Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.722
Filtrar
1.
Nat Commun ; 15(1): 3708, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714662

RESUMO

Cheminformatics-based machine learning (ML) has been employed to determine optimal reaction conditions, including catalyst structures, in the field of synthetic chemistry. However, such ML-focused strategies have remained largely unexplored in the context of catalytic molecular transformations using Lewis-acidic main-group elements, probably due to the absence of a candidate library and effective guidelines (parameters) for the prediction of the activity of main-group elements. Here, the construction of a triarylborane library and its application to an ML-assisted approach for the catalytic reductive alkylation of aniline-derived amino acids and C-terminal-protected peptides with aldehydes and H2 is reported. A combined theoretical and experimental approach identified the optimal borane, i.e., B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2, which exhibits remarkable functional-group compatibility toward aniline derivatives in the presence of 4-methyltetrahydropyran. The present catalytic system generates H2O as the sole byproduct.


Assuntos
Aminoácidos , Compostos de Anilina , Boranos , Peptídeos , Compostos de Anilina/química , Catálise , Aminoácidos/química , Peptídeos/química , Boranos/química , Hidrogênio/química , Simulação por Computador , Oxirredução , Alquilação , Aprendizado de Máquina
2.
PLoS One ; 19(5): e0302972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722925

RESUMO

Electroless nickel plating is a suitable technology for the hydrogen industry because electroless nickel can be mass-produced at a low cost. Investigating in a complex environment where hydrogen permeation and friction/wear work simultaneously is necessary to apply it to hydrogen valves for hydrogen fuel cell vehicles. In this research, the effects of hydrogen permeation on the mechanical characteristics of electroless nickel-plated free-cutting steel (SUM 24L) were investigated. Due to the inherent characteristics of electroless nickel plating, the damage (cracks and delamination of grain) and micro-particles by hydrogen permeation were clearly observed at the grain boundaries and triple junctions. In particular, the cracks grew from grain boundary toward the intergranualr. This is because the grain boundaries and triple junctions are hydrogen permeation pathways and increasing area of the hydrogen partial pressure. As a result, its surface roughness increased by a maximum of two times, and its hardness and adhesion strength decreased by hydrogen permeation. In particular, hydrogen permeation increased the friction coefficient of the electroless nickel-plated layer, and the damage caused by adhesive wear was significantly greater, increasing the wear depth by up to 5.7 times. This is believed to be due to the decreasing in wear resistance of the electroless nickel plating layer damaged by hydrogen permeation. Nevertheless, the Vickers hardness and the friction coefficient of the electroless nickel plating layer were improved by about 3 and 5.6 times, respectively, compared with those of the free-cutting steel. In particular, the electroless nickel-plated specimens with hydrogen embrittlement exhibited significantly better mechanical characteristics and wear resistance than the free-cutting steel.


Assuntos
Hidrogênio , Níquel , Aço , Hidrogênio/química , Níquel/química , Aço/química , Fontes de Energia Elétrica , Propriedades de Superfície , Teste de Materiais
3.
J Chromatogr A ; 1726: 464946, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38744185

RESUMO

On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak.


Assuntos
Hidrocarbonetos , Óleo Mineral , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa/métodos , Óleo Mineral/química , Óleo Mineral/análise , Hidrocarbonetos/análise , Nitrogênio/análise , Hélio/química , Hidrogênio/química , Ionização de Chama/métodos , Gases/química
4.
J Phys Chem Lett ; 15(20): 5382-5389, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38738984

RESUMO

Metronidazole is a prospective hyperpolarized MRI contrast agent with potential hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We demonstrate a pilot procedure for production of ∼30 mM hyperpolarized [15N3]metronidazole in aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with nitrogen-15 polarization exceeding 2.2% on all three 15N sites achieved in less than 2 min. The 15N polarization T1 of ∼12 min is reported for the 15NO2 group at the clinically relevant field of 1.4 T in the aqueous phase, demonstrating a remarkably long lifetime of the hyperpolarized state. The produced aqueous solution of [15N3]metronidazole that contained only ∼100 µM of residual Ir was deemed biocompatible via validation through the MTT colorimetric test for assessing cell metabolic activity using human embryotic kidney HEK293T cells. This low-cost and ultrafast hyperpolarization procedure represents a major advance for the production of a biocompatible HP [15N3]metronidazole (and potentially other hyperpolarized drugs) formulation for MRI sensing applications.


Assuntos
Metronidazol , Água , Humanos , Metronidazol/química , Metronidazol/farmacologia , Células HEK293 , Água/química , Antibacterianos/química , Antibacterianos/farmacologia , Hidrogênio/química , Isótopos de Nitrogênio/química , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química
5.
J Am Chem Soc ; 146(19): 13488-13498, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709095

RESUMO

Self-assembling peptides represent a captivating area of study in nanotechnology and biomaterials. This interest is largely driven by their unique properties and the vast application potential across various fields such as catalytic functions. However, design complexities, including high-dimensional sequence space and structural diversity, pose significant challenges in the study of such systems. In this work, we explored the possibility of self-assembled peptides to catalyze the hydrolysis of hydrosilane for hydrogen production using ab initio calculations and carried out wet-lab experiments to confirm the feasibility of these catalytic reactions under ambient conditions. Further, we delved into the nuanced interplay between sequence, structural conformation, and catalytic activity by combining modeling with experimental techniques such as transmission electron microscopy and nuclear magnetic resonance and proposed a dual mode of the microstructure of the catalytic center. Our results reveal that although research in this area is still at an early stage, the development of self-assembled peptide catalysts for hydrogen production has the potential to provide a more sustainable and efficient alternative to conventional hydrogen production methods. In addition, this work also demonstrates that a computation-driven rational design supplemented by experimental validation is an effective protocol for conducting research on functional self-assembled peptides.


Assuntos
Hidrogênio , Peptídeos , Hidrogênio/química , Catálise , Peptídeos/química , Modelos Moleculares , Hidrólise
6.
ACS Sens ; 9(5): 2653-2661, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38710540

RESUMO

Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO2 films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO2 films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm2 V-1 s-1. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO2. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO2 films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.


Assuntos
Hidrogênio , Compostos de Estanho , Compostos de Estanho/química , Hidrogênio/química , Hidrogênio/análise , Propriedades de Superfície , Gases/análise , Gases/química , Nanoestruturas/química , Semicondutores
7.
Chemosphere ; 358: 142166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685331

RESUMO

The growing demand for sustainable and efficient gas separation technologies has prompted the exploration of advanced materials to enhance the gas permeability and selectivity. Polyethersulfone (PES) membranes are widely used in gas separation, gas upgrading, and clean energy production owing to their environmental friendliness and low cost. However, their gas permeability and selectivity can be further improved for commercial application. This study explored the incorporation of 10 wt % of MIL-68(ln)-NH2 into PES membranes using a phase-inversion approach to enhance gas permeability and selectivity. The morphological, structural, and thermal properties of the resulting MOF/PES membrane were characterized using SEM, AFM, BET, XRD, FTIR, and TGA-DTG. Gas permeation experiments were conducted using different gases (CO2, N2, CH4, and H2) under different heating conditions (20-60 °C) to evaluate the gas permeability and selectivity of the MOF/PES membrane. The results showed that the incorporation of MOF into the mixed matrix membrane (MMMs) led to a 9% increase in porosity, 87% reduction in roughness, and 32% decrease in pore size compared to neat PES membranes. Significant changes in the morphology, crystallinity, and thermal stability were observed, with notable improvements of up to 22%. Moreover, the MOF/PES membrane exhibited high gas permeability (CO2 = 124656, N2 = 83650, CH4 = 159298, and H2 = 427075 Barrer) and selectivity (H2/N2 = 5.7, H2/CO2 = 4, CH4/N2 = 2, and CH4/CO2 = 1.7) for flammable gases. The optimal gas separation performance was observed at 20 °C and 60 °C for H2/N2 and H2/CO2 separation, respectively. These findings demonstrate the potential of MOF-based PES membranes for gas separation applications, particularly in H2 purification.


Assuntos
Hidrogênio , Membranas Artificiais , Polímeros , Hidrogênio/química , Polímeros/química , Sulfonas/química , Porosidade , Permeabilidade , Estruturas Metalorgânicas/química , Gases/química , Metano/química
8.
Water Res ; 256: 121573, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608618

RESUMO

Sulfidated zero valent iron (ZVI) is a popular material for the reductive degradation of halogenated organic pollutants. Simple and economic synthesis of this material is highly demanded. In this study, sulfidated micro/nanostructured ZVI (MNZVI) particles were prepared by simply heating MNZVI particles and sulfur elements (S0) in pure water (50℃). The iron oxides on the surface of MNZVI particles were conducive to sulfidation reaction, indicating the formation of iron-sulphide minerals (FeSx) on the surface of MNZVI particles might not be from the direct reaction of Fe0 with S0 (Fe0 and S0 acted as reductant and oxidant, respectively). As an important reductant, hydrogen atom (H•) can be generated from the reduction of H+ by MNZVI particles and participate in the formation of FeSx. Quenching experiment and cyclic voltammetry analysis proved the existence of H• on the surface of MNZVI particles. DFT calculation found that the potential barrier of H•/S0 and Fe0/S0 were 1.91 and 7.24 eV, respectively, indicating that S0 would preferentially react with H• instead of Fe0. The formed H• can quickly react with S0 to generate hydrogen sulfide (H2S), which can further react with iron oxides such as α-Fe2O3 on the surface of MNZVI particles to form FeSx. In addition, the H2 partial pressure in water significantly affected the amount of H• generated, thereby affecting the sulfidation efficiency. For TCE degradation, as the sulfur loading of sulfidated MNZVI particles increased, the contribution of H• significantly decreased while the contribution of direct electron transfer increased. This study provided new insights into the synthesis mechanism of sulfidated ZVI in water.


Assuntos
Hidrogênio , Ferro , Hidrogênio/química , Ferro/química , Oxirredução
9.
Environ Sci Pollut Res Int ; 31(21): 31632-31645, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648001

RESUMO

Integrating hydrogen with CNG is crucial for carbon neutrality and environmental goals, as it enhances flame temperature, reduces emissions, and combats global warming. This study employs the CHEMKIN tool to examine combustion characteristics, including adiabatic flame temperature, mole fraction, normalization, and production rate, in H2-CNG mixtures under various atmospheric and operating conditions. Blending 50% hydrogen with CNG results in significant changes, including a temperature increase from 2322 to 2344 K when the hydrogen content is at 50%. The introduction of hydrogen causes a notable 30-35% reduction in CH4 mole fraction and a simultaneous 26.6% increase in C-normalized CH4 production. Free radicals play a role in affecting CO2 production, with the normalization of CO species increasing from 0.068 to 0.087. Through NSGA-II multi-objective optimization methods, the study identifies a 50% H2-50% CNG blend as the optimal choice for thermal and environmental performance. The study explores the energy and environmental impacts of incorporating hydrogen into CNG-air combustion, with a specific focus on the effects of 50% H2 blending with CNG. Hydrogen blending benefits from elevated adiabatic flame temperature and increased free radical formation, ultimately leading to emission reduction. These findings firmly establish H2-CNG mixtures as promising environmentally friendly alternatives with superior combustion characteristics. Their potential paves the way for significant progress towards achieving carbon neutrality and combating climate change through cleaner, more efficient fuel options.


Assuntos
Hidrogênio , Gás Natural , Hidrogênio/química , Dióxido de Carbono/química , Metano , Hidrogenação , Aquecimento Global
10.
Nat Commun ; 15(1): 2200, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467655

RESUMO

We present a hydrogen/deuterium exchange workflow coupled to tandem mass spectrometry (HX-MS2) that supports the acquisition of peptide fragment ions alongside their peptide precursors. The approach enables true auto-curation of HX data by mining a rich set of deuterated fragments, generated by collisional-induced dissociation (CID), to simultaneously confirm the peptide ID and authenticate MS1-based deuteration calculations. The high redundancy provided by the fragments supports a confidence assessment of deuterium calculations using a combinatorial strategy. The approach requires data-independent acquisition (DIA) methods that are available on most MS platforms, making the switch to HX-MS2 straightforward. Importantly, we find that HX-DIA enables a proteomics-grade approach and wide-spread applications. Considerable time is saved through auto-curation and complex samples can now be characterized and at higher throughput. We illustrate these advantages in a drug binding analysis of the ultra-large protein kinase DNA-PKcs, isolated directly from mammalian cells.


Assuntos
Medição da Troca de Deutério , Hidrogênio , Animais , Deutério/química , Medição da Troca de Deutério/métodos , Hidrogênio/química , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Mamíferos
11.
Analyst ; 149(8): 2388-2398, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462973

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a versatile bioanalytical technique for protein analysis. Since the reliability of HDX-MS analysis considerably depends on the retention of deuterium labels in the post-labeling workflow, deuterium/hydrogen (D/H) back exchange prevention strategies, including decreasing the pH, temperature, and exposure time to protic sources of the deuterated samples, are widely adopted in the conventional HDX-MS protocol. Herein, an alternative and effective back exchange prevention strategy based on the encapsulation of a millimeter droplet of a labeled peptide solution in a water-immiscible organic solvent (cyclohexane) is proposed. Cyclohexane was used to prevent the undesirable uptake of water by the droplet from the atmospheric vapor through the air-water interface. Using the pepsin digest of deuterated myoglobin, our results show that back exchange kinetics of deuterated peptides is retarded in a millimeter droplet as compared to that in the bulk solution. Performing pepsin digestion directly in a water-in-oil droplet at room temperature (18-21 °C) was found to preserve more deuterium labels than that in the bulk digestion with an ice-water bath. Based on the present findings, it is proposed that keeping deuterated peptides in the form of water-in-oil droplets during the post-labelling workflow will facilitate the preservation of deuterium labels on the peptide backbone and thereby enhance the reliability of the H/D exchange data.


Assuntos
Pepsina A , Água , Deutério/química , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Medição da Troca de Deutério/métodos , Peptídeos/química , Hidrogênio/química , Mioglobina/química , Cicloexanos
12.
J Inorg Biochem ; 254: 112516, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38471287

RESUMO

Tunichlorin, the naturally occurring chlorophyll cofactor containing Ni(II) ion, sets up a golden standard for designing the electrocatalysts for hydrogen evolution reaction (HER) via ß-peripheral modification. Besides the fine-tuning of the porphyrin ß-periphery such as adjusting the aromatics (the saturated level of tetrapyrrole) or installing hydroxyl group (hydrogen bond network) to enhance the catalytic HER efficiency, here we report that ß-fluorination of porphyrin is also an important approach to increase the reactivity of Ni(II) center. Benefiting the previously reported derivatization of ß-fluorinated porpholactones, we constructed a ß-fluorinated tunichlorin mimic (6). Compared with the non-fluorinated analogs (1, 3, and 5), we found that 2, 4, and 6 exhibit significant electrocatalytic HER reactivity acceleration (in terms of turnover frequencies, TOF, s-1) of ca. 37, 170, 133-fold, respectively. Mechanism studies suggested that ß-fluorination negatively shifts the metal complexes' reduction potentials and accelerates the electron transfer process, both contributing to the boosting of HER reaction. Notably, 6 showed an 890-fold increase of TOFs than 1, demonstrating the combining advantages of the of fluorination, hydrogenation, and hydroxylation at porphyrin ß-periphery.


Assuntos
Metaloporfirinas , Porfirinas , Porfirinas/química , Hidrogênio/química , Níquel/química , Halogenação , Catálise
13.
Adv Exp Med Biol ; 3234: 41-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507199

RESUMO

The characterization of a protein complex by mass spectrometry can be conducted at different levels. Initial steps regard the qualitative composition of the complex and subunit identification. After that, quantitative information such as stoichiometric ratios and copy numbers for each subunit in a complex or super-complex is acquired. Peptide-based LC-MS/MS offers a wide number of methods and protocols for the characterization of protein complexes. This chapter concentrates on the applications of peptide-based LC-MS/MS for the qualitative, quantitative, and structural characterization of protein complexes focusing on subunit identification, determination of stoichiometric ratio and number of subunits per complex as well as on cross-linking mass spectrometry and hydrogen/deuterium exchange as methods for the structural investigation of the biological assemblies.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Hidrogênio/química
15.
Bioresour Technol ; 393: 130032, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013038

RESUMO

This study comparatively investigated the exoelectrogenic utilization and hydrogen conversion of major dark fermentation products (acetate, propionate, butyrate, lactate, and ethanol) from organic wastes in dual-chamber microbial electrolysis cells (MECs) alongside their mixture as a simulated dark fermentation effluent (DFE). Acetate-fed MECs showed the highest hydrogen yield (1,465 mL/g chemical oxygen demand), near the theoretical maximum yield, with the highest coulombic efficiency (105%) and maximum current density (7.9 A/m2), followed by lactate-fed, propionate-fed, butyrate-fed, mixture-fed, and ethanol-fed MECs. Meanwhile, the highest hydrogen production rate (514 mL/L anolyte∙d) was observed in ethanol-fed MECs despite their lower coulombic efficiency. Butyrate was the least favored substrate, followed by propionate, leading to significantly delayed startup and reaction. The active anodic microbial community structure varied considerably among the MECs utilizing different substrates, particularly between Geobacter and Acetobacterium dominance. The results highlight the substantial effect of the DFE composition on its utilization and current-producing bioanode development.


Assuntos
Fontes de Energia Bioelétrica , Propionatos , Fermentação , Hidrogênio/química , Fontes de Energia Bioelétrica/microbiologia , Eletrólise/métodos , Acetatos , Butiratos , Lactatos , Etanol
16.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067431

RESUMO

The formation of a peptide fragment ion [c + 2H]+ was examined using ultraviolet matrix-assisted laser desorption/ionization in-source decay mass spectrometry (UV/MALDI-ISD MS). Unusually, an ISD experiment with a hydrogen-abstracting oxidative matrix 4-nitro-1-naphthol (4,1-NNL) resulted in a [c + 2H]+ ion when the analyte peptides contained serine (Ser), threonine (Thr), and/or cysteine (Cys) residues, although the ISD with 4,1-NNL merely resulted in [a]+ and [d]+ ions. The [c + 2H]+ ion observed could be rationalized through intramolecular hydrogen atom transfer (HAT), like a Type-II reaction via a seven-membered conformation involving intramolecular hydrogen bonding (HB) between the active hydrogens (-OH and -SH) of the Ser/Thr/Cys residues and the backbone carbonyl oxygen at the adjacent amino (N)-terminal side residue. The ISD of the Cys-containing peptide resulted in the [c + 2H]+ ions, which originated from cleavage at the backbone N-Cα bonds far from the Cys residue, suggesting that the peptide molecule formed 16- and 22-membered transient conformations in the gas phase. The time-dependent density functional theory (TDDFT) calculations of the model structures of the Ser and Cys residues indicated that the Cys residue did not show a constructive bond interaction between the donor thiol (-SH) and carbonyl oxygen (=CO), while the Ser residue formed a distinct intramolecular HB.


Assuntos
Cisteína , Fragmentos de Peptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cisteína/química , Ligação de Hidrogênio , Serina , Treonina , Peptídeos/química , Íons/química , Hidrogênio/química , Oxigênio
17.
Sci Adv ; 9(51): eadk4950, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117889

RESUMO

The development of a reliable method for asymmetric synthesis of unnatural peptides is highly desirable and particularly challenging. In this study, we present a versatile and efficient approach that uses cobalt-catalyzed diastereoselective umpolung hydrogenation to access noncanonical aryl alanine peptides. This protocol demonstrates good tolerance toward various functional groups, amino acid sequences, and peptide lengths. Moreover, the versatility of this reaction is illustrated by its successful application in the late-stage functionalization and formal synthesis of various representative chiral natural products and pharmaceutical scaffolds. This strategy eliminates the need for synthesizing chiral noncanonical aryl alanines before peptide formation, and the hydrogenation reaction does not result in racemization or epimerization. The underlying mechanism was extensively explored through deuterium labeling, control experiments, HRMS identification, and UV-Vis spectroscopy, which supported a reasonable CoI/CoIII catalytic cycle. Notably, acetic acid and methanol serve as safe and cost-effective hydrogen sources, while indium powder acts as the terminal electron source.


Assuntos
Cobalto , Peptídeos , Hidrogenação , Peptídeos/química , Hidrogênio/química , Alanina , Catálise
18.
J Am Chem Soc ; 145(48): 26068-26074, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983562

RESUMO

[FeFe]-hydrogenases are efficient H2 converting biocatalysts that are inhibited by formaldehyde (HCHO). The molecular mechanism of this inhibition has so far not been experimentally solved. Here, we obtained high-resolution crystal structures of the HCHO-treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum, showing HCHO reacts with the secondary amine base of the catalytic cofactor and the cysteine C299 of the proton transfer pathway which both are very important for catalytic turnover. Kinetic assays via protein film electrochemistry show the CpI variant C299D is significantly less inhibited by HCHO, corroborating the structural results. By combining our data from protein crystallography, site-directed mutagenesis and protein film electrochemistry, a reaction mechanism involving the cofactor's amine base, the thiol group of C299 and HCHO can be deduced. In addition to the specific case of [FeFe]-hydrogenases, our study provides additional insights into the reactions between HCHO and protein molecules.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/química , Prótons , Catálise , Formaldeído/farmacologia , Aminas , Hidrogênio/química , Proteínas Ferro-Enxofre/química
19.
J Org Chem ; 88(21): 15018-15028, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37824795

RESUMO

Metabolic changes often occur long before pathologies manifest and treatment becomes challenging. As key elements of energy metabolism, α-ketocarboxylic acids (α-KCA) are particularly interesting, e.g., as the upregulation of pyruvate to lactate conversion is a hallmark of cancer (Warburg effect). Magnetic resonance imaging with hyperpolarized metabolites has enabled imaging of this effect non-invasively and in vivo, allowing the early detection of cancerous tissue and its treatment. Hyperpolarization by means of dynamic nuclear polarization, however, is complex, slow, and expensive, while available precursors often limit parahydrogen-based alternatives. Here, we report the synthesis for novel 13C, deuterated ketocarboxylic acids, and a much-improved synthesis of 1-13C-vinyl pruvate-d6, arguably the most promising tracer for hyperpolarizing pyruvate using parahydrogen-induced hyperpolarization by side arm hydrogenation. The new synthesis is scalable and provides a high yield of 52%. We elucidated the mechanism of our Pd-catalyzed trans-vinylation reaction. Hydrogenation with parahydrogen allowed us to monitor the addition, which was found to depend on the electron demand of the vinyl ester. Electron-poor α-keto vinyl esters react slower than "normal" alkyl vinyl esters. This synthesis of 13C, deuterated α-ketocarboxylic acids opens up an entirely new class of biomolecules for fast and cost-efficient hyperpolarization with parahydrogen and their use for metabolic imaging.


Assuntos
Hidrogênio , Ácido Pirúvico , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Hidrogênio/química , Ésteres , Hidrogenação , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
20.
J Phys Chem A ; 127(42): 8849-8861, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37827113

RESUMO

The advancement of hybrid mass spectrometric tools as an indirect probe of molecular structure and dynamics relies heavily upon a clear understanding between gas-phase ion reactivity and ion structural characteristics. This work provides new insights into gas-phase ion-neutral reactions of the model peptides (i.e., angiotensin II and bradykinin) on a per-residue basis by integrating hydrogen/deuterium exchange, ion mobility, tandem mass spectrometry, selective vapor binding, and molecular dynamics simulations. By comparing fragmentation patterns with simulated probabilities of vapor uptake, a clear link between gas-phase hydrogen/deuterium exchange and the probabilities of localized vapor association is established. The observed molecular dynamics trends related to the sites and duration of vapor binding track closely with experimental observation. Additionally, the influence of additional charges and structural characteristics on exchange kinetics and ion-neutral cluster formation is examined. These data provide a foundation for the analysis of solvation dynamics of larger, native-like conformations of proteins in the gas phase.


Assuntos
Angiotensina II , Hidrogênio , Hidrogênio/química , Deutério/química , Bradicinina , Medição da Troca de Deutério/métodos , Peptídeos/química , Gases/química , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA