Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Carcinogenesis ; 45(5): 324-336, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38267812

RESUMO

Tripartite Motif 14 (TRIM14) is an oncoprotein that belongs to the E3 ligase TRIM family, which is involved in the progression of various tumors except for non-small cell lung carcinoma (NSCLC). However, little is currently known regarding the function and related mechanisms of TRIM14 in NSCLC. Here, we found that the TRIM14 protein was downregulated in lung adenocarcinoma tissues compared with the adjacent tissues, which can suppress tumor cell proliferation and migration both in vitro and in vivo. Moreover, TRIM14 can directly bind to glutamine fructose-6-phosphate amidotransferase 1 (GFAT1), which in turn results in the degradation of GFAT1 and reduced O-glycosylation levels. GFAT1 is a key enzyme in the rate-limiting step of the hexosamine biosynthetic pathway (HBP). Replenishment of N-acetyl-d-glucosamine can successfully reverse the inhibitory effect of TRIM14 on the NSCLC cell growth and migration as expected. Collectively, our data revealed that TRIM14 suppressed NSCLC cell proliferation and migration through ubiquitination and degradation of GFAT1, providing a new regulatory role for TRIM14 on HBP.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , Hexosaminas , Neoplasias Pulmonares , Proteínas com Motivo Tripartido , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Hexosaminas/biossíntese , Hexosaminas/metabolismo , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Ubiquitinação , Linhagem Celular Tumoral , Masculino , Camundongos Nus , Feminino , Glicosilação , Camundongos Endogâmicos BALB C , Vias Biossintéticas , Peptídeos e Proteínas de Sinalização Intracelular
2.
World J Surg Oncol ; 21(1): 334, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880766

RESUMO

Lung cancer is a highly prevalent malignancy characterized by significant metabolic alterations. Understanding the metabolic rewiring in lung cancer is crucial for the development of effective therapeutic strategies. The hexosamine biosynthesis pathway (HBP) is a metabolic pathway that plays a vital role in cellular metabolism and has been implicated in various cancers, including lung cancer. Abnormal activation of HBP is involved in the proliferation, progression, metastasis, and drug resistance of tumor cells. In this review, we will discuss the function and regulation of metabolic enzymes related to HBP in lung cancer. Furthermore, the implications of targeting the HBP for lung cancer treatment are also discussed, along with the challenges and future directions in this field. This review provides a comprehensive understanding of the role and intervention of HBP in lung cancer. Future research focusing on the HBP in lung cancer is essential to uncover novel treatment strategies and improve patient outcomes.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Hexosaminas/metabolismo , Vias Biossintéticas
3.
Biomed Chromatogr ; 37(8): e5642, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37016500

RESUMO

The hexosamine biosynthesis pathway (HBP) is a glucose metabolism pathway that produces uridine diphosphate N-acetyl glucosamine (UDP-GlcNAc). Substantial changes in HBP, including elevated HBP flux and UDP-GlcNAc levels, are associated with cancer pathogenesis. Particularly, cancer cells expressing oncogenic Kirsten rat sarcoma virus (KRAS) are highly dependent on HBP for growth and survival. To differentiate between HBP metabolites in KRAS wild-type (WT) and mutant (MT) lung cancer cells, a simultaneous quantitative method for analyzing seven HPB metabolites was developed using ultra-high-performance liquid chromatography-tandem mass spectrometry. A simple method without complicated preparation steps, such as derivatization or isotope labeling, was optimized for the simultaneous analysis of highly hydrophilic HBP metabolites, and the developed method was successfully verified. The intra- and inter-day coefficients of variation were less than 15% for all HBP metabolites, and the recovery was 89.67-114.5%. All results of the validation list were in accordance with ICM M10 guidelines. Through this method, HBP metabolites in lung cancer cells were accurately quantified, and it was confirmed that all HBP metabolites were upregulated in KRAS MT cells compared with KRAS WT lung cancer cells. We expect that this will be a useful tool for metabolic research on cancer and for the development of new drugs for cancer treatment.


Assuntos
Hexosaminas , Neoplasias Pulmonares , Humanos , Hexosaminas/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Proteínas Proto-Oncogênicas p21(ras)/genética , Glucosamina , Difosfato de Uridina
4.
Genes (Basel) ; 14(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107691

RESUMO

The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate-N-acetyl glucosamine, UDP-GlcNAc, which is a key metabolite that is used for N- or O-linked glycosylation, a co- or post-translational modification, respectively, that modulates protein activity and expression. The production of hexosamines can occur via de novo or salvage mechanisms that are catalyzed by metabolic enzymes. Nutrients including glutamine, glucose, acetyl-CoA, and UTP are utilized by the HBP. Together with availability of these nutrients, signaling molecules that respond to environmental signals, such as mTOR, AMPK, and stress-regulated transcription factors, modulate the HBP. This review discusses the regulation of GFAT, the key enzyme of the de novo HBP, as well as other metabolic enzymes that catalyze the reactions to produce UDP-GlcNAc. We also examine the contribution of the salvage mechanisms in the HBP and how dietary supplementation of the salvage metabolites glucosamine and N-acetylglucosamine could reprogram metabolism and have therapeutic potential. We elaborate on how UDP-GlcNAc is utilized for N-glycosylation of membrane and secretory proteins and how the HBP is reprogrammed during nutrient fluctuations to maintain proteostasis. We also consider how O-GlcNAcylation is coupled to nutrient availability and how this modification modulates cell signaling. We summarize how deregulation of protein N-glycosylation and O-GlcNAcylation can lead to diseases including cancer, diabetes, immunodeficiencies, and congenital disorders of glycosylation. We review the current pharmacological strategies to inhibit GFAT and other enzymes involved in the HBP or glycosylation and how engineered prodrugs could have better therapeutic efficacy for the treatment of diseases related to HBP deregulation.


Assuntos
Hexosaminas , Processamento de Proteína Pós-Traducional , Hexosaminas/metabolismo , Glucosamina , Glicosilação , Serina-Treonina Quinases TOR/metabolismo
5.
ACS Chem Biol ; 18(1): 151-165, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36626752

RESUMO

Altered cellular metabolism is a hallmark of cancer pathogenesis and progression; for example, a near-universal feature of cancer is increased metabolic flux through the hexosamine biosynthetic pathway (HBP). This pathway produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a potent oncometabolite that drives multiple facets of cancer progression. In this study, we synthesized and evaluated peracetylated hexosamine analogs designed to reduce flux through the HBP. By screening a panel of analogs in pancreatic cancer and glioblastoma multiform (GBM) cells, we identified Ac4Glc2Bz─a benzyl-modified GlcNAc mimetic─as an antiproliferative cancer drug candidate that down-regulated oncogenic metabolites and reduced GBM cell motility at concentrations non-toxic to non-neoplastic cells. More specifically, the growth inhibitory effects of Ac4Glc2Bz were linked to reduced levels of UDP-GlcNAc and concomitant decreases in protein O-GlcNAc modification in both pancreatic cancer and GBM cells. Targeted metabolomics analysis in GBM cells showed that Ac4Glc2Bz disturbed glucose metabolism, amino acid pools, and nucleotide precursor biosynthesis, consistent with reduced proliferation and other anti-oncogenic properties of this analog. Furthermore, Ac4Glc2Bz reduced the invasion, migration, and stemness of GBM cells. Importantly, normal metabolic functions mediated by UDP-GlcNAc were not disrupted in non-neoplastic cells, including maintenance of endogenous levels of O-GlcNAcylation with no global disruption of N-glycan production. Finally, a pilot in vivo study showed that a potential therapeutic window exists where animals tolerated 5- to 10-fold higher levels of Ac4Glc2Bz than projected for in vivo efficacy. Together, these results establish GlcNAc analogs targeting the HBP through salvage mechanisms as a new therapeutic approach to safely normalize an important facet of aberrant glucose metabolism associated with cancer.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Animais , Vias Biossintéticas , Hexosaminas/metabolismo , Antineoplásicos/farmacologia , Glucose/metabolismo , Difosfato de Uridina/metabolismo , Acetilglucosamina/metabolismo , Neoplasias Pancreáticas
6.
Biochim Biophys Acta Gen Subj ; 1867(1): 130250, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228878

RESUMO

Metabolite sensing, a fundamental biological process, plays a key role in metabolic signaling circuit rewiring. Hexosamine biosynthetic pathway (HBP) is a glucose metabolic pathway essential for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which senses key nutrients and integrally maintains cellular homeostasis. UDP-GlcNAc dynamically regulates protein N-glycosylation and O-linked-N-acetylglucosamine modification (O-GlcNAcylation). Dysregulated HBP flux leads to abnormal protein glycosylation, and contributes to cancer development and progression by affecting protein function and cellular signaling. Furthermore, O-GlcNAcylation regulates cellular signaling pathways, and its alteration is linked to various cancer characteristics. Additionally, recent findings have suggested a close association between HBP stimulation and cancer stemness; an elevated HBP flux promotes cancer cell conversion to cancer stem cells and enhances chemotherapy resistance via downstream signal activation. In this review, we highlight the prominent roles of HBP in metabolic signaling and summarize the recent advances in HBP and its downstream signaling, relevant to cancer.


Assuntos
Fenômenos Biológicos , Neoplasias , Humanos , Hexosaminas/metabolismo , Vias Biossintéticas , Acetilglucosamina/metabolismo , Neoplasias/metabolismo , Difosfato de Uridina
7.
Cell Rep ; 41(4): 111516, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288696

RESUMO

Natural killer T (NKT) cells operate distinctly different metabolic programming from CD4 T cells, including a strict requirement for glutamine to regulate cell homeostasis. However, the underlying mechanisms remain unknown. Here, we report that at a steady state, NKT cells have higher glutamine levels than CD4 T cells and that NKT cells increase glutaminolysis on activation. Activated NKT cells use glutamine to fuel the tricarboxylic acid cycle and glutathione synthesis. In addition, glutamine-derived nitrogen enables protein glycosylation via the hexosamine biosynthesis pathway (HBP). Each of these branches of glutamine metabolism seems to be critical for NKT cell homeostasis and mitochondrial functions. Glutaminolysis and HBP differentially regulate interleukin-4 (IL-4) and interferon γ (IFNγ) production. Glutamine metabolism appears to be controlled by AMP-activated protein kinase (AMPK)-mammalian target of rapamycin complex 1 (mTORC1) signaling. These findings highlight a distinct metabolic requirement of NKT cells compared with CD4 T cells, which may have therapeutic implications in the treatment of certain nutrient-restricted diseases.


Assuntos
Células T Matadoras Naturais , Células T Matadoras Naturais/metabolismo , Interleucina-4/metabolismo , Glutamina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Interferon gama/metabolismo , Homeostase , Hexosaminas/metabolismo , Fenótipo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nitrogênio/metabolismo , Glutationa/metabolismo
8.
Aging Cell ; 21(10): e13711, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36124412

RESUMO

Glucosamine feeding and genetic activation of the hexosamine biosynthetic pathway (HBP) have been linked to improved protein quality control and lifespan extension. However, as an energy sensor, the HBP has been implicated in tumor progression and diabetes. Given these opposing outcomes, it is imperative to explore the long-term effects of chronic HBP activation in mammals. Thus, we asked if HBP activation affects metabolism, coordination, memory, and survival in mice. N-acetyl-D-glucosamine (GlcNAc) supplementation in the drinking water had no adverse effect on weight in males but increased weight in young females. Glucose or insulin tolerance was not affected up to 20 months of age. Of note, we observed improved memory in young male mice supplemented with GlcNAc. Survival was not changed by GlcNAc treatment. To assess the effects of genetic HBP activation, we overexpressed the pathway's key enzyme GFAT1 and a constitutively activated mutant form in all mouse tissues. We detected elevated levels of the HBP product UDP-GlcNAc in mouse brains, but did not find any effects on behavior, memory, or survival. Together, while dietary GlcNAc supplementation did not extend survival in mice, it positively affected memory and is generally well tolerated.


Assuntos
Água Potável , Insulinas , Acetilglucosamina/metabolismo , Animais , Feminino , Glucosamina , Glucose/metabolismo , Glicosilação , Hexosaminas/metabolismo , Insulinas/metabolismo , Longevidade , Masculino , Mamíferos , Camundongos , Difosfato de Uridina/metabolismo
9.
Adv Sci (Weinh) ; 9(30): e2202993, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36045101

RESUMO

A malformed tumour vascular network provokes the nutrient-deprived tumour microenvironment (TME), which conversely activates endothelial cell (EC) functions and stimulates neovascularization. Emerging evidence suggests that the flexible metabolic adaptability of tumour cells helps to establish a metabolic symbiosis among various cell subpopulations in the fluctuating TME. In this study, the authors propose a novel metabolic link between bladder cancer (BCa) cells and ECs in the nutrient-scarce TME, in which BCa-secreted glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1) via small extracellular vesicles (sEVs) reprograms glucose metabolism by increasing hexosamine biosynthesis pathway flux in ECs and thus enhances O-GlcNAcylation. Moreover, seryl-tRNA synthetase (SerRS) O-GlcNAcylation at serine 101 in ECs promotes its degradation by ubiquitination and impeded importin α5-mediated nuclear translocation. Intranuclear SerRS attenuates vascular endothelial growth factor transcription by competitively binding to the GC-rich region of the proximal promotor. Additionally, GFAT1 knockout in tumour cells blocks SerRS O-GlcNAcylation in ECs and attenuates angiogenesis both in vitro and in vivo. However, administration of GFAT1-overexpressing BCa cells-derived sEVs increase the angiogenetic activity in the ECs of GFAT1-knockout mice. In summary, this study suggests that inhibiting sEV-mediated GFAT1 secretion from BCa cells and targeting SerRS O-GlcNAcylation in ECs may serve as novel strategies for BCa antiangiogenetic therapy.


Assuntos
Vesículas Extracelulares , Serina-tRNA Ligase , Neoplasias da Bexiga Urinária , Camundongos , Animais , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Serina-tRNA Ligase/metabolismo , Hexosaminas/metabolismo , Serina/metabolismo , Glucose/metabolismo , Vesículas Extracelulares/metabolismo , Carioferinas , Microambiente Tumoral
10.
Cells ; 11(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35883652

RESUMO

Respiratory syncytial virus (RSV), or human orthopneumovirus, is a negative-sense RNA virus that is the causative agent of severe lower respiratory tract infections in children and is associated with exacerbations of adult lung disease. The mechanisms how severe and/or repetitive virus infections cause declines in pulmonary capacity are not fully understood. We have recently discovered that viral replication triggers epithelial plasticity and metabolic reprogramming involving the hexosamine biosynthetic pathway (HBP). In this study, we examine the relationship between viral induced innate inflammation and the activation of hexosamine biosynthesis in small airway epithelial cells. We observe that RSV induces ~2-fold accumulation of intracellular UDP-GlcNAc, the end-product of the HBP and the obligate substrate of N glycosylation. Using two different silencing approaches, we observe that RSV replication activates the HBP pathway in a manner dependent on the RELA proto-oncogene (65 kDa subunit). To better understand the effect of RSV on the cellular N glycoproteome, and its RELA dependence, we conduct affinity enriched LC-MS profiling in wild-type and RELA-silenced cells. We find that RSV induces the accumulation of 171 N glycosylated peptides in a RELA-dependent manner; these proteins are functionally enriched in integrins and basal lamina formation. To elaborate this mechanism of HBP expression, we demonstrate that RSV infection coordinately induces the HBP pathway enzymes in a manner requiring RELA; these genes include Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT)-1/2, Glucosamine-Phosphate N-Acetyltransferase (GNPNAT)-1, phosphoglucomutase (PGM)-3 and UDP-N-Acetylglucosamine Pyrophosphorylase (UAP)-1. Using small-molecule inhibitor(s) of 8-oxoguanine DNA glycosylase1 (OGG1), we observe that OGG1 is also required for the expression of HBP pathway. In proximity ligation assays, RSV induces the formation of a nuclear and mitochondrial RELA∙OGG1 complex. In co-immunoprecipitaton (IP) experiments, we discover that RSV induces Ser 536-phosphorylated RELA to complex with OGG1. Chromatin IP experiments demonstrate a major role of OGG1 in supporting the recruitment of RELA and phosphorylated RNA Pol II to the HBP pathway genes. We conclude that the RELA∙OGG1 complex is an epigenetic regulator mediating metabolic reprogramming and N glycoprotein modifications of integrins in response to RSV. These findings have implications for viral-induced adaptive epithelial responses.


Assuntos
DNA Glicosilases , Hexosaminas , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Vias Biossintéticas/genética , DNA , DNA Glicosilases/genética , Epigênese Genética , Hexosaminas/metabolismo , Humanos , Integrinas , Infecções por Vírus Respiratório Sincicial/genética
11.
Exp Biol Med (Maywood) ; 247(17): 1518-1528, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35723049

RESUMO

The hexosamine biosynthetic pathway (HBP) is connected to abnormal N- and O-linked protein glycosylation in cancer, which performs critical roles in tumorigenesis. However, the regulation mechanisms of HBP and its role in colorectal cancer (CRC) progression remain unexplained. This study analyzed the expression level of phosphoglucomutase 3 (PGM3), a key enzyme in HBP, and identified its function in CRC cell lines. Analysis of publicly available CRC microarray data determined that PGM3 is upregulated in CRC tumor tissues. Furthermore, functional experiments emphasized the significant roles of PGM3 in facilitating CRC cell proliferation and migration. Mechanistically, we demonstrated that the activity of ß-catenin in CRC was maintained by PGM3-mediated O-GlcNAcylation. PGM3 knockdown or inhibition of O-GlcNAc transferase decreased ß-catenin activity and the expression levels of its downstream targets. Collectively, our findings indicate that PGM3 exhibits tumor-promoting roles by elevating O-GlcNAcylation level and maintaining ß-catenin activity, and might serve as a prognostic biomarker and treatment target in CRC.


Assuntos
Neoplasias Colorretais , Fosfoglucomutase , beta Catenina , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Hexosaminas/metabolismo , Humanos , Fosfoglucomutase/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
12.
Life Sci Alliance ; 5(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396334

RESUMO

The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptation of LUAD to nutrient stress is unknown. Here, we show that the HBP and the coat complex II (COPII) play a key role in cell survival during glucose shortage. HBP up-regulation withstood low glucose-induced production of proteins bearing truncated N-glycans, in the endoplasmic reticulum. This function for the HBP, alongside COPII up-regulation, rescued cell surface expression of a subset of glycoproteins. Those included the epidermal growth factor receptor (EGFR), allowing an EGFR-dependent cell survival under low glucose in anchorage-independent growth. Accordingly, high expression of the HBP rate-limiting enzyme GFAT1 was associated with wild-type EGFR activation in LUAD patient samples. Notably, HBP and COPII up-regulation distinguished LUAD from the lung squamous-cell carcinoma subtype, thus uncovering adaptive mechanisms of LUAD to their harsh microenvironment.


Assuntos
Glucose , Hexosaminas , Receptores ErbB/genética , Glucose/metabolismo , Glicosilação , Hexosaminas/metabolismo , Humanos , Nutrientes
13.
Curr Diabetes Rev ; 18(2): e011121190177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33430751

RESUMO

It is well established that diabetes and its associated hyperglycemia negatively impact retinal function, yet we know little about the role played by augmented flux through the Hexosamine Biosynthetic Pathway (HBP). This offshoot of the glycolytic pathway produces UDP-Nacetyl- glucosamine, which serves as the substrate for post-translational O-linked modification of proteins in a process referred to as O-GlcNAcylation. HBP flux and subsequent protein O-GlcNAcylation serve as nutrient sensors, enabling cells to integrate metabolic information to appropriately modulate fundamental cellular processes including gene expression. Here we summarize the impact of diabetes on retinal physiology, highlighting recent studies that explore the role of O-GlcNAcylation- induced variation in mRNA translation in retinal dysfunction and the pathogenesis of Diabetic Retinopathy (DR). Augmented O-GlcNAcylation results in wide variation in the selection of mRNAs for translation, in part, due to O-GlcNAcylation of the translational repressor 4E-BP1. Recent studies demonstrate that 4E-BP1 plays a critical role in regulating O-GlcNAcylation-induced changes in the translation of the mRNAs encoding Vascular Endothelial Growth Factor (VEGF), a number of important mitochondrial proteins, and CD40, a key costimulatory molecule involved in diabetes-induced retinal inflammation. Remarkably, 4E-BP1/2 ablation delays the onset of diabetes- induced visual dysfunction in mice. Thus, pharmacological interventions to prevent the impact of O-GlcNAcylation on 4E-BP1 may represent promising therapeutics to address the development and progression of DR. In this regard, we discuss the potential interplay between retinal O-GlcNAcylation and the ocular renin-angiotensin system as a potential therapeutic target of future interventions.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Retinopatia Diabética/metabolismo , Hexosaminas/metabolismo , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Sistema Renina-Angiotensina , Retina , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Elife ; 102021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34844667

RESUMO

Tumors frequently exhibit aberrant glycosylation, which can impact cancer progression and therapeutic responses. The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a major substrate for glycosylation in the cell. Prior studies have identified the HBP as a promising therapeutic target in pancreatic ductal adenocarcinoma (PDA). The HBP requires both glucose and glutamine for its initiation. The PDA tumor microenvironment is nutrient poor, however, prompting us to investigate how nutrient limitation impacts hexosamine synthesis. Here, we identify that glutamine limitation in PDA cells suppresses de novo hexosamine synthesis but results in increased free GlcNAc abundance. GlcNAc salvage via N-acetylglucosamine kinase (NAGK) is engaged to feed UDP-GlcNAc pools. NAGK expression is elevated in human PDA, and NAGK deletion from PDA cells impairs tumor growth in mice. Together, these data identify an important role for NAGK-dependent hexosamine salvage in supporting PDA tumor growth.


Inside tumors, cancer cells often have to compete with each other for food and other resources they need to survive. This is a key factor driving the growth and progression of cancer. One of the resources cells need is a molecule called UDP-GlcNAc, which they use to modify many proteins so they can work properly. Because cancer cells grow quickly, they likely need much more UDP-GlcNAc than healthy cells. Many tumors, including those derived from pancreatic cancers, have very poor blood supplies, so their cells cannot get the nutrients and other resources they need to grow from the bloodstream. This means that tumor cells have to find new ways to use what they already have. One example of this is developing alternative ways to obtain UDP-GlcNAc. Cells require a nutrient called glutamine to produce UDP-GlcNAc. Limiting the supply of glutamine to cells allows researchers to study how cells are producing UDP-GlcNAc in the lab. Campbell et al. used this approach to study how pancreatic cancer cells obtain UDP-GlcNAc when their access to glutamine is limited. They used a technique called isotope tracing, which allows researchers to track how a specific chemical is processed inside the cell, and what it turns into. The results showed that the pancreatic cancer cells do not make new UDP-GlcNAc but use a protein called NAGK to salvage GlcNAc (another precursor of UDP-GlcNAc), which may be obtained from cellular proteins. Cancer cells that lacked NAGK formed smaller tumors, suggesting that the cells grow more slowly because they cannot recycle UDP-GlcNAc fast enough. Pancreatic cancer is one of the most common causes of cancer deaths and is notable for being difficult to detect and treat. Campbell et al. have identified one of the changes that allows pancreatic cancers to survive and grow quickly. Next steps will include examining the role of NAGK in healthy cells and testing whether it could be targeted for cancer treatment.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Glutamina/deficiência , Hexosaminas/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Nus
15.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445596

RESUMO

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) performed by O-GlcNAc transferase (OGT) is a nutrient-responsive post-translational modification (PTM) via the hexosamine biosynthetic pathway (HBP). Various transcription factors (TFs) are O-GlcNAcylated, affecting their activities and significantly contributing to cellular processes ranging from survival to cellular differentiation. Given the pleiotropic functions of O-GlcNAc modification, it has been studied in various fields; however, the role of O-GlcNAcylation during osteoclast differentiation remains to be explored. Kinetic transcriptome analysis during receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation revealed that the nexus of major nutrient metabolism, HBP was critical for this process. We observed that the critical genes related to HBP activation, including Nagk, Gfpt1, and Ogt, were upregulated, while the global O-GlcNAcylation was increased concomitantly during osteoclast differentiation. The O-GlcNAcylation inhibition by the small-molecule inhibitor OSMI-1 reduced osteoclast differentiation in vitro and in vivo by disrupting the translocation of NF-κB p65 and nuclear factor of activated T cells c1 (NFATc1) into the nucleus by controlling their PTM O-GlcNAcylation. Furthermore, OSMI-1 had a synergistic effect with bone target therapy on osteoclastogenesis. Lastly, knocking down Ogt with shRNA (shOgt) mimicked OSMI-1's effect on osteoclastogenesis. Targeting O-GlcNAcylation during osteoclast differentiation may be a valuable therapeutic approach for osteoclast-activated bone diseases.


Assuntos
Vias Biossintéticas , Diferenciação Celular , Hexosaminas/metabolismo , Osteoclastos/citologia , Processamento de Proteína Pós-Traducional , Ligante RANK/metabolismo , Acilação , Animais , Proliferação de Células , Glicosilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/metabolismo , Osteoclastos/metabolismo , Transdução de Sinais
16.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298867

RESUMO

The hexosamine biosynthetic pathway (HBP) is essential for the production of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the building block of glycosaminoglycans, thus playing a crucial role in cartilage anabolism. Although O-GlcNAcylation represents a protective regulatory mechanism in cellular processes, it has been associated with degenerative diseases, including osteoarthritis (OA). The present study focuses on HBP-related processes as potential therapeutic targets after cartilage trauma. Human cartilage explants were traumatized and treated with GlcNAc or glucosamine sulfate (GS); PUGNAc, an inhibitor of O-GlcNAcase; or azaserine (AZA), an inhibitor of GFAT-1. After 7 days, cell viability and gene expression analysis of anabolic and catabolic markers, as well as HBP-related enzymes, were performed. Moreover, expression of catabolic enzymes and type II collagen (COL2) biosynthesis were determined. Proteoglycan content was assessed after 14 days. Cartilage trauma led to a dysbalanced expression of different HBP-related enzymes, comparable to the situation in highly degenerated tissue. While GlcNAc and PUGNAc resulted in significant cell protection after trauma, only PUGNAc increased COL2 biosynthesis. Moreover, PUGNAc and both glucosamine derivatives had anti-catabolic effects. In contrast, AZA increased catabolic processes. Overall, "fueling" the HBP by means of glucosamine derivatives or inhibition of deglycosylation turned out as cells and chondroprotectives after cartilage trauma.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Doenças das Cartilagens/tratamento farmacológico , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Glucosamina/farmacologia , Hexosaminas/metabolismo , Uridina Difosfato N-Acetilglicosamina/farmacologia , Biomarcadores/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Doenças das Cartilagens/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo II/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Fosforilação/efeitos dos fármacos
17.
J Mater Chem B ; 9(26): 5365-5373, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34161405

RESUMO

Cancer cells generally exhibit higher metabolic demands relative to that of normal tissue cells. This offers great possibilities to exploit metabolic glycoengineering in combination with bio-orthogonal chemistry reactions to achieve tumour site-targeted therapeutic delivery. This work addresses the selectivity of metabolic glycan labelling in diseased (i.e., cancer) versus normal cells grown in a multicellular environment. Dibenzocylooctyne (DBCO)-bearing acetylated-d-mannosamine (Ac4ManNDBCO) was synthesised to metabolically label three different types of cell lines originating from the human lung tissues: A549 adenocarcinomic alveolar basal epithelial cells, MeT5A non-cancerous mesothelial cells, and MRC5 non-cancerous fibroblasts. These cell lines displayed different labelling sensitivity, which trended with their doubling time in the following order: A549 ≈ MeT5A > MRC5. The higher metabolic labelling efficiency inherently led to a higher extent of specific binding and accumulation of the clickable N3-conjugated gold nanoparticles (N3-AuNps, core diameter = 30 nm) in the DBCO-glycan modified A549 and MeT5A cells, but to a less prominent effect in MRC5 cells. These findings demonstrate that relative rates of cell metabolism can be exploited using metabolic labelling to recruit nanotherapeutics whilst minimising non-specific targeting of surrounding tissues.


Assuntos
Ciclo-Octanos/metabolismo , Sistemas de Liberação de Medicamentos , Ouro/metabolismo , Hexosaminas/metabolismo , Nanopartículas Metálicas/química , Polissacarídeos/metabolismo , Linhagem Celular , Química Click , Ciclo-Octanos/química , Células Epiteliais/química , Células Epiteliais/metabolismo , Fibroblastos/química , Fibroblastos/metabolismo , Ouro/química , Hexosaminas/química , Humanos , Estrutura Molecular , Tamanho da Partícula , Polissacarídeos/química , Propriedades de Superfície
18.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802220

RESUMO

Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac4ManNAz) and N-alkyneacetylmannosamine (Ac4ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac4ManNAz was detectable for up to six days while Ac4ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors.


Assuntos
Glicocálix , Hexosaminas , Células-Tronco Mesenquimais/metabolismo , Engenharia Metabólica , Modelos Biológicos , Mioblastos Esqueléticos/metabolismo , Linhagem Celular Transformada , Glicocálix/química , Glicocálix/metabolismo , Hexosaminas/química , Hexosaminas/metabolismo , Humanos
19.
Front Endocrinol (Lausanne) ; 12: 627745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828530

RESUMO

Cancer cells characteristically have a high proliferation rate. Because tumor growth depends on energy-consuming anabolic processes, including biosynthesis of protein, lipid, and nucleotides, many tumor-associated conditions, including intermittent oxygen deficiency due to insufficient vascularization, oxidative stress, and nutrient deprivation, results from fast growth. To cope with these environmental stressors, cancer cells, including cancer stem cells, must adapt their metabolism to maintain cellular homeostasis. It is well- known that cancer stem cells (CSC) reprogram their metabolism to adapt to live in hypoxic niches. They usually change from oxidative phosphorylation to increased aerobic glycolysis even in the presence of oxygen. However, as opposed to most differentiated cancer cells relying on glycolysis, CSCs can be highly glycolytic or oxidative phosphorylation-dependent, displaying high metabolic plasticity. Although the influence of the metabolic and nutrient-sensing pathways on the maintenance of stemness has been recognized, the molecular mechanisms that link these pathways to stemness are not well known. Here in this review, we describe the most relevant signaling pathways involved in nutrient sensing and cancer cell survival. Among them, Adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway, mTOR pathway, and Hexosamine Biosynthetic Pathway (HBP) are critical sensors of cellular energy and nutrient status in cancer cells and interact in complex and dynamic ways.


Assuntos
Metabolismo Energético/fisiologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Hexosaminas/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Serina-Treonina Quinases TOR/metabolismo
20.
Nat Commun ; 12(1): 2176, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846315

RESUMO

The hexosamine pathway (HP) is a key anabolic pathway whose product uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) is an essential precursor for glycosylation processes in mammals. It modulates the ER stress response and HP activation extends lifespan in Caenorhabditis elegans. The highly conserved glutamine fructose-6-phosphate amidotransferase 1 (GFAT-1) is the rate-limiting HP enzyme. GFAT-1 activity is modulated by UDP-GlcNAc feedback inhibition and via phosphorylation by protein kinase A (PKA). Molecular consequences of GFAT-1 phosphorylation, however, remain poorly understood. Here, we identify the GFAT-1 R203H substitution that elevates UDP-GlcNAc levels in C. elegans. In human GFAT-1, the R203H substitution interferes with UDP-GlcNAc inhibition and with PKA-mediated Ser205 phosphorylation. Our data indicate that phosphorylation affects the interactions of the two GFAT-1 domains to control catalytic activity. Notably, Ser205 phosphorylation has two discernible effects: it lowers baseline GFAT-1 activity and abolishes UDP-GlcNAc feedback inhibition. PKA controls the HP by uncoupling the metabolic feedback loop of GFAT-1.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retroalimentação Fisiológica , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Hexosaminas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Estresse do Retículo Endoplasmático , Mutação com Ganho de Função , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/química , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Cinética , Fosforilação , Ligação Proteica , Domínios Proteicos , Serina/genética , Uridina Difosfato N-Acetilglicosamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA