Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.844
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 574, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750105

RESUMO

Metastases are the major cause of cancer-related death, yet, molecular weaknesses that could be exploited to prevent tumor cells spreading are poorly known. Here, we found that perturbing hydrolase transport to lysosomes by blocking either the expression of IGF2R, the main receptor responsible for their trafficking, or GNPT, a transferase involved in the addition of the specific tag recognized by IGF2R, reduces melanoma invasiveness potential. Mechanistically, we demonstrate that the perturbation of this traffic, leads to a compensatory lysosome neo-biogenesis devoided of degradative enzymes. This regulatory loop relies on the stimulation of TFEB transcription factor expression. Interestingly, the inhibition of this transcription factor playing a key role of lysosome production, restores melanomas' invasive potential in the absence of hydrolase transport. These data implicate that targeting hydrolase transport in melanoma could serve to develop new therapies aiming to prevent metastasis by triggering a physiological response stimulating TFEB expression in melanoma.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Hidrolases , Lisossomos , Melanoma , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Lisossomos/metabolismo , Hidrolases/metabolismo , Hidrolases/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Receptor IGF Tipo 2/metabolismo , Receptor IGF Tipo 2/genética , Metástase Neoplásica , Transporte Proteico , Regulação Neoplásica da Expressão Gênica
2.
Sci Rep ; 14(1): 9231, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649439

RESUMO

This study investigated the impact of overexpressing the mitochondrial enzyme Fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) in human osteosarcoma epithelial cells (U2OS) in vitro. While the downregulation or knockdown of FAHD1 has been extensively researched in various cell types, this study aimed to pioneer the exploration of how increased catalytic activity of human FAHD1 isoform 1 (hFAHD1.1) affects human cell metabolism. Our hypothesis posited that elevation in FAHD1 activity would lead to depletion of mitochondrial oxaloacetate levels. This depletion could potentially result in a decrease in the flux of the tricarboxylic acid (TCA) cycle, thereby accompanied by reduced ROS production. In addition to hFAHD1.1 overexpression, stable U2OS cell lines were established overexpressing a catalytically enhanced variant (T192S) and a loss-of-function variant (K123A) of hFAHD1. It is noteworthy that homologs of the T192S variant are present in animals exhibiting increased resistance to oxidative stress and cancer. Our findings demonstrate that heightened activity of the mitochondrial enzyme FAHD1 decreases cellular ROS levels in U2OS cells. However, these results also prompt a series of intriguing questions regarding the potential role of FAHD1 in mitochondrial metabolism and cellular development.


Assuntos
Neoplasias Ósseas , Hidrolases , Mitocôndrias , Osteossarcoma , Espécies Reativas de Oxigênio , Humanos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Mitocôndrias/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Hidrolases/genética , Hidrolases/metabolismo
3.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673749

RESUMO

The anticancer potential of Levilactobacillus brevis KU15176 against the stomach cancer cell line AGS has been reported previously. In this study, we aimed to analyze the genome of L. brevis KU15176 and identify key genes that may have potential anticancer properties. Among potential anticancer molecules, the role of arginine deiminase (ADI) in conferring an antiproliferative functionality was confirmed. In vitro assay against AGS cell line confirmed that recombinant ADI from L. brevis KU15176 (ADI_br, 5 µg/mL), overexpressed in E. coli BL21 (DE3), exerted an inhibitory effect on AGS cell growth, resulting in a 65.32% reduction in cell viability. Moreover, the expression of apoptosis-related genes, such as bax, bad, caspase-7, and caspase-3, as well as the activity of caspase-9 in ADI_br-treated AGS cells, was higher than those in untreated (culture medium-only) cells. The cell-scattering behavior of ADI_br-treated cells showed characteristics of apoptosis. Flow cytometry analyses of AGS cells treated with ADI_br for 24 and 28 h revealed apoptotic rates of 11.87 and 24.09, respectively, indicating the progression of apoptosis in AGS cells after ADI_br treatment. This study highlights the potential of ADI_br as an effective enzyme for anticancer applications.


Assuntos
Apoptose , Proliferação de Células , Hidrolases , Levilactobacillus brevis , Neoplasias Gástricas , Humanos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/farmacologia , Levilactobacillus brevis/genética , Levilactobacillus brevis/enzimologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
4.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542155

RESUMO

Peptidylarginine deiminases (PADs or PADIs) catalyze the conversion of positively charged arginine to neutral citrulline, which alters target protein structure and function. Our previous work established that gonadotropin-releasing hormone agonist (GnRHa) stimulates PAD2-catalyzed histone citrullination to epigenetically regulate gonadotropin gene expression in the gonadotrope-derived LßT2 cell line. However, PADs are also found in the cytoplasm. Given this, we used mass spectrometry (MS) to identify additional non-histone proteins that are citrullinated following GnRHa stimulation and characterized the temporal dynamics of this modification. Our results show that actin and tubulin are citrullinated, which led us to hypothesize that GnRHa might induce their citrullination to modulate cytoskeletal dynamics and architecture. The data show that 10 nM GnRHa induces the citrullination of ß-actin, with elevated levels occurring at 10 min. The level of ß-actin citrullination is reduced in the presence of the pan-PAD inhibitor biphenyl-benzimidazole-Cl-amidine (BB-ClA), which also prevents GnRHa-induced actin reorganization in dispersed murine gonadotrope cells. GnRHa induces the citrullination of ß-tubulin, with elevated levels occurring at 30 min, and this response is attenuated in the presence of PAD inhibition. To examine the functional consequence of ß-tubulin citrullination, we utilized fluorescently tagged end binding protein 1 (EB1-GFP) to track the growing plus end of microtubules (MT) in real time in transfected LßT2 cells. Time-lapse confocal microscopy of EB1-GFP reveals that the MT average lifetime increases following 30 min of GnRHa treatment, but this increase is attenuated by PAD inhibition. Taken together, our data suggest that GnRHa-induced citrullination alters actin reorganization and MT lifetime in gonadotrope cells.


Assuntos
Actinas , Citrulinação , Camundongos , Animais , Actinas/metabolismo , Tubulina (Proteína)/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Citrulina/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hidrolases/metabolismo
5.
Cell Rep ; 43(3): 113942, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489266

RESUMO

Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.


Assuntos
Hidrolases , Processamento de Proteína Pós-Traducional , Camundongos , Animais , Desiminases de Arginina em Proteínas/metabolismo , Proteína-Arginina Desiminase do Tipo 4/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Hidrolases/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Macrófagos/metabolismo
6.
Nat Commun ; 15(1): 2452, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503748

RESUMO

ADP-ribosylation is a reversible post-translational modification involved in various cellular activities. Removal of ADP-ribosylation requires (ADP-ribosyl)hydrolases, with macrodomain enzymes being a major family in this category. The pathogen Legionella pneumophila mediates atypical ubiquitination of host targets using the SidE effector family in a process that involves ubiquitin ADP-ribosylation on arginine 42 as an obligatory step. Here, we show that the Legionella macrodomain effector MavL regulates this pathway by reversing the arginine ADP-ribosylation, likely to minimize potential detrimental effects caused by the modified ubiquitin. We determine the crystal structure of ADP-ribose-bound MavL, providing structural insights into recognition of the ADP-ribosyl group and catalytic mechanism of its removal. Further analyses reveal DUF4804 as a class of MavL-like macrodomain enzymes whose representative members show unique selectivity for mono-ADP-ribosylated arginine residue in synthetic substrates. We find such enzymes are also present in eukaryotes, as exemplified by two previously uncharacterized (ADP-ribosyl)hydrolases in Drosophila melanogaster. Crystal structures of several proteins in this class provide insights into arginine specificity and a shared mode of ADP-ribose interaction distinct from previously characterized macrodomains. Collectively, our study reveals a new regulatory layer of SidE-catalyzed ubiquitination and expands the current understanding of macrodomain enzymes.


Assuntos
Legionella , Ubiquitina , Animais , Ubiquitina/metabolismo , Legionella/metabolismo , Drosophila melanogaster/metabolismo , ADP-Ribosilação , Adenosina Difosfato Ribose/metabolismo , Hidrolases/metabolismo
7.
Microb Cell Fact ; 23(1): 82, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481270

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. RESULTS: In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. CONCLUSION: For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy-Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken together, we showcase L. lactis ADI and the Lc4 strain as promising, potential therapeutic agents with broad applicability.


Assuntos
Citostáticos , Lactococcus lactis , Humanos , Citostáticos/metabolismo , Lactococcus lactis/metabolismo , Hidrolases/metabolismo , Linhagem Celular Tumoral , Arginina
8.
J Biol Chem ; 300(3): 105783, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395309

RESUMO

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.


Assuntos
Burkholderiales , Hidrolases , Polietilenotereftalatos , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Reciclagem , Cinética , Burkholderiales/enzimologia , Modelos Químicos
9.
ChemSusChem ; 17(10): e202301752, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38252197

RESUMO

Biocatalytic degradation of plastic waste is anticipated to play an important role in future recycling systems. However, enzymatic degradation of crystalline poly (ethylene terephthalate) (PET) remains consistently poor. Herein, we employed functional assays to elucidate the molecular underpinnings of this limitation. This included utilizing complementary activity assays to monitor the degradation of PET disks with varying crystallinity (XC), as well as determining enzymatic kinetic parameters for soluble PET fragments. The results indicate that an efficient PET-hydrolase, LCCICCG, operates through an endolytic mode of action, and that its activity is limited by conformational constraints in the PET polymer. Such constraints become more pronounced at high XC values, and this limits the density of productive sites on the PET surface. Endolytic chain-scissions are the dominant reaction type in the initial stage, and this means that little or no soluble organic product are released. However, endolytic cuts gradually and locally promote chain mobility and hence the density of attack sites on the surface. This leads to an upward concave progress curve; a behavior sometimes termed lag-phase kinetics.


Assuntos
Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Cinética , Cristalização , Hidrolases/metabolismo , Hidrolases/química , Biocatálise , Burkholderiales/enzimologia , Hidrólise
10.
Virulence ; 15(1): 2306719, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38251714

RESUMO

The arginine deiminase system (ADS) has been identified in various bacteria and functions to supplement energy production and enhance biological adaptability. The current understanding of the regulatory mechanism of ADS and its effect on bacterial pathogenesis is still limited. Here, we found that the XRE family transcriptional regulator XtrSs negatively affected Streptococcus suis virulence and significantly repressed ADS transcription when the bacteria were incubated in blood. Electrophoretic mobility shift (EMSA) and lacZ fusion assays further showed that XtrSs directly bind to the promoter of ArgR, an acknowledged positive regulator of bacterial ADS, to repress ArgR transcription. Moreover, we provided compelling evidence that S. suis could utilize arginine via ADS to adapt to acid stress, while ΔxtrSs enhanced this acid resistance by upregulating the ADS operon. Moreover, whole ADS-knockout S. suis increased arginine and antimicrobial NO in the infected macrophage cells, decreased intracellular survival, and even caused significant attenuation of bacterial virulence in a mouse infection model, while ΔxtrSs consistently presented the opposite results. Our experiments identified a novel ADS regulatory mechanism in S. suis, whereby XtrSs regulated ADS to modulate NO content in macrophages, promoting S. suis intracellular survival. Meanwhile, our findings provide a new perspective on how Streptococci evade the host's innate immune system.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Camundongos , Hidrolases/genética , Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrófagos , Arginina , Infecções Estreptocócicas/microbiologia , Regulação Bacteriana da Expressão Gênica
11.
Plant Biotechnol J ; 22(5): 1206-1223, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38062934

RESUMO

Rutin, a flavonoid rich in buckwheat, is important for human health and plant resistance to external stresses. The hydrolysis of rutin to quercetin underlies the bitter taste of Tartary buckwheat. In order to identify rutin hydrolysis genes, a 200 genotypes mini-core Tartary buckwheat germplasm resource was re-sequenced with 30-fold coverage depth. By combining the content of the intermediate metabolites of rutin metabolism with genome resequencing data, metabolite genome-wide association analyses (GWAS) eventually identified a glycosyl hydrolase gene FtGH1, which could hydrolyse rutin to quercetin. This function was validated both in Tartary buckwheat overexpression hairy roots and in vitro enzyme activity assays. Mutation of the two key active sites, which were determined by molecular docking and experimentally verified via overexpression in hairy roots and transient expression in tobacco leaves, exhibited abnormal subcellular localization, suggesting functional changes. Sequence analysis revealed that mutation of the FtGH1 promoter in accessions of two haplotypes might be necessary for enzymatic activity. Co-expression analysis and GWAS revealed that FtbHLH165 not only repressed FtGH1 expression, but also increased seed length. This work reveals a potential mechanism behind rutin metabolism, which should provide both theoretical support in the study of flavonoid metabolism and in the molecular breeding of Tartary buckwheat.


Assuntos
Fagopyrum , Rutina , Humanos , Quercetina/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Estudo de Associação Genômica Ampla , Hidrólise , Simulação de Acoplamento Molecular , Multiômica , Flavonoides/metabolismo , Hidrolases/metabolismo
12.
Enzyme Microb Technol ; 173: 110353, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979402

RESUMO

Plastic pollution poses a significant environmental challenge, with poly(ethylene terephthalate) (PET) being a major contributor due to its extensive use in single use applications such as plastic bottles and other packaging material. Enzymatic degradation of PET offers a promising solution for PET recycling, but the enzyme kinetics in relation to the degree of crystallinity (XC) of the PET substrate are poorly understood. In this study, we investigated the hypersensitive enzyme kinetic response on PET at XC from ∼8.5-12% at 50 °C using the benchmark PET hydrolysing enzyme LCCICCG. We observed a substantial reduction in the maximal enzymatic reaction rate (invVmax) with increasing XC, corresponding to a 3-fold reduction in invVmax when the XC of PET increased from 8.6% to 12.2%. The kinetic analysis revealed that the level of the Mobile Amorphous Fraction (XMAF) was a better descriptor for the enzymatic degradation rate response than XC (or (100%-XC)). By continuous monitoring of the enzymatic reaction progress, we quantified the lag phase prolongation in addition to the steady-state kinetic rates (vss) of the reactions and found that the duration of the lag phase of a reaction could be predicted from the vss and XC by multiple linear regression modeling. The linear correlation between the duration of the lag phase and the vss of the enzymatic PET degradation affirmed that the LCCICCG worked via a random/endo-type enzymatic attack pattern. The longer lag phase at increased XC of PET is proposed to be due to increased substrate entanglement density as well as unproductive enzyme binding to the crystalline regions of PET. The findings enhance our understanding of PET enzymatic degradation kinetics and its dependence on substrate composition, i.e., XMAF and XC.


Assuntos
Ácidos Ftálicos , Polietilenotereftalatos , Polietilenotereftalatos/química , Cinética , Etilenos , Hidrolases/metabolismo
13.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139362

RESUMO

The disruption of mitochondrial dynamics has been identified in cardiovascular diseases, including pulmonary hypertension (PH), ischemia-reperfusion injury, heart failure, and cardiomyopathy. Mitofusin 2 (Mfn2) is abundantly expressed in heart and pulmonary vasculature cells at the outer mitochondrial membrane to modulate fusion. Previously, we have reported reduced levels of Mfn2 and fragmented mitochondria in pulmonary arterial endothelial cells (PAECs) isolated from a sheep model of PH induced by pulmonary over-circulation and restoring Mfn2 normalized mitochondrial function. In this study, we assessed the effect of increased expression of Mfn2 on mitochondrial metabolism, bioenergetics, reactive oxygen species production, and mitochondrial membrane potential in control PAECs. Using an adenoviral expression system to overexpress Mfn2 in PAECs and utilizing 13C labeled substrates, we assessed the levels of TCA cycle metabolites. We identified increased pyruvate and lactate production in cells, revealing a glycolytic phenotype (Warburg phenotype). Mfn2 overexpression decreased the mitochondrial ATP production rate, increased the rate of glycolytic ATP production, and disrupted mitochondrial bioenergetics. The increase in glycolysis was linked to increased hypoxia-inducible factor 1α (HIF-1α) protein levels, elevated mitochondrial reactive oxygen species (mt-ROS), and decreased mitochondrial membrane potential. Our data suggest that disrupting the mitochondrial fusion/fission balance to favor hyperfusion leads to a metabolic shift that promotes aerobic glycolysis. Thus, therapies designed to increase mitochondrial fusion should be approached with caution.


Assuntos
Hipertensão Pulmonar , Mitocôndrias , Animais , Trifosfato de Adenosina/metabolismo , Células Endoteliais/metabolismo , Glicólise , Hidrolases/metabolismo , Hipertensão Pulmonar/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ovinos , GTP Fosfo-Hidrolases/metabolismo
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220243, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37778382

RESUMO

Post-translational modifications (PTMs) of proteins are central to epigenetic regulation and cellular signalling, playing an important role in the pathogenesis and progression of numerous diseases. Growing evidence indicates that protein arginine citrullination, catalysed by peptidylarginine deiminases (PADs), is involved in many aspects of molecular and cell biology and is emerging as a potential druggable target in multiple diseases including cancer. However, we are only just beginning to understand the molecular activities of PADs, and their underlying mechanistic details in vivo under both physiological and pathological conditions. Many questions still remain regarding the dynamic cellular functions of citrullination and its interplay with other types of PTMs. This review, therefore, discusses the known functions of PADs with a focus on cancer biology, highlighting the cross-talk between citrullination and other types of PTMs, and how this interplay regulates downstream biological events. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Assuntos
Citrulinação , Neoplasias , Humanos , Hidrolases/metabolismo , Epigênese Genética , Proteínas/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Processamento de Proteína Pós-Traducional
15.
Pharmacol Res Perspect ; 11(6): e1145, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37885335

RESUMO

Daprodustat is an oral small molecule hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor (PHI) approved in Japan and the United States for the treatment of anemia associated with chronic kidney disease. This phase 1, nonrandomized, 2-period, crossover study in 6 healthy men characterized and quantified the metabolites generated after a microtracer IV infusion of 50 µg (125 nCi) [14 C]-daprodustat administered concomitantly with a nonradiolabeled therapeutic dose of a 6-mg daprodustat tablet, followed by a single oral solution dose of 25 mg (62.5 µCi) [14 C]-daprodustat. High-performance liquid chromatography (HPLC) coupled with radioactivity detection (TopCount or AMS) and HPLC-tandem mass spectrometry (HPLC-MSn ) were used for quantitative measurement and structural identification of radioactive metabolites in plasma, urine, feces, and bile. Following oral administration of [14 C]-daprodustat, unchanged daprodustat was the principal circulating drug-related component, accounting for 40% of plasma radioactivity. Predominant oxidative metabolites M2, M3, M4, and M13 individually represented 6-8% of the plasma radioactivity and together accounted for the majority of radioactivity in urine and feces (53% in both matrices; 12% and 41% of dose, respectively). Unchanged daprodustat was not detected in urine and was only 0.7% of total radioactivity in feces (<0.5% of dose), with the remainder of the dose accounted for by oxidative metabolites. The radio-metabolic profile of duodenal bile following IV infusion of [14 C]-daprodustat was similar to that observed in feces after oral administration. The data suggested that oral daprodustat was extensively absorbed, cleared exclusively by oxidative metabolism, and eliminated via hepatobiliary (primary) and urinary (secondary) excretion.


Assuntos
Barbitúricos , Bile , Humanos , Masculino , Bile/metabolismo , Estudos Cross-Over , Hidrolases/metabolismo
16.
Mol Metab ; 78: 101822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838014

RESUMO

OBJECTIVE: Pro-inflammatory polarization of adipose tissue macrophages (ATMs) plays a critical role in the pathogenesis of obesity-associated chronic inflammation. However, little is known about the role of lipids in the regulation of ATMs polarity and inflammation in response to metabolic stress. Deletion of α/ß-hydrolase domain-containing 6 (ABHD6), a monoacylglycerol (MAG) hydrolase, has been shown to protect against diet-induced obesity and insulin resistance. METHODS: Here we investigated the immunometabolic role of macrophage ABHD6 in response to nutrient excess using whole-body ABHD6-KO mice and human and murine macrophage cell-lines treated with KT203, a selective and potent pharmacological ABHD6 inhibitor. RESULTS: KO mice on high-fat diet showed lower susceptibility to systemic diet-induced inflammation. Moreover, in the setting of overnutrition, stromal vascular cells from gonadal fat of KO vs. control mice contained lower number of M1 macrophages and exhibited enhanced levels of metabolically activated macrophages (MMe) and M2 markers, oxygen consumption, and interleukin-6 (IL-6) release. Likewise, under in vitro nutri-stress condition, inhibition of ABHD6 in MMe-polarized macrophages attenuated the expression and release of pro-inflammatory cytokines and M1 markers and induced the upregulation of lipid metabolism genes. ABHD6-inhibited MMe macrophages showed elevated levels of peroxisome proliferator-activated receptors (PPARs) and 2-MAG species. Notably, among different MAG species, only 2-MAG treatment led to increased levels of PPAR target genes in MMe macrophages. CONCLUSIONS: Collectively, our findings identify ABHD6 as a key component of pro-inflammatory macrophage activation in response to excess nutrition and implicate an endogenous macrophage lipolysis/ABHD6/2-MAG/PPARs cascade, as a lipid signaling and immunometabolic pathway, which favors the anti-inflammatory polarization of ATMs in obesity.


Assuntos
Monoglicerídeos , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Animais , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Monoglicerídeos/metabolismo , Camundongos Obesos , Hidrolases/genética , Hidrolases/metabolismo , Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios , Dieta Hiperlipídica/efeitos adversos , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo
17.
Nanoscale ; 15(36): 15008-15026, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37668423

RESUMO

Discovering tools to prevent cancer progression requires understanding the fundamental differences between normal and cancer cells. More than a decade ago, atomic force microscopy (AFM) revealed cancer cells' softer body compared to their healthy counterparts. Here, we investigated the mechanism underlying the softening of cancerous cells in comparison with their healthy counterparts based on AFM high resolution stiffness tomography and 3D confocal microscopy. We showed microtubules (MTs) network in invasive ductal carcinoma cell cytoskeleton is basally located and segmented for around 400 nm from the cell periphery. Additionally, the cytoskeleton scaffolding protein plectin exhibits a mis-localization from the cytoplasm to the surface of cells in the carcinoma which justifies the dissociation of the MT network from the cell's cortex. Furthermore, the assessment of MTs' persistence length using a worm-like-chain (WLC) model in high resolution AFM images showed lower persistence length of the single MTs in ductal carcinoma compared to that in the normal state. Overall, these tuned mechanics support the invasive cells to ascertain more flexibility under compressive forces in small deformations. These data provide new insights into the structural origins of cancer aids in progression.


Assuntos
Carcinoma Ductal , Humanos , Carcinoma Ductal/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Hidrolases/metabolismo , Microtúbulos/metabolismo
18.
Cell Mol Life Sci ; 80(8): 231, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501008

RESUMO

Mitochondrial dynamics are critical for maintaining mitochondrial morphology and function during cardiac ischemia and reperfusion (I/R). The immunoproteasome complex is an inducible isoform of the proteasome that plays a key role in modulating inflammation and some cardiovascular diseases, but the importance of immunoproteasome catalytic subunit ß2i (also known as LMP10 or MECL1) in regulating mitochondrial dynamics and cardiac I/R injury is largely unknown. Here, using ß2i-knockout (KO) mice and rAAV9-ß2i-injected mice, we discovered that ß2i expression and its trypsin-like activity were significantly attenuated in the mouse I/R myocardium and in patients with myocardial infarction (MI). Moreover, ß2i-KO mice exhibited greatly enhanced I/R-mediated cardiac dysfunction, infarct size, myocyte apoptosis and oxidative stress accompanied by excessive mitochondrial fission due to Mfn1/2 and Drp1 imbalance. Conversely, cardiac overexpression of ß2i in mice injected with recombinant adeno-associated virus 9 (rAAV9)-ß2i ameliorated cardiac I/R injury. Mechanistically, I/R injury reduced ß2i expression and activity, which increased the expression of the E3 ligase Parkin protein and promoted the degradation of mitofusin 1/2 (Mfn1/2), leading to excessive mitochondrial fission. In conclusion, our data suggest for the first time that ß2i exerts a protective role against cardiac I/R injury and that increasing ß2i expression may be a new therapeutic option for cardiac ischemic disease in clinical practice. Graphical abstract showing how the immunoproteasome subunit ß2i ameliorates myocardial I/R injury by regulating Parkin-Mfn1/2-mediated mitochondrial fusion.


Assuntos
Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Dinâmica Mitocondrial/fisiologia , Coração , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Apoptose , Camundongos Knockout , Hidrolases/metabolismo , Miócitos Cardíacos/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
19.
J Biol Chem ; 299(9): 105077, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482279

RESUMO

Pathogenic parasites of the Trichomonas genus are causative agents of sexually transmitted diseases affecting millions of individuals worldwide and whose outcome may include stillbirths and enhanced cancer risks and susceptibility to HIV infection. Trichomonas vaginalis relies on imported purine and pyrimidine nucleosides and nucleobases for survival, since it lacks the enzymatic activities necessary for de novo biosynthesis. Here we show that T. vaginalis additionally lacks homologues of the bacterial or mammalian enzymes required for the synthesis of the nicotinamide ring, a crucial component in the redox cofactors NAD+ and NADP. Moreover, we show that a yet fully uncharacterized T. vaginalis protein homologous to bacterial and protozoan nucleoside hydrolases is active as a pyrimidine nucleosidase but shows the highest specificity toward the NAD+ metabolite nicotinamide riboside. Crystal structures of the trichomonal riboside hydrolase in different states reveals novel intermediates along the nucleoside hydrolase-catalyzed hydrolytic reaction, including an unexpected asymmetry in the homotetrameric assembly. The active site structure explains the broad specificity toward different ribosides and offers precise insights for the engineering of specific inhibitors that may simultaneously target different essential pathways in the parasite.


Assuntos
Hidrolases , Parasitos , Trichomonas vaginalis , Animais , Hidrolases/química , Hidrolases/metabolismo , NAD/metabolismo , Niacinamida/metabolismo , Trichomonas vaginalis/enzimologia , Cristalografia por Raios X , Especificidade por Substrato , Estrutura Terciária de Proteína , Modelos Moleculares , Ligação Proteica
20.
Biochem Biophys Res Commun ; 674: 183-189, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37450958

RESUMO

Mitochondrial one-carbon metabolism is crucial for embryonic development and tumorigenesis, as it supplies one-carbon units necessary for nucleotide synthesis and rapid cell proliferation. However, its contribution to adult tissue homeostasis remains largely unknown. To examine its role in adult tissue homeostasis, we specifically investigated mammary gland development during pregnancy, as it involves heightened cell proliferation. We discovered that MTHFD2, a mitochondrial one-carbon metabolic enzyme, is expressed in both luminal and basal/myoepithelial cell layers, with upregulated expression during pregnancy. Using the mouse mammary tumor virus (MMTV)-Cre recombinase system, we generated mice with a specific mutation of Mthfd2 in mammary epithelial cells. While the mutant mice were capable of properly nurturing their offspring, the pregnancy-induced expansion of mammary glands was significantly delayed. This indicates that MTHFD2 contributes to the rapid development of mammary glands during pregnancy. Our findings shed light on the role of mitochondrial one-carbon metabolism in facilitating rapid cell proliferation, even in the context of the adult tissue homeostasis.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Metilenotetra-Hidrofolato Desidrogenase (NADP) , Animais , Feminino , Camundongos , Gravidez , Proliferação de Células , Células Epiteliais/metabolismo , Hidrolases/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos Transgênicos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA