Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Eur J Med Chem ; 276: 116681, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39024966

RESUMO

In our continuing effort devoted at developing agents targeting the EphA2 receptor by means of protein-protein interaction (PPI) inhibitors, we report here the design and synthesis of a new class of l-ß-homotryptophan conjugates of 3-ß-hydroxy-Δ5-cholenic acid bearing a set of arylsulfonyl substituents at the indole nitrogen atom. An extensive structure-activity relationship (SAR) analysis indicates that the presence of a bulky lipophilic moiety at the indole nitrogen is fundamental for improving potency on the EphA2 receptor, while abrogating activity on the EphB1-EphB3 receptor subtypes. A rational exploration, guided by the combined application of an experimental design on σp and π physicochemical descriptors and docking simulations, led to the discovery of UniPR1454, a 1-(4-(trifluoromethyl)phenyl)sulfonyl derivative acting as potent and competitive EphA2 antagonist able to inhibit ephrin-A1 dependent signals and to reduce proliferation of glioblastoma (U251) cell line at micromolar concentration.


Assuntos
Antineoplásicos , Proliferação de Células , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma , Indóis , Receptor EphA2 , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptor EphA2/antagonistas & inibidores , Receptor EphA2/metabolismo , Relação Estrutura-Atividade , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/farmacologia
2.
Int J Pharm ; 648: 123569, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37925043

RESUMO

A challenge in pressurised metered-dose inhaler (pMDI) formulation design is management of adhesion of the drug to the canister wall, valve and actuator internal components and surfaces. Wall-material interactions differ between transparent vials used for visual inspection and metal canister pMDI systems. This is of particular concern for low greenhouse warming potential (GWP) formulations where propellant chemistry and solubility with many drugs are not well understood. In this study, we demonstrate a novel application of X-ray fluorescence spectroscopy using synchrotron radiation to assay the contents of surrogate solution and suspension pMDI formulations of potassium iodide and barium sulphate in propellants HFA134a, HFA152a and HFO1234ze(E) using aluminium canisters and standard components. Preliminary results indicate that through unit life drug distribution in the canister valve closure region and actuator can vary significantly with new propellants. For solution formulations HFO1234ze(E) propellant shows the greatest increase in local deposition inside the canister valve closure region as compared to HFA134a and HFA152a, with correspondingly reduced actuator deposition. This is likely driven by chemistry changes. For suspension formulations HFA152a shows the greatest differences, due to its low specific gravity. These changes must be taken into consideration in the development of products utilising low-GWP propellants.


Assuntos
Inaladores Dosimetrados , Nebulizadores e Vaporizadores , Administração por Inalação , Catéteres , Alumínio , Suspensões , Propelentes de Aerossol/química , Hidrocarbonetos Fluorados/química
3.
J Am Chem Soc ; 143(48): 20332-20342, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817176

RESUMO

Chemoproteomic profiling of cysteines has emerged as a powerful method for screening the proteome-wide targets of cysteine-reactive fragments, drugs, and natural products. Herein, we report the development and an in-depth evaluation of a tetrafluoroalkyl benziodoxole (TFBX) as a cysteine-selective chemoproteomic probe. We show that this probe features numerous key improvements compared to the traditionally used cysteine-reactive probes, including a superior target occupancy, faster labeling kinetics, and broader proteomic coverage, thus enabling profiling of cysteines directly in live cells. In addition, the fluorine "signature" of probe 7 constitutes an additional advantage resulting in a more confident adduct-amino acid site assignment in mass-spectrometry-based identification workflows. We demonstrate the utility of our new probe for proteome-wide target profiling by identifying the cellular targets of (-)-myrocin G, an antiproliferative fungal natural product with a to-date unknown mechanism of action. We show that this natural product and a simplified analogue target the X-ray repair cross-complementing protein 5 (XRCC5), an ATP-dependent DNA helicase that primes DNA repair machinery for nonhomologous end joining (NHEJ) upon DNA double-strand breaks, making them the first reported inhibitors of this biomedically highly important protein. We further demonstrate that myrocins disrupt the interaction of XRCC5 with DNA leading to sensitization of cancer cells to the chemotherapeutic agent etoposide as well as UV-light-induced DNA damage. Altogether, our next-generation cysteine-reactive probe enables broader and deeper profiling of the cysteinome, rendering it a highly attractive tool for elucidation of targets of electrophilic small molecules.


Assuntos
Cisteína/química , Compostos Heterocíclicos com 2 Anéis/química , Hidrocarbonetos Fluorados/química , Sondas Moleculares/química , Proteômica/métodos , Alquilação , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Diterpenos/farmacologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células HeLa , Humanos , Autoantígeno Ku/antagonistas & inibidores , Autoantígeno Ku/química
4.
Bioorg Med Chem ; 50: 116457, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34670167

RESUMO

An aromatic trifluoromethyl ketone moiety was characterized as a new warhead for covalently reversible kinase inhibitor design to target the non-catalytic cysteine residue. Potent and selective covalently reversible inhibitors of FGFR4 kinase were successfully designed and synthesized by utilizing this new warhead. The binding mode of a representative inhibitor was fully characterized by using multiple technologies including MALDI-TOF mass spectrometry, dialysis assay and X-ray crystallographic studies etc. This functional group was also successfully applied to discovery of a new JAK3 inhibitor, suggesting its potential application in designing other kinase inhibitors.


Assuntos
Hidrocarbonetos Fluorados/farmacologia , Janus Quinase 3/antagonistas & inibidores , Cetonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/química , Janus Quinase 3/metabolismo , Cetonas/síntese química , Cetonas/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502131

RESUMO

Progress in understanding peroxisome proliferator-activated receptor (PPAR) subtypes as nuclear receptors that have pleiotropic effects on biological responses has enabled the exploration of new subtype-selective PPAR ligands. Such ligands are useful chemical biology/pharmacological tools to investigate the functions of PPARs and are also candidate drugs for the treatment of PPAR-mediated diseases, such as metabolic syndrome, inflammation and cancer. This review summarizes our medicinal chemistry research of more than 20 years on the design, synthesis, and pharmacological evaluation of subtype-selective PPAR agonists, which has been based on two working hypotheses, the ligand superfamily concept and the helix 12 (H12) holding induction concept. X-ray crystallographic analyses of our agonists complexed with each PPAR subtype validate our working hypotheses.


Assuntos
Descoberta de Drogas , Ligantes , Modelos Moleculares , Receptores Ativados por Proliferador de Peroxissomo/química , Animais , Sítios de Ligação , Butiratos/química , Butiratos/farmacologia , Descoberta de Drogas/métodos , Humanos , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Ligação Proteica , Isoformas de Proteínas , Relação Estrutura-Atividade
6.
Adv Mater ; 33(40): e2008788, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34423493

RESUMO

Tendon disease constitutes an unmet clinical need and remains a critical challenge in the field of orthopaedic surgery. Innovative solutions are required to overcome the limitations of current tendon grafting approaches, and bioelectronic therapies show promise in treating musculoskeletal diseases, accelerating functional recovery through the activation of tissue regeneration-specific signaling pathways. Self-powered bioelectronic devices, particularly piezoelectric materials, represent a paradigm shift in biomedicine, negating the need for battery or external powering and complementing existing mechanotherapy to accelerate the repair processes. Here, the dynamic response of tendon cells to a piezoelectric collagen-analogue scaffold comprised of aligned nanoscale fibers made of the ferroelectric material poly(vinylidene fluoride-co-trifluoroethylene) is shown. It is demonstrated that motion-powered electromechanical stimulation of tendon tissue through piezo-bioelectric device results in ion channel modulation in vitro and regulates specific tissue regeneration signaling pathways. Finally, the potential of the piezo-bioelectronic device in modulating the progression of tendinopathy-associated processes in vivo, using a rat Achilles acute injury model is shown. This study indicates that electromechanical stimulation regulates mechanosensitive ion channel sensitivity and promotes tendon-specific over non-tenogenic tissue repair processes.


Assuntos
Eletrônica , Canais Iônicos/metabolismo , Tendões/fisiologia , Engenharia Tecidual/métodos , Animais , Colágeno/química , Módulo de Elasticidade , Estimulação Elétrica , Hidrocarbonetos Fluorados/química , Ratos , Regeneração/fisiologia , Transdução de Sinais , Tendões/citologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Compostos de Vinila/química
7.
ChemMedChem ; 16(20): 3177-3180, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34268896

RESUMO

Several CF3 Se-substituted α-amino acid derivatives, such as (R)-2-amino-3-((trifluoromethyl)selanyl)propanoates (5 a/6 a), (S)-2-amino-4-((trifluoromethyl)selanyl)butanoates (5 b/6 b), (2R,3R)-2-amino-3-((trifluoromethyl)selanyl)butanoates (5 c/6 c), (R)-2-((S)-2-amino-3-phenylpropanamido)-3-((trifluoromethyl)selanyl)propanoates (11 a/12 a), and (R)-2-(2-aminoacetamido)-3-((trifluoromethyl)selanyl)propanoates (11 b/12 b), were readily synthesized from natural amino acids and [Me4 N][SeCF3 ]. The primary in vitro cytotoxicity assays revealed that compounds 6 a, 11 a and 12 a were more effective cell growth inhibitors than the other tested CF3 Se-substituted derivatives towards MCF-7, HCT116, and SK-OV-3 cells, with their IC50 values being less than 10 µM for MCF-7 and HCT116 cells. This study indicated the potentials of CF3 Se moiety as a pharmaceutically relevant group in the design and synthesis of novel biologically active molecules.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Compostos Organosselênicos/farmacologia , Aminoácidos/síntese química , Aminoácidos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/química , Células MCF-7 , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Relação Estrutura-Atividade
8.
Molecules ; 26(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209791

RESUMO

Histone deacetylase enzymes (HDACs) are potential targets for the treatment of cancer and other diseases, but it is challenging to design isoform-selective agents. In this work, we created new analogs of two established but non-selective HDAC inhibitors. We decorated the central linker chains of the molecules with specifically positioned fluorine atoms in order to control the molecular conformations. The fluorinated analogs were screened against a panel of 11 HDAC isoforms, and minor differences in isoform selectivity patterns were observed.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases/química , Hidrocarbonetos Fluorados , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/química , Relação Estrutura-Atividade
9.
Int J Toxicol ; 40(4): 355-366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33944624

RESUMO

Per- and polyfluorinated alkyl substances (PFAS) are ubiquitous, persistent, and toxic chemicals that pose public health risks. Recent carcinogenicity concerns have arisen based on epidemiological studies, animal tumor findings, and mechanistic data. Thousands of PFAS exist; however, current understanding of their toxicity is informed by studies of a select few, namely, perfluorooctanoic acid and perfluorooctanesulfonic acid. Hence, the computational, high-throughput screening tool, the US EPA CompTox Chemical Dashboard's ToxCast, was utilized to explore the carcinogenicity potential of PFAS. Twenty-three major PFAS that had sufficient in vitro ToxCast data and covered a range of structural subclasses were analyzed with the visual analytics software ToxPi, yielding a qualitative and quantitative assessment of PFAS activity in realms closely linked with carcinogenicity. A comprehensive literature search was also conducted to check the consistency of analyses with other mechanistic data streams. The PFAS were found to induce a vast range of biological perturbations, in line with several of the International Agency for Research on Cancer-defined key carcinogen characteristics. Patterns observed varied by length of fluorine-bonded chains and/or functional group within and between each key characteristic, suggesting some structure-based variability in activity. In general, the major conclusions drawn from the analysis, that is, the most notable activities being modulation of receptor-mediated effects and induction of oxidative stress, were supported by literature findings. The study helps enhance understanding of the mechanistic pathways that underlie the potential carcinogenicity of various PFAS and hence could assist in hazard identification and risk assessment for this emerging and relevant class of environmental toxicants.


Assuntos
Poluentes Ambientais/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Hidrocarbonetos Fluorados/toxicidade , Animais , Testes de Carcinogenicidade , Bases de Dados de Compostos Químicos , Hidrocarbonetos Fluorados/química , Estrutura Molecular
10.
Nat Nanotechnol ; 16(6): 717-724, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782588

RESUMO

Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor.


Assuntos
Imagem Molecular/métodos , Nanoestruturas/química , Neoplasias da Próstata/diagnóstico por imagem , Solução Salina Hipertônica/química , Acústica , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Estabilidade de Medicamentos , Humanos , Hidrocarbonetos Fluorados/química , Masculino , Camundongos Endogâmicos NOD , Imagem Molecular/instrumentação , Imagens de Fantasmas , Neoplasias da Próstata/metabolismo , Ondas de Rádio , Receptores da Bombesina/genética , Receptores da Bombesina/imunologia , Receptores da Bombesina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669003

RESUMO

The adenosine A2A receptor (A2AR) represents a potential therapeutic target for neurodegenerative diseases. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor changes of receptor density and/or occupancy during the A2AR-tailored therapy, we designed a library of fluorinated analogs based on a recently published lead compound (PPY). Among those, the highly affine 4-fluorobenzyl derivate (PPY1; Ki(hA2AR) = 5.3 nM) and the 2-fluorobenzyl derivate (PPY2; Ki(hA2AR) = 2.1 nM) were chosen for 18F-labeling via an alcohol-enhanced copper-mediated procedure starting from the corresponding boronic acid pinacol ester precursors. Investigations of the metabolic stability of [18F]PPY1 and [18F]PPY2 in CD-1 mice by radio-HPLC analysis revealed parent fractions of more than 76% of total activity in the brain. Specific binding of [18F]PPY2 on mice brain slices was demonstrated by in vitro autoradiography. In vivo PET/magnetic resonance imaging (MRI) studies in CD-1 mice revealed a reasonable high initial brain uptake for both radiotracers, followed by a fast clearance.


Assuntos
Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor/química , Hidrocarbonetos Fluorados/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Receptor A2A de Adenosina/metabolismo , Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Animais , Autorradiografia , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Cricetinae , Hidrocarbonetos Fluorados/síntese química , Imageamento por Ressonância Magnética , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
12.
Theranostics ; 11(6): 2634-2654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456564

RESUMO

Background and purpose: Activation of liver X receptor (LXR) by its ligand T0901317 (T317) enhances interferon-γ (IFNγ) production to inhibit tumor growth. However, induction of severe hypertriglyceridemia and fatty liver by T317 limits its application. The naphthylacetic acid modified D-enantiomeric-glycine-phenylalanine-phenylalanine-tyrosine (D-Nap-GFFY) can form a nanofiber hydrogel which is selectively taken up by antigen-presenting cells (APCs). In this study, we determined if D-Nap-GFFY-encapsulated T317 (D-Nap-GFFY-T317) can potently inhibit tumor growth while having no adverse lipogenic effects on the liver. Methods: We prepared D-Nap-GFFY-T317 nanofiber hydrogel and subcutaneously injected it into IFNγ deficient (IFNγ-/-) and wild-type (WT) mice with lung carcinoma, either inoculated LLC1 cells or urethane-induced carcinoma. Mice received oral T317 administration were used for comparison. Effects of treatment on tumor growth, lipogenesis and involved mechanisms were investigated. Results: Compared with T317 oral administration, injection of D-Nap-GFFY-T317 more potently inhibited LLC1 tumor growth in mice. The inhibition was dependent on LXR-activated IFNγ expression in APCs. D-Nap-GFFY-T317 increased M1 while reducing M2 type macrophages in tumors. Associated with activation of IFNγ expression, D-Nap-GFFY-T317 enhanced dendritic cell maturation and infiltration into tumors, increased CD3+/CD8+ cells in tumors, and inhibited tumor angiogenesis. Similarly, D-Nap-GFFY-T317 more potently inhibited growth of urethane-induced lung carcinomas than T317 oral administration. In these two tumor models, T317 oral administration, but not D-Nap-GFFY-T317 injection, activated hepatic lipogenesis and induced fatty liver. Conclusion: Our study demonstrates that D-Nap-GFFY-T317 inhibits lung tumor growth without adverse effects on the liver, indicating the hydrogel-encapsulated LXR ligand might be a novel therapy for tumor treatment.


Assuntos
Hidrogéis/química , Hidrogéis/farmacologia , Lipogênese/efeitos dos fármacos , Receptores X do Fígado/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Animais , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Células Hep G2 , Humanos , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/farmacologia , Interferon gama/metabolismo , Ligantes , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanofibras/química , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Células RAW 264.7 , Sulfonamidas/química , Sulfonamidas/farmacologia
13.
Anticancer Agents Med Chem ; 21(8): 938-948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32900353

RESUMO

In the last 20 years, N-Heterocyclic Carbene (NHC) ligands have been ubiquitous in biological and medicinal chemistry. Part of their success lies in the tremendous number of topologies that can be synthesized and thus finely tuned that have been described so far. This is particularly true in the case of those derivatives, including fluorine or fluorinated fragments on their NHC moieties, gaining much attention due to their enhanced biological properties and turning them into excellent candidates for the development of novel metallodrugs. Thus, this review summarizes the development that fluorinated-NHC transition metal complexes have had and their impact on cancer treatment.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Compostos Heterocíclicos/química , Hidrocarbonetos Fluorados/química , Metano/análogos & derivados , Elementos de Transição/química , Animais , Antineoplásicos/farmacologia , Química Farmacêutica , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Flúor/química , Halogenação , Humanos , Metano/química , Estrutura Molecular , Relação Estrutura-Atividade
14.
Anal Chem ; 92(23): 15463-15471, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179902

RESUMO

Currently most fluorogenic probes are developed for the analysis of enzymes, where a bond breaking or rearrangement reaction is required to transform a nonfluorescent enzymatic substrate into a fluorescent product. However, this approach cannot be used for proteins that do not possess enzymatic activities. In this article, we show that fluorogenic probes with a self-immolative difluorophenyl ester linker can mimic the bond disassembly processes of fluorogenic enzyme substrates for the rapid analysis of nonenzymatic proteins. Although numerous self-immolative reagents have shown promising applications in sensors, drug delivery systems, and material chemistry, all of them are triggered by either enzymes or small reactive molecules. In our strategy, the probe binds to the protein via a specific protein-ligand interaction, inducing a chemical reaction between the self-immolative linker and an amino acid of the protein, thereby triggering a cascade reaction that leads to the activation and release of the fluorogenic reporter. In contrast, a phenyl ester linker without the difluoro substituent cannot be triggered to release the fluorogenic reporter. With this probe design, live-cell imaging of extracellular and intracellular endogenous tumor marker proteins can be achieved with high selectivity and sensitivity.


Assuntos
Ésteres/química , Corantes Fluorescentes/química , Hidrocarbonetos Fluorados/química , Proteínas/análise , Proteínas/química , Limite de Detecção
15.
Nat Commun ; 11(1): 5287, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082324

RESUMO

Gonadotrophin-releasing hormone (GnRH), also known as luteinizing hormone-releasing hormone, is the main regulator of the reproductive system, acting on gonadotropic cells by binding to the GnRH1 receptor (GnRH1R). The GnRH-GnRH1R system is a promising therapeutic target for maintaining reproductive function; to date, a number of ligands targeting GnRH1R for disease treatment are available on the market. Here, we report the crystal structure of GnRH1R bound to the small-molecule drug elagolix at 2.8 Å resolution. The structure reveals an interesting N-terminus that could co-occupy the enlarged orthosteric binding site together with elagolix. The unusual ligand binding mode was further investigated by structural analyses, functional assays and molecular docking studies. On the other hand, because of the unique characteristic of lacking a cytoplasmic C-terminal helix, GnRH1R exhibits different microswitch structural features from other class A GPCRs. In summary, this study provides insight into the ligand binding mode of GnRH1R and offers an atomic framework for rational drug design.


Assuntos
Receptores LHRH/química , Receptores LHRH/metabolismo , Sítios de Ligação , Cristalização , Hormônio Liberador de Gonadotropina/química , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Conformação Proteica em alfa-Hélice , Pirimidinas/química , Pirimidinas/metabolismo , Receptores LHRH/genética
16.
Chem Asian J ; 15(21): 3416-3420, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32931625

RESUMO

The long-term stability of affinity-based protein labeling probes is crucial to obtain reproducible protein labeling results. However, highly stable probes generally suffer from low protein labeling efficiency and pose significant challenges when labeling low abundance native proteins in living cells. In this paper, we report that protein labeling probes based on an ortho-difluorophenyl ester reactive module exhibit long-term stability in DMSO stock solution and aqueous buffer, yet they can undergo rapid and selective labeling of native proteins. This novel electrophile can be customized with a wide range of different protein ligands and is particularly well-suited for the labeling and imaging of transmembrane proteins. With this probe design, the identity and relative levels of basal and hypoxia-induced transmembrane carbonic anhydrases were revealed by live cell imaging and in-gel fluorescence analysis. We believe that the extension of this difluorophenyl ester reactive module would allow for the specific labeling of various endogenous membrane proteins, facilitating in-depth studies of their distribution and functions in biological processes.


Assuntos
Ésteres/química , Corantes Fluorescentes/química , Hidrocarbonetos Fluorados/química , Proteínas de Membrana/análise , Coloração e Rotulagem , Linhagem Celular Tumoral , Ésteres/síntese química , Corantes Fluorescentes/síntese química , Humanos , Hidrocarbonetos Fluorados/síntese química , Estrutura Molecular , Imagem Óptica
17.
Eur J Med Chem ; 208: 112776, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32896759

RESUMO

A set of fluorinated sialyl-T derivatives were efficiently synthesized using one-pot multi-enzyme (OPME) chemoenzymatic approach. The P. multocida α2-3-sialyltransferase (PmST1) involved in the synthesis showed extremely flexible donor and acceptor substrate specificities. These sialosides have been successfully investigated with stability towards Clostridium perfringens sialidase substrate specificity assay using 1H NMR spectroscopy. Hydrolysis studies monitored by 1H NMR clearly demonstrated that the fluorine substitution obviously reduced hydrolysis rate of Clostridium perfringens sialidase. To further investigate the fluorine influence, structure-dependent variation of sialoside-lectin binding was observed for MAL and different sialoside-immobilized surfaces. Subtle changes on the ligand of carbohydrate-binding protein were distinguished by SPR. These fluorinated sialyl-T derivatives obtained are valuable probes for further biological studies or antitumor drug design.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Hidrocarbonetos Fluorados/química , Trissacarídeos/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Sequência de Carboidratos , Hidrocarbonetos Fluorados/síntese química , Hidrólise , Neuraminidase/química , Especificidade por Substrato , Transferases/química , Trissacarídeos/síntese química
18.
Ecotoxicol Environ Saf ; 199: 110679, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32402896

RESUMO

Chlordane is a worldwide banned organochlorine insecticide because of its hazard to animal and human health. It is also a persistent organic pollutant, which can affect either the soil or the aquatic life. The same applies to other chlorinated cyclodiene insecticides, such as dieldrin and aldrin. In turn, organofluorine compounds have a widespread use in agriculture. Therefore, density functional calculations and docking studies showed that the bioisosteric replacement of chlorines in the above-mentioned compounds by fluorines improves some physicochemical parameters used to estimate the toxicity and environmental risk of these compounds, as well as the ligand-enzyme (GABAA receptor-chloride channel complex) interactions related to their insecticidal activity. This work is an effort to provide an improved new class of organofluorine pesticides.


Assuntos
Hidrocarbonetos Clorados/química , Hidrocarbonetos Fluorados/química , Modelos Teóricos , Praguicidas/química , Receptores de GABA-A/química , Animais , Fenômenos Químicos , Halogenação , Humanos , Hidrocarbonetos Clorados/farmacologia , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Fluorados/farmacologia , Hidrocarbonetos Fluorados/toxicidade , Simulação de Acoplamento Molecular , Praguicidas/farmacologia , Praguicidas/toxicidade
19.
Org Lett ; 22(8): 2946-2949, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32216364

RESUMO

A straightforward synthesis of enantiopure α-trifluoromethyl aziridine-2-carboxylic acid (α-TfmAzy) is reported from a trifluoropyruvate derived enantiopure oxazolidine. A key Strecker-type synthetic step and a late cyanide basic hydrolysis gave the target compounds in six steps and 41% yield. A final peptide coupling was performed to demonstrate the usefulness of this highly constrained fluorinated unnatural amino acid.


Assuntos
Aziridinas/síntese química , Hidrocarbonetos Fluorados/síntese química , Peptídeos/química , Aziridinas/química , Hidrocarbonetos Fluorados/química , Estrutura Molecular , Estereoisomerismo
20.
ACS Chem Biol ; 15(4): 1096-1103, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32125821

RESUMO

19F NMR spectroscopy provides the ability to quantitatively analyze single species in complex solutions but is often limited by the modest sensitivity inherent to NMR. 4R- and 4S-Perfluoro-tert-buyl hydroxyproline contain 9 equivalent fluorines, in amino acids with strong conformational preferences. In order to test the ability to use these amino acids as sensitive probes of protein modifications, the perfluoro-tert-buyl hydroxyprolines were incorporated into substrate peptides of the protein kinases PKA and Akt. Peptides containing each diastereomeric proline were rapidly phosphorylated by each protein kinase and exhibited 19F chemical shift changes as a result of phosphorylation. The sensitivity of the perfluoro-tert-butyl group allowed quantitative analysis of the kinetics of phosphorylation over three half-lives at single-digit micromolar concentrations of each species. The distinct conformational preferences of these amino acids allowed the optimization of the substrate with a conformationally matched amino acid, in order to maximize the rate of phosphorylation. PKA preferred the 4R-amino acid at the -1 position, whereas the closely related AGC kinase Akt preferred the 4S-amino acid. These data, combined with analysis of structures of the Michaelis complexes of these kinases in the PDB, suggest that PKA recognizes the PPII conformation at the P-1 position relative to the phosphorylation site, while Akt/PKB recognizes an extended conformation at this position. These results suggest that conformational targeting may be employed to increase specificity in recognition by protein kinases. Perfluoro-tert-butyl hydroxyprolines were applied to the real-time detection and quantification of PKA activity and inhibition of PKA activity in HeLa cell extracts via 19F NMR spectroscopy. The coupling of proline ring pucker with main chain conformation suggests broad application of perfluoro-tert-butyl hydroxyprolines in molecular sensing and imaging.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/análise , Hidrocarbonetos Fluorados/química , Sondas Moleculares/química , Peptídeos/química , Prolina/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/análise , Proteínas Quinases Dependentes de AMP Cíclico/química , Ensaios Enzimáticos/métodos , Flúor/química , Células HeLa , Humanos , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Fosforilação , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA