Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Am J Physiol Cell Physiol ; 318(1): C73-C82, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577514

RESUMO

Our objective was to investigate the role of primary cilia in low-magnitude, high-frequency vibration (LMHFV) treatment of MC3T3-E1 osteoblasts (OBs). We used chloral hydrate (CH), which has a well-characterized function in chemically removing primary cilia, to elucidate the role of primary cilia in LMHFV-induced OB osteogenic responses through cell viability assay, Western blot analysis, real-time quantitative RT-PCR, and histochemical staining methods. We observed a significant, 30% decrease in the number of MC3T3-E1 OBs with primary cilia (reduced from 64.3 ± 5%) and an approximately 50% reduction in length of primary cilia (reduced from 3 ± 0.8 µm) after LMHFV stimulation. LMHFV stimulation upregulated protein expression of the bone matrix markers collagen 1 (COL-1), osteopontin (OPN), and osteoclacin(OCN) in MC3T3-E1 OBs, indicating that LMHFV induces osteogenesis. High-concentration or long-duration CH exposure resulted in inhibition of MC3T3-E1 OB survival. In addition, Western blot analysis and RT-PCR revealed that CH treatment prevented LMHFV-induced osteogenesis. Furthermore, decreased alkaline phosphate activity, reduced OB differentiation, mineralization, and maturation were observed in CH-pretreated and LMHFV-treated OBs. We showed that LMHFV induces morphological changes in primary cilia that may fine-tune their mechanosensitivity. In addition, we demonstrated the significant inhibition by CH of LMHFV-induced OB mineralization, maturation, and differentiation, which might reveal the critical role of primary cilia in the process.


Assuntos
Diferenciação Celular , Cílios/metabolismo , Mecanotransdução Celular , Osteoblastos/metabolismo , Osteogênese , Vibração , Células 3T3 , Animais , Diferenciação Celular/genética , Hidrato de Cloral/toxicidade , Cílios/efeitos dos fármacos , Cílios/patologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteocalcina/metabolismo , Osteogênese/genética , Osteopontina/metabolismo , Fatores de Tempo
2.
Brain Res ; 1642: 364-375, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27067188

RESUMO

Although injectable anesthetics are still widely used in laboratory rodents, scientific data concerning pain and distress during and after stereotactic surgery are rare. However, optimal anesthesia protocols have a high impact on the quality of the derived data. We therefore investigated the suitability of recommended injectable anesthesia with a traditionally used monoanesthesia for stereotactic surgery in view of optimization and refinement in rats. The influence of the recommended complete reversal anesthesia (MMF; 0.15mg/kg medetomidine, 2mg/kg midazolam, 0.005mg/kg fentanyl; i.m.) with or without reversal and of chloral hydrate (430mg/kg, 3.6%, i.p.) on various physiological, biochemical and behavioral parameters (before, during, after surgery) was analyzed. Isoflurane was also included in stress parameter analysis. In all groups, depth of anesthesia was sufficient for stereotactic surgery with no animal losses. MMF caused transient exophthalmos, myositis at the injection site and increased early postoperative pain scores. Reversal induced agitation, restlessness and hypothermia. Even the low concentrated chloral hydrate led to peritonitis and multifocal liver necrosis, corresponding to increased stress hormone levels and loss in body weight. Increased stress response was also exerted by isoflurane anesthesia. Pronounced systemic toxicity of chloral hydrate strongly questions its further use in rodent anesthesia. In view of undesired effects of MMF and isoflurane, thorough consideration of anesthesia protocols for particular research projects is indispensable. Reversal should be restricted to emergency situations. Our data support further refinement of the current protocols and the importance of sham operated controls.


Assuntos
Anestesia/métodos , Modelos Animais , Ratos , Técnicas Estereotáxicas , Anestesia/efeitos adversos , Anestésicos/administração & dosagem , Anestésicos/toxicidade , Animais , Hidrato de Cloral/administração & dosagem , Hidrato de Cloral/toxicidade , Feminino , Fentanila/administração & dosagem , Injeções/efeitos adversos , Isoflurano/administração & dosagem , Masculino , Medetomidina/administração & dosagem , Midazolam/administração & dosagem , Dor Pós-Operatória/patologia , Dor Pós-Operatória/fisiopatologia , Dor Pós-Operatória/prevenção & controle , Estresse Psicológico/etiologia , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/prevenção & controle
3.
Cell Biol Toxicol ; 27(3): 207-16, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21243523

RESUMO

Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Alterations in GJC are associated with carcinogenesis, but the mechanisms involved are unknown. Chloral hydrate (CH), a by-product of chlorine disinfection of water, is carcinogenic in mice, and we demonstrated that CH reduced GJC in a rat liver epithelial cell line (Clone 9). To examine the mechanism(s) by which CH inhibits GJC, Clone 9 cells treated with CH were examined using Western blot, real-time polymerase chain reaction, immunocytochemical, and dye-communication techniques. Treatment with CH (0.1­5 mM for 24 h) resulted in a dose-dependent inhibition of GJC as measured by Lucifer yellow dye transfer. Western blot analysis demonstrated expression of connexin (Cx) 43 and 26 in control cells and reduced expression of Cx 43 but not Cx 26 protein from 0.1 to 1 mM CH. CH treatment from 2.5 to 5 mM caused an apparent increase in expression of both connexins that was concomitant with a reduction in mRNA expression for both connexins. Similarly, with immunocytochemistry, a dose-dependent decrease in Cx 43 staining at sites of cell­cell contact was apparent in CH (0.5­5 mM)-treated cultures, whereas no Cx 26 staining was observed. Thus, Clone 9 cells contain two types of connexins but only one type of plasma membrane channel. Understanding of the regulation of connexin may shed light on mechanisms responsible for inhibition of GJC by chemical carcinogens.


Assuntos
Comunicação Celular/efeitos dos fármacos , Hidrato de Cloral/toxicidade , Células Epiteliais/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular , Conexina 26 , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Células Epiteliais/metabolismo , Junções Comunicantes/fisiologia , Humanos , Fígado/citologia , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
4.
Water Res ; 44(8): 2638-46, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20189624

RESUMO

Drinking water contains disinfection byproducts, generated by the interaction of chlorine (or other disinfecting chemicals) with organic matter, anthropogenic contaminants, and bromide/iodide naturally present in most source waters. One class of these chemicals is the halogenated acetaldehydes (HAs), identified in high quantities when ozone is used as primary or secondary disinfectant. In this study, an analysis of the genotoxic potential of two HAs, namely tribromoacetaldehyde (TBA) and chloral hydrate (CH) has been conducted in human cells (TK6 cultured cells and peripheral blood lymphocytes). The comet assay was used to 1) measure the induction of single and double-strand DNA breaks, 2) evaluate the capacity of inducing oxidative DNA damage, and 3) determine the DNA repair kinetics of the induced primary genetic damage. In addition, chromosome damage, as a measure of fixed damage, was evaluated by means of the micronucleus test. The results of the comet assay show that both compounds are clearly genotoxic, inducing high levels of DNA breaks, TBA being more effective than CH. According to the comet results, both HAs produce high levels of oxidized bases, and the induced DNA damage is rapidly repaired over time. Contrarily, the results obtained in the micronucleus test, which measures the capacity of genotoxic agents to induce clastogenic and aneugenic effects, are negative for the two HAs tested, either using TK6 cells or human peripheral blood lymphocytes. This would indicate that the primary damage induced by the two HAs is not fixed as chromosome damage, possibly due to an efficient repair or the death of damaged cells, which is an important point in terms of risk assessment of DBPs exposure.


Assuntos
Acetaldeído/análogos & derivados , Hidrato de Cloral/toxicidade , Dano ao DNA , Poluentes Químicos da Água/toxicidade , Abastecimento de Água , Acetaldeído/toxicidade , Células Cultivadas , Quebra Cromossômica , Reparo do DNA , Humanos , Leucemia , Linfócitos , Testes para Micronúcleos
5.
Toxicology ; 230(2-3): 234-43, 2007 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-17161896

RESUMO

The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.3-3mM CH for 3 days or 0.03-3mM CH for 10 days, respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolized CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and three-fold greater capacity than HRPTC to form TCE-OH and TCA, respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3mM/day for 10 days, while in another cytotoxicity was seen at 1mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days [Lock, E.A., Reed, C.J., 2006. Trichloroethylene: mechanisms of renal toxicity and renal cancer and relevance to risk assessment. Toxicol. Sci. 19, 313-331] supporting the view that glutathione derived metabolites are likely to be responsible for nephrotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hidrato de Cloral/toxicidade , Formiatos/metabolismo , Hepatócitos/efeitos dos fármacos , Nefropatias/induzido quimicamente , Túbulos Renais Proximais/efeitos dos fármacos , Ácido Tricloroacético/toxicidade , Adolescente , Adulto , Animais , Cromatografia Gasosa , Etilenocloroidrina/análogos & derivados , Etilenocloroidrina/metabolismo , Hepatócitos/metabolismo , Humanos , Nefropatias/metabolismo , Túbulos Renais Proximais/metabolismo , Hepatopatias/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Ratos
6.
Toxicol Sci ; 95(2): 401-11, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17077186

RESUMO

The industrial solvent trichloroethylene (TCE) is a widespread environmental contaminant known to impact the immune system. In the present study, female MRL+/+ mice were treated for 40 weeks with trichloroacetaldehyde hydrate (TCAH), a metabolite of TCE, in the drinking water. The results were compared with the data from an earlier study in which MRL+/+ mice were exposed to TCAH for 4 weeks. Following a 40-week exposure, the mice developed skin inflammation and dose-dependent alopecia. In addition, TCAH appeared to modulate the CD4(+) T-cell subset by promoting the expression of an activated/effector (i.e., CD62L(lo)) phenotype with an increased capacity to secrete the proinflammatory cytokine interferon-gamma. However, unlike what was observed after only 4 weeks of exposure, TCAH did not significantly attenuate activation-induced cell death (AICD) or the expression of the death receptor FasL in CD4(+) T cells. Some metalloproteinases (MMPs) are thought to play a role in susceptibility to AICD by inducing FasL shedding. Thus, both the 4- and 40-week sera were tested for MMP-7 levels in an attempt to explain the disparate results of TCAH on AICD and FasL expression. Serum MMP-7 levels were significantly higher in mice exposed to TCAH for 4 weeks. In contrast, the serum MMP-7 levels were increased in all the mice by 40 weeks when compared with a nonautoimmune strain. Taken together, a chronic exposure to TCAH promotes alopecia and skin inflammation. The early effects of TCAH on MMP-7 levels may provide a mechanism by which TCAH promotes skin pathology.


Assuntos
Alopecia/induzido quimicamente , Doenças Autoimunes/induzido quimicamente , Hidrato de Cloral/análogos & derivados , Dermatite/etiologia , Poluentes Ambientais/toxicidade , Tricloroetileno/toxicidade , Administração Oral , Alopecia/imunologia , Alopecia/patologia , Animais , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Hidrato de Cloral/metabolismo , Hidrato de Cloral/toxicidade , Dermatite/imunologia , Dermatite/patologia , Relação Dose-Resposta a Droga , Poluentes Ambientais/metabolismo , Proteína Ligante Fas/imunologia , Feminino , Interferon gama/imunologia , Linfonodos/imunologia , Metaloproteinase 7 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos MRL lpr , Baço/efeitos dos fármacos , Baço/imunologia , Fatores de Tempo , Tricloroetileno/metabolismo
7.
Ecotoxicol Environ Saf ; 62(1): 42-52, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15978290

RESUMO

This study was aimed at developing the nucleolar biomarker and the micronucleus test on in vivo fish fin cells for assessing water cytotoxicity and genotoxicity. Both biomarkers can be used either jointly or separately on fins of the same fish during the experiment. For studying the nucleolar characteristics, small pieces of the fin edge were cut several times during 30-180 min of fish exposure. For micronucleus testing, the fin tissue regenerating after its cutting was investigated after 2-5 days of fish incubation. Effects of copper (0.1 and 2.5 mg/L), cadmium (0.005 and 1.0 mg/L) ions and chloral hydrate (400 and 800 mg/L) solutions were studied on cells of common carp (Cyprinus carpio L.), crucian carp (Carassius auratus gibelio Bloch.), and Mozambique tilapia (Tilapia (Sautherodon) mossambica) using a set of nucleolar characteristics (the number of nucleoli per cell, the size of a single nucleolus, and the percentage of cells with heteromorphic paired nucleoli) and the frequencies of cells with micronuclei and double nuclei. Substantial changes in parameters of nucleolar activity of fin cells were found to be caused by cadmium and copper impact. In comparison to blood cells, gill and fin cells were more sensitive as demonstrated by their nuclear damages after the chloral hydrate influence. Fin cells were useful to determine periodically cytotoxic and genotoxic effects of organic and inorganic substances in the same individual fish without any disruption of its physiological functions.


Assuntos
Carpas , Nucléolo Celular/efeitos dos fármacos , Tilápia , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores , Cádmio/toxicidade , Carpas/genética , Hidrato de Cloral/toxicidade , Cobre/toxicidade , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Testes para Micronúcleos , Tilápia/genética , Testes de Toxicidade/métodos
10.
Toxicol Appl Pharmacol ; 193(2): 237-65, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14644626

RESUMO

In B6C3F1 mice, the rate of body growth influences susceptibility to liver neoplasia and large variations in body weight can complicate the interpretation of bioassay data. The relationship between body weight and liver tumor incidence was calculated for historical control populations of male and female ad libitum-fed mice (approx. 2,750 and 2,300 animals, respectively) and in populations of male and female mice which had been subjected to forced body weight reduction due to either dietary restriction or exposure to noncarcinogenic chemicals (approx. 1,600 and 1,700, respectively). Resulting tumor risk data were then used to construct idealized weight curves for male and female B6C3F1 mice; these curves predict a terminal background liver tumor incidence of 15-20%. Use of dietary control to manipulate body growth of male B6C3F1 mice to fit the idealized weight curve was evaluated in a 2-year bioassay of chloral hydrate. Cohorts of mice were successfully maintained at weights approximating their idealized target weights throughout the study. These mice exhibited less body weight variation than their ad libitum-fed counterparts (e.g., standard deviations of body weight were 1.4 and 3.4 g for respective control groups at 36 weeks). Historical control body weight and tumor risk data from the two male mouse populations were utilized to predict background liver tumor rates for each experimental group of the chloral hydrate study. The predicted background tumor rates closely matched the observed rates for both the dietary controlled and ad libitum-fed chloral hydrate control groups when each mouse was evaluated according to either its weekly food consumption or its weekly change in body weight.


Assuntos
Adenoma de Células Hepáticas/epidemiologia , Peso Corporal/fisiologia , Carcinoma Hepatocelular/epidemiologia , Privação de Alimentos/fisiologia , Neoplasias Hepáticas/epidemiologia , Adenoma de Células Hepáticas/induzido quimicamente , Adenoma de Células Hepáticas/patologia , Animais , Testes de Carcinogenicidade/métodos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Hidrato de Cloral/toxicidade , Relação Dose-Resposta a Droga , Feminino , Incidência , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Valores de Referência , Testes de Toxicidade Crônica/métodos
11.
Toxicol Appl Pharmacol ; 193(2): 266-80, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14644627

RESUMO

Chloral hydrate, which is used as a sedative in pediatric medicine and is a by-product of water chlorination, is hepatocarcinogenic in B6C3F1 mice, a strain that can exhibit high rates of background liver tumor incidence, which are associated with increased body weight. In this study, dietary control was used to manipulate body growth in male B6C3F1 mice in a 2-year bioassay of chloral hydrate. Male B6C3F1 mice were treated with water or 25, 50, or 100 mg/kg chloral hydrate by gavage. The study compared ad libitum-fed mice with dietary controlled mice. The latter received variably restricted feed allocations to maintain their body weights on a predetermined "idealized" weight curve predictive of a terminal background liver tumor incidence of 15-20%. These mice exhibited less individual body weight variation than did their ad libitum-fed counterparts. This was associated with a decreased variation in liver to body weight ratios, which allowed the demonstration of a statistically significant dose response to chloral hydrate in the dietary controlled, but not the ad libitum-fed, test groups. Chloral hydrate increased terminally adjusted liver tumor incidence in both dietary controlled (23.4, 23.9, 29.7, and 38.6% for the four dose groups, respectively) and ad libitum-fed mice (33.4, 52.6, 50.6, and 46.2%), but a statistically significant dose response was observed only in the dietary controlled mice. This dose response positively correlated with markers of peroxisomal proliferation in the dietary controlled mice only. The study suggests that dietary control not only improves terminal survival and decreases interassay variation, but also can increase assay sensitivity by decreasing intra-assay variation.


Assuntos
Adenoma de Células Hepáticas/induzido quimicamente , Carcinoma Hepatocelular/induzido quimicamente , Hidrato de Cloral/toxicidade , Privação de Alimentos/fisiologia , Hipnóticos e Sedativos/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Adenoma de Células Hepáticas/patologia , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Testes de Carcinogenicidade/métodos , Carcinoma Hepatocelular/patologia , Hidrato de Cloral/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Hipnóticos e Sedativos/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Testes de Toxicidade Crônica/métodos
12.
Toxicol Appl Pharmacol ; 193(2): 281-92, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14644628

RESUMO

Chloral hydrate is widely used as a sedative in pediatric medicine and is a by-product of water chlorination and a metabolic intermediate in the biotransformation of trichloroethylene. Chloral hydrate and its major metabolite, trichloroacetic acid, induce liver tumors in B6C3F1 mice, a strain that can exhibit high rates of background liver tumor incidence, which is associated with increased body weight. This report describes the influence of diet and body weight on the acute toxicity, hepatic enzyme response, and toxickinetics of chloral hydrate as part of a larger study investigating the carcinogenicity of chloral hydrate in ad libitum-fed and dietary controlled mice. Dietary control involves moderate food restriction to maintain the test animals at an idealized body weight. Mice were dosed with chloral hydrate at 0, 50, 100, 250, 500, and 1000 mg/kg daily, 5 days/week, by aqueous gavage for 2 weekly dosing cycles. Three diet groups were used: ad libitum, dietary control, and 40% caloric restriction. Both dietary control and caloric restriction slightly reduced acute toxicity of high doses of chloral hydrate and potentiated the induction of hepatic enzymes associated with peroxisome proliferation. Chloral hydrate toxicokinetics were investigated using blood samples obtained by sequential tail clipping and a microscale gas chromatography technique. It was rapidly cleared from serum within 3 h of dosing. Trichloroacetate was the major metabolite in serum in all three diet groups. Although the area under the curve values for serum trichloroacetate were slightly greater in the dietary controlled and calorically restricted groups than in the ad libitum-fed groups, this increase did not appear to completely account for the potentiation of hepatic enzyme induction by dietary restriction.


Assuntos
Restrição Calórica , Hidrato de Cloral/farmacocinética , Métodos de Alimentação , Privação de Alimentos , Hipnóticos e Sedativos/farmacocinética , Animais , Área Sob a Curva , Peso Corporal/efeitos dos fármacos , Hidrato de Cloral/administração & dosagem , Hidrato de Cloral/toxicidade , Cromatografia Gasosa , Citocromo P-450 CYP4A/biossíntese , Relação Dose-Resposta a Droga , Esquema de Medicação , Indução Enzimática , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/toxicidade , Fígado/efeitos dos fármacos , Fígado/enzimologia , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Microquímica , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Ácido Tricloroacético/sangue
13.
Cancer Lett ; 185(1): 13-9, 2002 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-12142074

RESUMO

The tumorigenicity of chloral hydrate (CH), trichloroacetic acid (TCA), trichloroethanol (TCE), malondialdehyde (MDA), crotonaldehyde, acrolein, and 4-hydroxy-2-nonenal (HNE) was tested in the B6C3F(1) neonatal mouse. Mice were administered i.p. injections of CH (1000, 2000, 2500, and 5000 nmol per animal), TCA (1000 and 2000 nmol), TCE (1000 and 2000 nmol), MDA (1500 and 3000 nmol), crotonaldehyde (1500 and 3000 nmol), acrolein (75 and 150 nmol), and HNE (750 and 1500 nmol) at 8 and 15 days of age. At 12 months, only male mice treated with the positive control chemicals, 4-aminobiphenyl (500 and 1000 nmol) and benzo[a]pyrene (150 and 300 nmol), had incidences of tumors in the liver significantly higher than the solvent control. Additional male mice were dosed as described above and their livers were excised at 24, 48 h, and 7 days after the final dose. Liver DNA was isolated and analyzed by 32P-postlabeling/high-performance liquid chromatography (HPLC) and HPLC/electrochemical detection for MDA-derived adduct (M(1)G) and 8-oxo-2'-deoxyguanosine (8-OHdG) formation, respectively. At 24 and 48 h after the final dose, CH- and TCA-treated mice exhibited significantly higher M(1)G levels than the controls. 8-OHdG formation was also induced by CH, TCA, and MDA. These results suggest that under these experimental conditions the B6C3F(1) neonatal mouse is not sensitive to carcinogens that induce an increase in endogenous DNA adduct formation through lipid peroxidation or oxidative stress.


Assuntos
Carcinógenos/toxicidade , Etilenocloroidrina/análogos & derivados , Neoplasias Hepáticas Experimentais/induzido quimicamente , Fígado/efeitos dos fármacos , Acroleína/toxicidade , Aldeídos/toxicidade , Animais , Animais Recém-Nascidos , Testes de Carcinogenicidade , Hidrato de Cloral/toxicidade , Cromatografia Líquida de Alta Pressão , Cruzamentos Genéticos , DNA/isolamento & purificação , Adutos de DNA/metabolismo , Eletroquímica , Etilenocloroidrina/toxicidade , Feminino , Peroxidação de Lipídeos , Fígado/metabolismo , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Malondialdeído/toxicidade , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Radioisótopos de Fósforo , Ácido Tricloroacético/toxicidade
14.
Natl Toxicol Program Tech Rep Ser ; (502): 1-197, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11965861

RESUMO

Chloral hydrate is used medically as a sedative or hypnotic and as a rubefacient in topical preparations, and it is often given to children as a sedative during dental and other medical procedures. Chloral hydrate is used as a central nervous system depressant and sedative in veterinary medicine and as a general anesthetic in cattle and horses. It is a byproduct of the chlorination of water and has been detected in plant effluent after the bleaching of softwood pulp. Chloral, the anhydrous form of chloral hydrate, is used as a synthetic intermediate in the production of insecticides and herbicides. Chloral hydrate was nominated for study by the Food and Drug Administration based upon widespread human exposure and its potential hepatotoxicity and the toxicity of related chemicals. One goal of the study was to assess the effect of the animal's age and the duration of dosing on the tumorigenicity of chloral hydrate. Beginning on postnatal day 28, female B6C3F1 mice received chloral hydrate (99.5% pure) in water by gavage for 3, 6, or 12 months, 2 years, or as a single dose; on postnatal day 15, male and female B6C3F1 mice received a single dose by gavage. Tumorigenicity was assessed for 2 years after the initial dose. Genetic toxicology studies were conducted in Salmonella typhimurium, cultured Chinese hamster ovary cells, Drosophila melanogaster, and mouse bone marrow cells. 2-YEAR STUDY Groups of female mice (regimens A, B, C, and D) and groups of male mice (regimen E) received chloral hydrate in distilled water by gavage; control groups received distilled water only. In regimen A, groups of 48 female mice received 0, 25, 50, or 100 mg chloral hydrate/kg body weight 5 days per week for 104 weeks beginning when they were 28 days old. In regimen B, 24 female mice received 0 mg/kg and three groups of 48 female mice received 100 mg/kg 5 days per week beginning when they were 28 days old. Eight mice from the 0 and 100 mg/kg groups were killed at 3, 6, or 12 months. The remaining mice were held without dosing for the duration of the 2-year study. In regimen C, groups of 48 female mice received a single dose of 0, 10, 25, or 50 mg/kg when they were 28 days old and were held for 104 weeks. In regimens D and E, groups of 48 female and 48 male mice, respectively, received a single dose of 0, 10, 25 or 50 mg/kg when they were 15 days old and were held for 104 weeks. Additional groups of four mice from regimens C, D, and E and mice killed at 3 or 6 months from regimen B (eight mice per group) were designated for hepatic cell proliferation analyses; mice killed at 3 or 6 months in regimen B were also designated for apoptosis analyses. Survival and Body Weights Survival of all dosed mice in all regimens was similar to that of the vehicle control groups. Mean body weights of 100 mg/kg female mice in regimen B dosed for 3 or 6 months were generally greater than those of the vehicle controls during the second year of the study. Mean body weights of 25 mg/kg male mice in regimen E were generally less than those of the controls beginning at week 19; mean body weights of 10 and 50 mg/kg mice were generally less than those of the vehicle controls beginning at week 80. Pathology Findings A dose-related and significant increase in the incidence of pars distalis adenoma occurred in regimen A 100 mg/kg females. There was also a time-related increase in the incidence of adenoma in female mice administered 100 mg/kg for up to 24 months in regimen B, and the increase in the incidence of this neoplasm at 24 months was significant. There was a significant increase in the severity of pars distalis hyperplasia in regimen A 100 mg/kg female mice. GENETIC TOXICOLOGY Chloral hydrate was mutagenic in vitro and in vivo. It induced mutations in Salmonella typhimurium strain TA100, with and without liver S9 activation; an equivocal response was obtained in S. typhimurium strain TA98 in the absence of S9, and no mutagenicity was detected with strain TA1535 or TA1537, with or without S9. Chloral hydrate was shown to produce chromosomal damage in mammalian cells. It induced significant increases in sister chromatid exchanges and chromosomal aberrations in cultured Chinese hamster ovary cells, with and without S9. Results of sexlinked recessive lethal (SLRL) tests in Drosophila melanogaster were inconclusive. Chloral hydrate, administered by feeding, produced an inconclusive increase in SLRL mutations in the germ cells of male flies. Results of an in vivo mouse bone marrow micronucleus test with chloral hydrate were positive. CONCLUSIONS Under the conditions of this 2-year gavage study, there was equivocal evidence of carcinogenic activity of chloral hydrate in female B6C3F1 mice treated continuously for two years based on increased incidences of pituitary gland pars distalis adenomas. No increased incidences of neoplasms were seen in female B6C3F1 mice that received a single dose of chloral hydrate at 15 or 28 days of age or in male B6C3F1 mice that received a single dose of chloral hydrate at 15 days of age. No hepatocarcinogenicity was seen under any dosing condition.


Assuntos
Adenoma/induzido quimicamente , Hidrato de Cloral/toxicidade , Hipnóticos e Sedativos/toxicidade , Neoplasias Hipofisárias/induzido quimicamente , Adenoma/patologia , Administração Oral , Animais , Células CHO/efeitos dos fármacos , Testes de Carcinogenicidade , Hidrato de Cloral/administração & dosagem , Aberrações Cromossômicas/efeitos dos fármacos , Cricetinae , Relação Dose-Resposta a Droga , Feminino , Hipnóticos e Sedativos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos , Mutagênicos/toxicidade , Adeno-Hipófise/patologia , Neoplasias Hipofisárias/patologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
15.
Natl Toxicol Program Tech Rep Ser ; (503): 1-218, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12533745

RESUMO

[structure: see text] Chloral hydrate is used medically as a sedative or hypnotic and as a rubefacient in topical preparations, and it is often given to children as a sedative during dental and other medical procedures. Chloral hydrate is used as a central nervous system depressant and sedative in veterinary medicine and as a general anesthetic in cattle and horses. It is a byproduct of the chlorination of water and has been detected in plant effluent after the bleaching of softwood pulp. Chloral, the anhydrous form of chloral hydrate, is used as a synthetic intermediate in the production of insecticides and herbicides. Chloral hydrate was nominated for study by the Food and Drug Administration based upon widespread human exposure and its potential hepatotoxicity and the toxicity of related chemicals. A dietary control component was incorporated in response to concerns within the regulatory community relating to increased background neoplasm incidences in rodent strains used for toxicity testing and to the proposed use of dietary restriction to control background neoplasm incidence in rodent cancer studies. Male B6C3F1 mice (ad libitum-fed or dietary-controlled) received chloral hydrate (99% pure) by gavage for 2 years. 2-YEAR STUDY IN MALE MICE: Groups of 120 male mice received chloral hydrate in distilled water by gavage at doses of 0, 25, 50, or 100 mg/kg 5 days per week for 104 to 105 weeks. Each dose group was divided into two dietary groups of 60 mice. The ad libitum-fed mice had free access to feed, and the dietary-controlled mice received feed in measured daily amounts calculated to maintain body weight on a previously computed idealized body weight curve. Twelve mice from each diet and dose group were evaluated at 15 months. SURVIVAL, FEED CONSUMPTION, AND BODY WEIGHTS: Survival of dosed groups of ad libitum-fed and dietary-controlled mice was similar to that of the corresponding vehicle controls. When compared to the ad libitum-fed groups, dietary control significantly increased survival in the vehicle controls and 25 and 50 mg/kg groups. Mean body weights of all dosed groups were similar to those of the vehicle control groups throughout the study. The dietary-controlled mice were successfully maintained at or near their target idealized body weights. There was less individual variation in body weights in the dietary-controlled groups than in the corresponding ad libitum-fed groups. Feed consumption by 25 and 50 mg/kg ad libitum-fed mice was generally similar to that by the vehicle controls throughout the study. Feed consumption by 100 mg/kg ad libitum-fed mice was slightly less than that by the vehicle controls throughout the study. HEPATIC ENZYME ANALYSIS: Chloral hydrate did not significantly induce either lauric acid 4-hydroxylase activity or CYP4A immunoreactive protein in any of the dosed groups of ad libitum-fed mice. However, 100 mg/kg did significantly induce both lauric acid 4-hydroxylase activity and CYP4A immunoreactive protein in the dietary-controlled mice. Moreover, the induction response profile of CYP4A was similar to the increase in the incidence of liver neoplasms at 2 years in the dietary-controlled mice with the major effect occurring in the 100 mg/kg group. The serum enzymes alanine aminotransferase, amylase, aspartate aminotransferase, and lactate dehydrogenase were also assayed at 2 years. In the ad libitum-fed groups there was a significant increase in aspartate aminotransferase activity in the 50 mg/kg group. There were no other significant effects in any dosed group, but in general the dietary-controlled groups exhibited lower values than the corresponding ad libitum-fed groups. ORGAN WEIGHTS AND PATHOLOGY FINDINGS: The heart weight of ad libitum-fed male mice administered 100 mg/kg and the kidney weights of 50 and 100 mg/kg ad libitum-fed mice were significantly less than those of the vehicle controls at 2 years. The liver weights of all dosed groups of ad libitum-fed and dietary-controlled mice were greater than those of the vehicle control groups at 2 years, but the increases were not statistically significant. The incidence of hepatocellular adenoma or carcinoma (combined) in ad libitum-fed mice administered 25 mg/kg was significantly greater than that in the vehicle controls at 2 years. The incidences of hepatocellular carcinoma and of hepatocellular adenoma or carcinoma (combined) occurred with positive trends in dietary-controlled male mice at 2 years, and the incidence of hepatocellular carcinoma in 100 mg/kg dietary-controlled mice was significantly increased. CONCLUSIONS: Under the conditions used in this 2-year gavage study, there was some evidence of carcinogenic activity of chloral hydrate in male B6C3F1 mice based on increased incidences of hepatocellular adenoma or carcinoma (combined) in ad libitum-fed mice and on increased incidences of hepatocellular carcinoma in dietary-controlled mice. In the dietary-controlled mice, induction of enzymes associated with peroxisome proliferation was observed at higher doses.


Assuntos
Hidrato de Cloral/toxicidade , Neoplasias Hepáticas Experimentais/induzido quimicamente , Animais , Peso Corporal/efeitos dos fármacos , Hidrato de Cloral/administração & dosagem , Hidrato de Cloral/metabolismo , Dieta , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos
16.
Toxicol Pathol ; 28(4): 610-8, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10930049

RESUMO

Male B6C3F1 mice and male F344/N rats were exposed to chloral hydrate (chloral) in the drinking water for 2 years. Rats: Measured chloral hydrate drinking water concentrations for the study were 0.12 g/L, 0.58 g/L, and 2.51 g/L chloral hydrate that yielded time-weighted mean daily doses (MDDs) of 7.4, 37.4, and 162.6 mg/kg per day. Water consumptions, survival, body weights, and organ weights were not altered in any of the chloral hydrate treatments. Life-time exposures to chloral hydrate failed to increase the prevalence (percentage of animals with a tumor) or the multiplicity (tumors/animal) of hepatocellular neoplasia. Chloral hydrate did not increase the prevalence of neoplasia at any other organ site. Mice: Measured chloral hydrate drinking water concentrations for the study were 0.12 g/L, 0.58 g/L, and 1.28 g/L that gave MDDs of 13.5, 65.0, and 146.6 mg/kg per day. Water consumptions, survival, body and organ weights, were not altered from the control values by any of the chloral hydrate treatments. Enhanced neoplasia was observed only in the liver. Prevalence and multiplicity of hepatocellular carcinoma (HC) were increased only for the high-dose group (84.4%; 0.72 HC/animal; p < or = 0.05). Values of 54.3%; 0.72 HC/animal and 59%; 1.03 HC/animal were observed for the 13.5- and 65.0-mg/kg per day treatment groups. Prevalence and multiplicity for the control group were 54.8%; 0.74 HC/animal. Hepatoadenoma (HA) prevalence and multiplicity were significantly increased (p < or = 0.05) at all chloral hydrate concentrations: 43.5%; 0.65 HA/animal, 51.3%; 0.95 HA/animal and 50%; 0.72 HA/animal at 13.5, 65.0, and 146.6 mg/kg per day chloral hydrate compared to 21.4%; 0.21 HA/animal in the untreated group. Altered foci of cells were evident in all doses tested in the mouse, but no significant differences were observed over the control values. Hepatocellular necrosis was minimal and did not exceed that seen in untreated rats and mice. Chloral hydrate exposure did not alter serum chemistry and hepatocyte proliferation in rats and mice or increase hepatic palmitoyl CoA oxidase in mice at any of the time periods monitored. It was concluded that chloral hydrate was carcinogenic (hepatocellular neoplasia) in the male mouse, but not in the rat, following a lifetime exposure in the drinking water. Based upon the increased HA and combined tumors at all chloral hydrate doses tested, a no observed adverse effect level was not determined.


Assuntos
Carcinógenos/toxicidade , Hidrato de Cloral/toxicidade , Neoplasias Hepáticas Experimentais/induzido quimicamente , Adenoma/induzido quimicamente , Adenoma/patologia , Animais , Divisão Celular/efeitos dos fármacos , Hidrato de Cloral/administração & dosagem , Hepatócitos/efeitos dos fármacos , Testes de Função Hepática , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Endogâmicos F344 , Abastecimento de Água , Aumento de Peso/efeitos dos fármacos
17.
Toxic Rep Ser ; (59): 1-66, A1-E7, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11803702

RESUMO

Chloral hydrate is widely used as a sedative and a hypnotic in pediatric medicine. It is also a byproduct of water chlorination. Chloral hydrate has been shown to be genotoxic in numerous prokaryotic and eukaryotic assay systems including human lymphocytes in vitro. One of its metabolites, trichloroacetic acid, has demonstrated hepatocarcinogenic activity in mice. Trichloroethylene and perchloroethylene, both of which are metabolized to chloral hydrate, have been shown to be carcinogenic in rats and/or mice. Because of this evidence of carcinogenicity and because of the wide-spread use of chloral hydrate, 16- or 17-day range-finding toxicity studies and separate 16- or 17-day metabolism studies were performed in F344/N rats and B6C3F1 mice in preparation for further long-term rodent studies. In addition, in vitro studies of the metabolism and DNA-binding capacity of chloral hydrate and its metabolites were performed. Genetic toxicity studies were conducted in Salmonella typhimurium, cultured Chinese hamster ovary cells, Drosophila melanogaster, and mouse bone marrow cells. For the range-finding studies, groups of eight male and eight female F344/N Nctr BR rats and B6C3F1/Nctr BR (C57BL/6N x C3H/HeN MTV-) mice were administered 0, 50, 100, 200, 400, or 800 mg chloral hydrate per kg body weight in water by gavage 5 days per week for 17 days (rats) or 16 days (mice) for a total of 12 doses. One male rat receiving 800 mg/kg died after five doses. Two 800 mg/kg female rats died after dosing ended but before study termination. One male mouse in each group except the 400 mg/kg group died before the end of the study. Two 800 mg/kg female mice also died before the end of the study. The final mean body weight of 800 mg/kg male rats and the mean body weight gains of 400 and 800 mg/kg males were significantly less than those of the vehicle controls. The mean body weight gains of all groups of dosed male mice were significantly greater than that of the vehicle control group. The only clinical finding in rats and mice attributed to chloral hydrate treatment was light sedation in the 400 mg/kg groups and heavy sedation in the 800 mg/kg groups; sedation subsided within 30 minutes or 3 hours, respectively. The liver weights of 400 mg/kg male mice and 800 mg/kg male and female mice were significantly greater than those of the vehicle control groups. No chemical-related lesions were observed in rats or mice. Male and female rats and mice were administered a single dose of 50 or 200 mg chloral hydrate per kg body weight in water by gavage, or 12 doses of 50 or 200 mg/kg over 17 days (rats) or 16 days (mice). Plasma concentrations of chloral hydrate and its metabolites were determined 15 minutes, 1, 3, 6, and 24 hours, and 2, 4, 8, and 16 days after receiving 1 or 12 doses. Maximum concentrations of chloral hydrate were observed at the initial sampling point of 15 minutes. By 1 hour, the concentrations had dropped substantially, and by 3 hours, chloral hydrate could not be detected in rats or mice. Trichloroacetic acid was the major metabolite detected in the plasma. In rats, the concentrations rose slowly, with the peaks occurring between 1 and 6 hours after treatment. In mice, the peak concentrations were found 1 hour after dosing. The concentrations then slowly decreased such that by 2 days the metabolite could no longer be detected in rats or mice. Trichloroethanol was assayed both as the free alcohol and its glucuronide. In rats, the maximum concentrations of free trichloroethanol occurred at 15 minutes, while the peak concentrations of trichloroethanol glucuronide were found at 1 hour; by 3 hours, concentrations of both metabolites approached background levels. In mice, the maximum concentrations of both metabolites occurred at 15 minutes, and by 1 to 3 hours concentrations approached background levels. The plasma concentrations of chloral hydrate and its metabolites were dose dependent in rats and mice. In mice, plasma concentrations of trichloroacetic acid were significantly higher after a single dose than after 12 doses. None of the metabolic parameters appears to account for species differences that may exist in hepatocarcinogenicity. The data from the study of metabolism and DNA adduct formation indicated that in vitro metabolism of 200 microM to 5 mM chloral hydrate by male B6C3F1 mouse liver microsomes (control microsomes) generated free radical intermediates that resulted in endogenous lipid peroxidation, forming malondialdehyde, formaldehyde, acetaldehyde, acetone, and propionaldehyde. Similar concentrations of trichloroacetic acid and trichloroethanol, the primary metabolites of chloral hydrate, also generated free radicals and induced lipid peroxidation. Lipid peroxidation induced by trichloroacetic acid nearly equaled that induced by chloral hydrate, while that from trichloroethanol was three- to fourfold less. Metabolism of 200 microM to 5 mM chloral hydrate, trichloroacetic acid, and trichloroethanol by liver microsomes of B6C3F1 mice pretreated with pyrazole (pyrazole-induced microsomes) yielded lipid peroxidation products at concentrations two- to threefold greater than those from liver microsomes of untreated mice. Additionally, chloral hydrate-induced lipid peroxidation catalyzed by control and pyrazole-induced microsomes was reduced significantly by 2,4-dichloro-6-phenylphenoxyethylamine, a general cytochrome P450 inhibitor. Human lymphoblastoid transgenic cells expressing cytochrome P(450)2E1 metabolized 200 to 5,000 micrograms/mL chloral hydrate to reactants inducing mutations, whereas the parental cell line was inactive. The malondialdehyde-modified DNA adduct, 3-(2-deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2 alpha]purin-10(3H)-one (MDA-MG-1), formed from the metabolism of 1 mM chloral hydrate, trichloroacetic acid, and trichloroethanol by control B6C3F1 mouse liver microsomes, mouse pyrazole-induced microsomes, male F344/N rat liver microsomes, and human liver microsomes in the presence and absence of calf thymus DNA was also determined. When incubated in the absence of calf thymus DNA, the amount of malondialdehyde formed from metabolism by pyrazole-induced mouse microsomes was twice that from rat or human liver microsomes. Amounts of chloral hydrate-induced and trichloroacetic acid-induced lipid peroxidation products formed from metabolism by rat and human liver microsomes were similar, and these quantities were about twice those formed from the metabolism of trichloroethanol. The quantity of MDA-MG-1 formed from the metabolism of chloral hydrate, trichloroacetic acid, and trichloroethanol by mouse, rat, and human liver microsomes exhibited a linear correlation with the quantity of malondialdehyde formed under incubation conditions in the absence of calf thymus DNA. Chloral hydrate was shown to be mutagenic in vitro and in vivo. At doses from 1,000 to 10,000 micrograms/plate, it induced mutations in S. typhimurium strain TA100, with and without S9 activation; an equivocal response was obtained in S. typhimurium strain TA98 in the absence of S9, and no mutagenicity was detected with strain TA1535 or TA1537. Chloral hydrate at doses from 1,700 to 5,000 micrograms/mL induced sister chromatid exchanges; at doses from 1,000 to 3,000 micrograms/mL, chromosomal aberrations were induced in cultured Chinese hamster ovary cells, with and without S9. Results of a sex-linked recessive lethal test in D. melanogaster were unclear; administration of chloral hydrate by feeding produced an inconclusive increase in recessive lethal mutations, results of the injection experiment were negative. An in vivo mouse bone marrow micronucleus test with chloral hydrate at doses from 125 to 500 mg/kg gave a positive dose trend. In summary, due to the absence of chloral hydrate-induced histopathologic lesions in rats and mice, no-observed-adverse-effect levels (NOAELs) were based on body weights of rats and liver weights of mice. The NOAELs for rats and mice were 200 mg/kg. Chloral hydrate was rapidly metabolized by rats and mice, with trichloroacetic acid occurring as the major metabolite. Peak concentrations of trichloroacetic acid occurred more quickly in mice. Plasma concentrations of chloral hydrate were dose dependent, but metabolic rates were unaffected by dose or sex. Chloral hydrate was mutagenic in vitro and in vivo. Metabolism of chloral hydrate and its metabolites produced free radicals that resulted in lipid peroxidation in liver microsomes of mice, rats, and humans. Induction of cytochrome P(450)2E1 by pyrazole increased the concentrations of lipid peroxidation products; inhibition of cytochrome P(450)2E1 by 2,4-dinitrophenylhydrazine reduced these concentrations. Metabolism of chloral hydrate and its metabolites by mouse, rat, and human liver microsomes formed malondialdehyde, and in the presence of calf thymus DNA formed the DNA adduct MDA-MG-1.


Assuntos
Hidrato de Cloral/metabolismo , Hidrato de Cloral/toxicidade , Hipnóticos e Sedativos/metabolismo , Hipnóticos e Sedativos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Células CHO , Hidrato de Cloral/farmacocinética , Cricetinae , DNA/metabolismo , Adutos de DNA/metabolismo , Lavagem Gástrica , Humanos , Hipnóticos e Sedativos/farmacocinética , Técnicas In Vitro , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos , Microssomos Hepáticos , Testes de Mutagenicidade , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética
18.
Arzneimittelforschung ; 48(10): 961-8, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9825112

RESUMO

Chloral hydrate (CAS 302-17-0), a widely used hypnotic and sedative agent, is reassessed on its mutagenic and carcinogenic potential on the evidence of recently unpublished and already published data. The compound was administered to rats in a carcinogenicity study in the drinking water for 124 (males) or 128 (females) weeks at dosages of 15, 45 and 135 mg/kg b.w./day. The administration of chloral hydrate produced no effects on survival, appearance and behaviour. At necropsy, there was no evidence of treatment-related changes, histopathology revealed an increased incidence of hepatocellular hypertrophy at the high dose level. There was no indication for a carcinogenic potential of chloral hydrate examined as life-time carcinogenicity study in rats. Further, in several in vitro and in vivo test systems no indication for a mutagenic potential was detected. Still unresolved is the end-point 'aneuploidy'. However, no validated in vivo test systems are available at the moment to confirm the positive results observed in vitro under certain experimental conditions and to assess the relevance of the in vitro findings for man, above all, since chloral hydrate is quickly metabolised to trichloroethanol in man. Based on the extensive range of data available, it can be concluded, that chloral hydrate has to be considered as a safe and effective substance.


Assuntos
Carcinógenos/toxicidade , Hidrato de Cloral/toxicidade , Fígado/patologia , Mutagênicos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Testes de Carcinogenicidade , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Hipertrofia , Fígado/efeitos dos fármacos , Masculino , Testes para Micronúcleos , Testes de Mutagenicidade , Oócitos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais , Espermatócitos/efeitos dos fármacos
19.
Mutat Res ; 413(3): 265-76, 1998 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-9651541

RESUMO

The disinfection of water, required to make it safe for human consumption, leads to the presence of halogenated organic compounds. Three of these carcinogenic 'disinfection by-products', dichloroacetic acid (DCA), trichloroacetic acid (TCA) and chloral hydrate (CH) have been widely evaluated for their potential toxicity. The mechanism(s) by which they exert their activity and the steps in the etiology of the cancers that they induce are important pieces of information that are required to develop valid biologically-based quantitative models for risk assessment. Determining whether these chemicals induce tumors by genotoxic or nongenotoxic mechanisms (or a combination of both) is key to this evaluation. We evaluated these three chemicals for their potential to induce micronuclei and aberrations as well as mutations in L5178Y/TK +/- (-)3.7.2C mouse lymphoma cells. TCA was mutagenic (only with S9 activation) and is one of the least potent mutagens that we have evaluated. Likewise, CH was a very weak mutagen. DCA was weakly mutagenic, with a potency (no. of induced mutants/microgram of chemical) similar to (but less than) ethylmethanesulfonate (EMS), a classic mutagen. When our information is combined with that from other studies, it seems reasonable to postulate that mutational events are involved in the etiology of the observed mouse liver tumors induced by DCA at drinking water doses of 0.5 to 3.5 g/l, and perhaps chloral hydrate at a drinking water dose of 1 g/l. The weight-of-evidence for TCA suggest that it is less likely to be a mutagenic carcinogen. However, given the fact that DCA is a weak mutagen in the present and all of the published studies, it seems unlikely that it would be mutagenic (or possibly carcinogenic) at the levels seen in finished drinking water.


Assuntos
Hidrato de Cloral/toxicidade , Ácido Dicloroacético/toxicidade , Desinfetantes/toxicidade , Leucemia L5178/genética , Mutagênicos/toxicidade , Ácido Tricloroacético/toxicidade , Purificação da Água , Animais , Aberrações Cromossômicas , Camundongos , Testes de Mutagenicidade , Timidina Quinase/genética , Células Tumorais Cultivadas/efeitos dos fármacos
20.
Fundam Appl Toxicol ; 37(2): 125-30, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9242585

RESUMO

CD-1 mice exposed to 450 ppm trichloroethylene, 6 hr/day, 5 days/week, for 2 weeks showed a marked vacuolation of lung Clara cells after the first exposure of each week and a marked increase in cell division after the last exposure of each week. The damage seen in mouse lung Clara cells is caused by an accumulation of chloral resulting from high rates of metabolism of trichloroethylene but poor clearance of chloral to trichloroethanol and its glucuronide. The activity and distribution of the key metabolizing enzymes in this pathway have been compared in mouse, rat, and human lung. While mouse lung microsomal fractions were able to metabolize trichloroethylene to chloral at significant rates, the rate in rat lung was 23-fold lower and a rate could not be detected in human lung microsomes at all. Immunolocalization of cytochrome P450IIE1 in lung sections revealed high concentrations in mouse lung Clara cells with lesser amounts in type II cells. Lower levels of enzyme could be detected in Clara cells of rat lung, but not at all in human lung sections. Western blots of lung tissues from the three species and of mouse lung Clara cells were entirely consistent with these observations. Consequently, it is highly unlikely that humans exposed to trichloroethylene are at risk from the lung damage/cell proliferation mechanism that is believed to lead to the development of tumors in the mouse lung.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Pulmão/efeitos dos fármacos , Microssomos/efeitos dos fármacos , Solventes/toxicidade , Tricloroetileno/toxicidade , Administração por Inalação , Animais , Western Blotting , Divisão Celular , Hidrato de Cloral/análogos & derivados , Hidrato de Cloral/metabolismo , Hidrato de Cloral/toxicidade , Etilenocloroidrina/análogos & derivados , Etilenocloroidrina/metabolismo , Feminino , Glucuronatos/metabolismo , Humanos , Técnicas Imunoenzimáticas , Técnicas In Vitro , Pulmão/enzimologia , Pulmão/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Microssomos/enzimologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Ratos , Ratos Wistar , Solventes/metabolismo , Especificidade da Espécie , Tricloroetileno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA