used clinically in ablation of solid tumors, induces immune sensitization. We therefore in this study investigated whether HIFU treatment could enhance the efficacy of a herpes simplex virus 2 (HSV-2) vaccine. First, we observed that in HSV-2-positive cervical intraepithelial neoplasia (CIN) II patients, HIFU treatment induced significantly higher anti-HSV-2 neutralization response than surgical removal. Next, we tested the efficacy of HIFU-treated, UV-inactivated HSV-2-infected cells as a proof-of-concept vaccine in mice. Our data showed that HIFU-treated formulation significantly enhanced HSV-2 antibody titers and neutralization titers, compared to UV-, microwave (MW)-, or freeze-thaw (FT)-treated formulations. HIFU treatment also promoted the Th1/2 cell-mediated response. A long-term full protection was observed in mice that received the HIFU-treated formulation, and no weight loss was detected. Our findings indicate that the novel application of HIFU in vaccine production may represent a rational way to improve vaccine efficacy.IMPORTANCE High-intensity focused ultrasound (HIFU) is mainly used in tumor ablation and tumor vaccinology study. It has been shown to induce immune sensitization and enhance tumor responsiveness to other therapies. Our study has shown enhanced anti-HSV-2 response in HIFU-treated CIN II patients. Furthermore, in a murine model, we have demonstrated that HIFU-treated HSV-2 vaccine induced long-term protective immunity against lethal challenge. Our findings indicate that the novel application of HIFU in vaccine production may represent a rational way to improve vaccine efficacy.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Herpes Simples/prevenção & controle , Herpesvirus Humano 2/imunologia , Vacinas contra Herpesvirus/imunologia , Ultrassom Focalizado Transretal de Alta Intensidade/métodos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 2/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células Th1/imunologia , Células Th2/imunologia , Células Vero
12.
Sci Immunol ; 5(54)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33310865

RESUMO

Recurrent herpesvirus infections can manifest in different forms of disease, including cold sores, genital herpes, and encephalitis. There is an incomplete understanding of the genetic and immunological factors conferring susceptibility to recurrent herpes simplex virus 2 (HSV2) infection in the central nervous system (CNS). Here, we describe two adult patients with recurrent HSV2 lymphocytic Mollaret's meningitis that each carry a rare monoallelic variant in the autophagy proteins ATG4A or LC3B2. HSV2-activated autophagy was abrogated in patient primary fibroblasts, which also exhibited significantly increased viral replication and enhanced cell death. HSV2 antigen was captured in autophagosomes of infected cells, and genetic inhibition of autophagy by disruption of autophagy genes, including ATG4A and LC3B2, led to enhanced viral replication and cell death in primary fibroblasts and a neuroblastoma cell line. Activation of autophagy by HSV2 was sensitive to ultraviolet (UV) irradiation of the virus and inhibited in the presence of acyclovir, but HSV2-induced autophagy was independent of the DNA-activated STING pathway. Reconstitution of wild-type ATG4A and LC3B2 expression using lentiviral gene delivery or electroporation of in vitro transcribed mRNA into patient cells restored virus-induced autophagy and the ability to control HSV2 replication. This study describes a previously unknown link between defective autophagy and an inborn error of immunity that can lead to increased susceptibility to HSV2 infection, suggesting an important role for autophagy in antiviral immunity in the CNS.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia , Cisteína Endopeptidases/genética , Resistência à Doença , Herpesvirus Humano 2/imunologia , Meningite Viral/etiologia , Proteínas Associadas aos Microtúbulos/genética , Mutação , Idoso , Autofagia/genética , Autofagia/imunologia , Células Cultivadas , Resistência à Doença/genética , Resistência à Doença/imunologia , Suscetibilidade a Doenças , Feminino , Fibroblastos , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Proteínas de Membrana/metabolismo , Meningite Viral/diagnóstico , Pessoa de Meia-Idade , Recidiva , Transdução de Sinais , Carga Viral , Replicação Viral
13.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33028712

RESUMO

Estradiol (E2) is a sex hormone which has been shown to be protective against sexually transmitted infections such as herpes simplex virus 2 (HSV-2). However, few studies have examined the underlying mechanisms by which this occurs. Here, we investigated the effect of E2 on the establishment of memory T cells post-intranasal immunization with HSV-2. CD4+ T cell responses first appeared in the upper respiratory tract (URT) within 3 days postimmunization before being detected in the female reproductive tract (FRT) at 7 days. E2 treatment resulted in greater and earlier Th17 responses, which preceded augmented Th1 responses at these sites. The CD4+ T cells persisted in the URT for up to 28 days, and E2 treatment resulted in higher frequencies of memory T cells. Intranasal immunization also led to the establishment of CD4+ tissue-resident memory T cells (TRM cells) in the FRT, and E2 treatment resulted in increased Th1 and Th17 TRM cells. When the migration of circulating T cells into the FRT was blocked by FTY720, immunized E2-treated mice remained completely protected against subsequent genital HSV-2 challenge compared to non-E2 controls, confirming that TRM cells alone are adequate for protection in these mice. Finally, the enhanced vaginal Th1 TRM cells present in E2-treated mice were found to be modulated through an interleukin 17 (IL-17)-mediated pathway, as E2-treated IL-17A-deficient mice had impaired establishment of Th1 TRM cells. This study describes a novel role for E2 in enhancing CD4+ memory T cells and provides insight on potential strategies for generating optimal immunity during vaccination.IMPORTANCE Herpes simplex virus 2 (HSV-2) is a highly prevalent sexually transmitted infection for which there is currently no vaccine available. Interestingly, the female sex hormone estradiol has been shown to be protective against HSV-2. However, the underlying mechanisms by which this occurs remains relatively unknown. Our study demonstrates that under the influence of estradiol treatment, intranasal immunization with an attenuated strain of HSV-2 leads to enhanced establishment of antiviral memory T cell responses in the upper respiratory tract and female reproductive tract. In these sites, estradiol treatment leads to greater Th17 memory cells, which precede enhanced Th1 memory responses. Consequently, the T cell responses mounted by tissue-resident memory cells in the female reproductive tract of estradiol-treated mice are sufficient to protect mice against vaginal HSV-2 challenge. This study offers important insights regarding the regulation of mucosal immunity by hormones and on potential strategies for generating optimal immunity during vaccination.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Estradiol/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/imunologia , Memória Imunológica , Interleucina-17/imunologia , Vacinação/métodos , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/imunologia , Estradiol/administração & dosagem , Feminino , Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Imunidade nas Mucosas , Camundongos , Sistema Respiratório/imunologia , Células Th1/imunologia , Células Th17/imunologia , Vagina/imunologia
14.
J Immunol ; 205(5): 1281-1292, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32699158

RESUMO

Type I IFNs play an important role in innate immunity against viral infections by inducing the expression of IFN-stimulated genes (ISGs), which encode effectors with various antiviral functions. We and others previously reported that HSV type 2 (HSV-2) inhibits the synthesis of type I IFNs, but how HSV-2 suppresses IFN-mediated signaling is less understood. In the current study, after the demonstration of HSV-2 replication resistance to IFN-ß treatment in human epithelial cells, we reveal that HSV-2 and the viral protein ICP22 significantly decrease the expression of ISG54 at both mRNA and protein levels. Likewise, us1 del HSV-2 (ICP22-deficient HSV-2) replication is more sensitive to IFN-ß treatment, indicating that ICP22 is a vital viral protein responsible for the inhibition of type I IFN-mediated signaling. In addition, overexpression of HSV-2 ICP22 inhibits the expression of STAT1, STAT2, and IFN regulatory factor 9 (IRF9), resulting in the blockade of ISG factor 3 (ISGF3) nuclear translocation, and mechanistically, this is due to ICP22-induced ubiquitination of STAT1, STAT2, and IRF9. HSV-2 ICP22 appears to interact with STAT1, STAT2, IRF9, and several other ubiquitinated proteins. Following further biochemical study, we show that HSV-2 ICP22 functions as an E3 ubiquitin protein ligase to induce the formation of polyubiquitin chains. Taken together, we demonstrate that HSV-2 interferes with type I IFN-mediated signaling by degrading the proteins of ISGF3, and we identify HSV-2 ICP22 as a novel E3 ubiquitin protein ligase to induce the degradation of ISGF3. Findings in this study highlight a new mechanism by which HSV-2 circumvents the host antiviral responses through a viral E3 ubiquitin protein ligase.


Assuntos
Herpes Genital/imunologia , Herpesvirus Humano 2/imunologia , Proteínas Imediatamente Precoces/imunologia , Interferon beta/imunologia , Transdução de Sinais/imunologia , Ubiquitina-Proteína Ligases/imunologia , Proteínas Virais/imunologia , Antivirais/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Herpesvirus Humano 1/imunologia , Humanos , Imunidade Inata/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT2/imunologia , Ubiquitinação/imunologia
15.
PLoS Pathog ; 16(7): e1008795, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716975

RESUMO

HSV-1 causes 50% of first-time genital herpes infections in resource-rich countries and affects 190 million people worldwide. A prophylactic herpes vaccine is needed to protect against genital infections by both HSV-1 and HSV-2. Previously our laboratory developed a trivalent vaccine that targets glycoproteins C, D, and E present on the HSV-2 virion. We reported that this vaccine protects animals from genital disease and recurrent virus shedding following lethal HSV-2 challenge. Importantly the vaccine also generates cross-reactive antibodies that neutralize HSV-1, suggesting it may provide protection against HSV-1 infection. Here we compared the efficacy of this vaccine delivered as protein or nucleoside-modified mRNA immunogens against vaginal HSV-1 infection in mice. Both the protein and mRNA vaccines protected mice from HSV-1 disease; however, the mRNA vaccine provided better protection as measured by lower vaginal virus titers post-infection. In a second experiment, we compared protection provided by the mRNA vaccine against intravaginal challenge with HSV-1 or HSV-2. Vaccinated mice were totally protected against death, genital disease and infection of dorsal root ganglia caused by both viruses, but somewhat better protected against vaginal titers after HSV-2 infection. Overall, in the two experiments, the mRNA vaccine prevented death and genital disease in 54/54 (100%) mice infected with HSV-1 and 20/20 (100%) with HSV-2, and prevented HSV DNA from reaching the dorsal root ganglia, the site of virus latency, in 29/30 (97%) mice infected with HSV-1 and 10/10 (100%) with HSV-2. We consider the HSV-2 trivalent mRNA vaccine to be a promising candidate for clinical trials for prevention of both HSV-1 and HSV-2 genital herpes.


Assuntos
Proteção Cruzada/imunologia , Herpes Genital , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/imunologia , Vacinas contra Herpesvirus/imunologia , Latência Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Feminino , Herpes Genital/virologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro , Proteínas do Envelope Viral/imunologia
16.
BMC Infect Dis ; 20(1): 234, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32192456

RESUMO

BACKGROUND: Herpes simplex virus (HSV) typically infects oral or anogenital squamous epithelium and causes blisters and ulcerations. Here we reported an unusual case of HSV induced exuberant rectal inflammatory pseudotumor with vascular endothelial involvement. CASE PRESENTATIONS: A 52-year old man with HIV presented with abdominal pain, rectal drainage and constipation. Proctoscopy and CT scans revealed an 8 × 5 × 4 cm circumferential, mid-lower rectal mass that was concerning for malignancy. PET-CT showed mild to moderate FDG uptake of the rectal mass. Repeated biopsies showed exuberant lymphoplasmacytic inflammation with rich eosinophils and necrosis in the submucosa and scattered single or multi-nucleated viral inclusions in vascular endothelial cells that were positive for HSV by immunostains. There was no evidence of malignancy on histology or by immunostains. The patient started valacyclovir for three weeks and symptoms resolved after the antiviral therapy. Follow-up CT and sigmoidoscopy with biopsy revealed no rectal mass or drainable collection. CONCLUSIONS: HSV may present as proctitis with exuberant inflammatory response and mass-like lesion, and damages vascular endothelial cells in patients with HIV. The HSV-associated mass-like lesion can be effectively treated by 3-week valacyclovir.


Assuntos
Endotélio Vascular/virologia , Granuloma de Células Plasmáticas/complicações , Infecções por HIV/complicações , Herpes Simples/complicações , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/imunologia , Proctite/complicações , Reto/virologia , Antivirais/uso terapêutico , Células Endoteliais/virologia , Endotélio Vascular/patologia , Seguimentos , Granuloma de Células Plasmáticas/diagnóstico , Infecções por HIV/tratamento farmacológico , Herpes Simples/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proctite/tratamento farmacológico , Proctite/virologia , Reto/patologia , Resultado do Tratamento , Valaciclovir/uso terapêutico
17.
Front Immunol ; 11: 341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174926

RESUMO

Therapeutic targeting of IL-17A and its receptor IL-17RA with antibodies has turned out to be a tremendous success in the treatment of several autoimmune conditions. As the IL-17 cytokine family consists of six members (IL-17A to F), it is intriguing to elucidate the biological function of these five other molecules to identify more potential targets. In the past decade, IL-17C has emerged as quite a unique member of this pro-inflammatory cytokine group. In contrast to the well-described IL-17A and IL-17F, IL-17C is upregulated at very early timepoints of several disease settings. Also, the cellular source of the homodimeric cytokine differs from the other members of the family: Epithelial rather than hematopoietic cells were identified as the producers of IL-17C, while its receptor IL-17RE is expressed on TH17 cells as well as the epithelial cells themselves. Numerous investigations led to the current understanding that IL-17C (a) maintains an autocrine loop in the epithelium reinforcing innate immune barriers and (b) stimulates highly inflammatory TH17 cells. Functionally, the IL-17C/RE axis has been described to be involved in the pathogenesis of several diseases ranging from infectious and autoimmune conditions to cancer development and progression. This body of evidence has paved the way for the first clinical trials attempting to neutralize IL-17C in patients. Here, we review the latest knowledge about identification, regulation, and function of the IL-17C/IL-17receptor E pathway in inflammation and immunity, with a focus on the mechanisms underlying tissue injury. We also discuss the rationale for the translation of these findings into new therapeutic approaches in patients with immune-mediated disease.


Assuntos
Interleucina-17/imunologia , Células Th17/imunologia , Transferência Adotiva , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Candidíase Invasiva/imunologia , Citrobacter rodentium , Colite/induzido quimicamente , Colite/imunologia , Citocinas/imunologia , Infecções por Enterobacteriaceae/imunologia , Células Epiteliais/imunologia , Herpes Genital/imunologia , Herpesvirus Humano 2/imunologia , Herpesvirus Humano 2/fisiologia , Humanos , Imunoterapia , Inflamação/imunologia , Interleucina-17/biossíntese , Interleucina-17/genética , Camundongos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ativação Viral
18.
J Med Virol ; 92(8): 1246-1252, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31925791

RESUMO

The aim is to determine the prevalence of active infection by herpes simplex virus type 2 (HSV-2) among Mexican women with high-risk human papillomavirus (HR-HPV) cervical infection, recruited from public gynecology and colposcopy services. In a cross-sectional study, HSV-2 antibodies, HSV-2 DNA, and HR-HPV DNA were quantified. Significant differences in HSV-2 seroprevalence and HSV-2 active infection rates were found between negative and positive HR-HPV cases. HSV-2 seroprevalence was 28.15% and 16.1% (P = .0001), while HSV-2 active infection rates were 6.83% and 0.62% (P = .001) for positive and negative HR-HPV groups, respectively. The risk of HSV-2 seropositivity was 1.7 times greater for HR-HPV-positive cases (P = .02). Similarly, HR-HPV-positive cases were nine times more likely to have an HSV-2 active infection than HR-HPV-negative cases (P = .03). High HSV-2/h-HPV coinfection rates were observed among women recruited from public gynecology and colposcopy services. The main factors related to an HSV-2 active infection are a history of risky sexual behavior and HR-HPV infection. The prevalence of HSV-2 active infection among positive HR-HPV subjects indicate that these infections constitute an important group of STIs in Mexico.


Assuntos
Anticorpos Antivirais/sangue , Herpes Genital/epidemiologia , Infecções por Papillomavirus/virologia , Adulto , Colo do Útero/virologia , Coinfecção/epidemiologia , Coinfecção/virologia , Estudos Transversais , Feminino , Herpes Genital/virologia , Herpesvirus Humano 2/imunologia , Humanos , México/epidemiologia , Pessoa de Meia-Idade , Infecções por Papillomavirus/epidemiologia , Prevalência , Estudos Soroepidemiológicos , Comportamento Sexual
19.
J Neurovirol ; 26(3): 429-432, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31858482

RESUMO

Good's syndrome is a primary immunodeficiency phenocopy characterized for thymoma and immunodeficiency. The most frequent clinical presentation is recurrent or opportunistic infections, hematological alterations, and chronic diarrhea. We treated a 66-year-old man who consulted for 5 days of headache and diplopia with right sixth cranial nerve palsy at examination. Patient reported chronic diarrhea and prolonged febrile syndrome accompanied by weight loss of 23 kg in the last year. Exhaustive evaluation revealed Herpes simplex virus (HSV) type 2 meningitis, eosinophilic colitis, and type A thymoma. Severe antibody deficiency (hypogammaglobulinemia) associated with thymoma confirmed the diagnosis of Good's syndrome.


Assuntos
Agamaglobulinemia/patologia , Colite/patologia , Doenças dos Nervos Cranianos/patologia , Herpes Simples/patologia , Herpesvirus Humano 2/patogenicidade , Meningite Viral/patologia , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias do Timo/patologia , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/imunologia , Agamaglobulinemia/virologia , Idoso , Colite/diagnóstico , Colite/imunologia , Colite/virologia , Doenças dos Nervos Cranianos/diagnóstico , Doenças dos Nervos Cranianos/imunologia , Doenças dos Nervos Cranianos/virologia , Diplopia/diagnóstico , Diplopia/imunologia , Diplopia/patologia , Diplopia/virologia , Eosinofilia/diagnóstico , Eosinofilia/imunologia , Eosinofilia/patologia , Eosinofilia/virologia , Cefaleia/diagnóstico , Cefaleia/imunologia , Cefaleia/patologia , Cefaleia/virologia , Herpes Simples/diagnóstico , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 2/crescimento & desenvolvimento , Herpesvirus Humano 2/imunologia , Humanos , Contagem de Linfócitos , Masculino , Meningite Viral/diagnóstico , Meningite Viral/imunologia , Meningite Viral/virologia , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/virologia , Neoplasias do Timo/diagnóstico , Neoplasias do Timo/imunologia , Neoplasias do Timo/virologia
20.
J Histotechnol ; 42(4): 202-214, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31680648

RESUMO

Infections with herpes simplex virus (HSV) types 1 and 2 have been linked to oral, facial, genital lesions, as well as some visceral organ changes in patients under immunosuppressed conditions. Immunohistochemistry (IHC) with HSV antibodies is used for identification of the viruses in tissue samples. In this study, two polyclonal antibodies, prepared separately with HSV-1 and HSV-2 immunogens, were characterized in comparison to a monoclonal antibody to HSV-1 (10A3). The polyclonal anti-HSV-1 and monoclonal antibody 10A3 were shown to be reactive to viral proteins of both HSV-1 and HSV-2 on Western blots, while the polyclonal anti-HSV-2 was reactive to HSV-2 proteins, but not to those of HSV-1. Cross-reactivity was not observed to proteins of six other frequently encountered herpes viruses. IHC characterization was performed on 29 cases of HSV-infected tissue samples, 61 samples infected with other herpes viruses and 35 samples without known infection. By IHC, the polyclonal anti-HSV-1 and a monoclonal antibody 10A3 exhibited a signal, mainly in a nuclear pattern, in all of the HSV-infected samples and not in other tissue types. A positive signal, mainly in the cytoplasm, was identified with the polyclonal anti-HSV-2 in 21 of the 29 HSV-infected samples. Genotyping analysis was successful in 14 of the HSV-infected samples, with IHC HSV-2 positivity correlative to the HSV-2 genotype. The results demonstrate that these antibodies are useful tools for identification of HSV-1 and HSV-2, and their combinatorial application may help to distinguish between these two types of infection.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos Virais/imunologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/imunologia , Herpes Genital/virologia , Herpesviridae/imunologia , Humanos , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA