Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 615
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(5): e0229023, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619267

RESUMO

The linear polymer polyphosphate (poly-P) is present across all three domains of life and serves diverse physiological functions. The enzyme polyphosphate kinase (Ppk) is responsible for poly-P synthesis, whereas poly-P degradation is carried out by the enzyme exopolyphosphatase (Ppx). In many Lactobacillaceae, the Ppk-encoding gene (ppk) is found clustered together with two genes encoding putative exopolyphosphatases (ppx1 and ppx2) each having different domain compositions, with the gene order ppx1-ppk-ppx2. However, the specific function of these ppx genes remains unexplored. An in-frame deletion of ppx1 in Lacticaseibacillus paracasei BL23 resulted in bacteria unable to accumulate poly-P, whereas the disruption of ppx2 did not affect poly-P synthesis. The expression of ppk was not altered in the Δppx1 strain, and poly-P synthesis in this strain was only restored by expressing ppx1 in trans. Moreover, no poly-P synthesis was observed when ppk was expressed from a plasmid in the Δppx1 strain. Purified Ppx2 exhibited in vitro exopolyphosphatase activity, whereas no in vitro enzymatic activity could be demonstrated for Ppx1. This observation corresponds with the absence in Ppx1 of conserved motifs essential for catalysis found in characterized exopolyphosphatases. Furthermore, assays with purified Ppk and Ppx1 evidenced that Ppx1 enhanced Ppk activity. These results demonstrate that Ppx1 is essential for poly-P synthesis in Lc. paracasei and have unveiled, for the first time, an unexpected role of Ppx1 exopolyphosphatase in poly-P synthesis.IMPORTANCEPoly-P is a pivotal molecular player in bacteria, participating in a diverse array of processes ranging from stress resilience to pathogenesis while also serving as a functional component in probiotic bacteria. The synthesis of poly-P is tightly regulated, but the underlying mechanisms remain incompletely elucidated. Our study sheds light on the distinctive role played by the two exopolyphosphatases (Ppx) found in the Lactobacillaceae bacterial group, of relevance in food and health. This particular group is noteworthy for possessing two Ppx enzymes, supposedly involved in poly-P degradation. Remarkably, our investigation uncovers an unprecedented function of Ppx1 in Lacticaseibacillus paracasei, where its absence leads to the total cessation of poly-P synthesis, paralleling the impact observed upon eliminating the poly-P forming enzyme, poly-P kinase. Unlike the anticipated role as a conventional exopolyphosphatase, Ppx1 demonstrates an unexpected function. Our results added a layer of complexity to our understanding of poly-P dynamics in bacteria.


Assuntos
Hidrolases Anidrido Ácido , Proteínas de Bactérias , Polifosfatos , Hidrolases Anidrido Ácido/metabolismo , Hidrolases Anidrido Ácido/genética , Polifosfatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética
2.
Int J Biol Macromol ; 262(Pt 2): 129796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311144

RESUMO

Rapid adaptation of metabolic capabilities is crucial for bacterial survival in habitats with fluctuating nutrient availability. In such conditions, the bacterial stringent response is a central regulatory mechanism activated by nutrient starvation or other stressors. This response is primarily controlled by exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GPPA) enzymes. To gain further insight into these enzymes, the high-resolution crystal structure of PPX from Zymomonas mobilis (ZmPPX) was determined at 1.8 Å. The phosphatase activity of PPX was strictly dependent on the presence of divalent metal cations. Notably, the structure of ZmPPX revealed the presence of two magnesium ions in the active site center, which is atypical compared to other PPX structures where only one divalent ion is observed. ZmPPX exists as a dimer in solution and belongs to the "long" PPX group consisting of four domains. Remarkably, the dimer configuration exhibits a substantial and deep aqueduct with positive potential along its interface. This aqueduct appears to extend towards the active site region, suggesting that this positively charged aqueduct could potentially serve as a binding site for polyP.


Assuntos
Magnésio , Zymomonas , Zymomonas/metabolismo , Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/metabolismo , Bactérias/metabolismo , Íons
3.
Adv Exp Med Biol ; 1423: 289-301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525057

RESUMO

Current hypothesis of Alzheimer's disease (AD) postulates that amyloid ß (Aß) deposition in the brain causes tau inclusion in neurons and leads to cognitive decline. The discovery of the genetic association between triggering receptor expressed on myeloid cells 2 (TREM2) with increased AD risk points to a causal link between microglia and AD pathogenesis, and revealed a crucial role of TREM2-dependent clustering of microglia around amyloid plaques that prevents Aß toxicity to facilitate tau deposition near the plaques. Here we review the physiological and pathological roles of another AD risk gene expressed in microglia, inositol polyphosphate-5-polyphosphatase D (INPP5D), which encodes a phosphoinositide phosphatase. Evidence suggests that its risk polymorphisms alter the expression level and/or function of INPP5D, while concomitantly affecting tau levels in cerebrospinal fluids. In ß-amyloidosis mice, INPP5D was upregulated upon Aß deposition and negatively regulated the microglial clustering toward amyloid plaques. INPP5D seems to exert its function by acting antagonistically at downstream of the TREM2 signaling pathway, suggesting that it is a novel regulator of the protective barrier by microglia. Further studies to elucidate INPP5D's role in AD may help in developing new therapeutic targets for AD treatment.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Hidrolases Anidrido Ácido/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Microglia/patologia , Placa Amiloide/patologia
4.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982687

RESUMO

The MRE11, RAD50, and NBN genes encode for the nuclear MRN protein complex, which senses the DNA double strand breaks and initiates the DNA repair. The MRN complex also participates in the activation of ATM kinase, which coordinates DNA repair with the p53-dependent cell cycle checkpoint arrest. Carriers of homozygous germline pathogenic variants in the MRN complex genes or compound heterozygotes develop phenotypically distinct rare autosomal recessive syndromes characterized by chromosomal instability and neurological symptoms. Heterozygous germline alterations in the MRN complex genes have been associated with a poorly-specified predisposition to various cancer types. Somatic alterations in the MRN complex genes may represent valuable predictive and prognostic biomarkers in cancer patients. MRN complex genes have been targeted in several next-generation sequencing panels for cancer and neurological disorders, but interpretation of the identified alterations is challenging due to the complexity of MRN complex function in the DNA damage response. In this review, we outline the structural characteristics of the MRE11, RAD50 and NBN proteins, the assembly and functions of the MRN complex from the perspective of clinical interpretation of germline and somatic alterations in the MRE11, RAD50 and NBN genes.


Assuntos
Proteínas de Ciclo Celular , Proteínas Supressoras de Tumor , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Supressoras de Tumor/genética , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
5.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766695

RESUMO

In previous studies, we have identified the tumor suppressor proteins Fhit (fragile histidine triad) and Nit1 (Nitrilase1) as interaction partners of ß-catenin both acting as repressors of the canonical Wnt pathway. Interestingly, in D. melanogaster and C. elegans these proteins are expressed as NitFhit fusion proteins. According to the Rosetta Stone hypothesis, if proteins are expressed as fusion proteins in one organism and as single proteins in others, the latter should interact physically and show common signaling function. Here, we tested this hypothesis and provide the first biochemical evidence for a direct association between Nit1 and Fhit. In addition, size exclusion chromatography of purified recombinant human Nit1 showed a tetrameric structure as also previously observed for the NitFhit Rosetta Stone fusion protein Nft-1 in C. elegans. Finally, in line with the Rosetta Stone hypothesis we identified Hsp60 and Ubc9 as other common interaction partners of Nit1 and Fhit. The interaction of Nit1 and Fhit may affect their enzymatic activities as well as interaction with other binding partners.


Assuntos
Caenorhabditis elegans , Proteínas Supressoras de Tumor , Animais , Humanos , Hidrolases Anidrido Ácido/metabolismo , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Hidrolases , Proteínas Recombinantes
6.
Cancer Lett ; 557: 216078, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36736531

RESUMO

For treatment of glioblastoma (GBM), temozolomide (TMZ) and radiotherapy (RT) exert antitumor effects by inducing DNA double-strand breaks (DSBs), mainly via futile DNA mismatch repair (MMR) and inducing apoptosis. Here, we provide evidence that RBBP4 modulates glioblastoma resistance to chemotherapy and radiotherapy by recruiting transcription factors and epigenetic regulators that bind to their promoters to regulate the expression of the Mre11-Rad50-NBS1(MRN) complex and the level of DNA-DSB repair, which are closely associated with recovery from TMZ- and radiotherapy-induced DNA damage in U87MG and LN229 glioblastoma cells, which have negative MGMT expression. Disruption of RBBP4 induced GBM cell DNA damage and apoptosis in response to TMZ and radiotherapy and enhanced radiotherapy and chemotherapy sensitivity by the independent pathway of MGMT. These results displayed a possible chemo-radioresistant mechanism in MGMT negative GBM. In addition, the RBBP4-MRN complex regulation axis may provide an interesting target for developing therapy-sensitizing strategies for GBM.


Assuntos
Quebras de DNA de Cadeia Dupla , Glioblastoma , Humanos , Glioblastoma/patologia , Enzimas Reparadoras do DNA/genética , Proteína Homóloga a MRE11/genética , Reparo do DNA , Temozolomida/uso terapêutico , Fatores de Transcrição/genética , DNA , Quimiorradioterapia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Hidrolases Anidrido Ácido/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo
7.
FEBS Lett ; 597(11): 1447-1461, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36694267

RESUMO

Polyphosphate (polyP) is a conserved polymer of inorganic phosphate residues that can reach thousands of moieties in length. PolyP has been implicated in cellular functions ranging from energy and phosphate homeostasis to cell signalling in eukaryotes from yeast to humans. Despite the interest in the role of polyP as a signalling molecule, the spatiotemporal regulation of polyP itself remains poorly understood. This knowledge gap limits our ability to understand how polyP impacts the physiology of normal and diseased cells and how this might be exploited in a therapeutic context. Polyphosphatases, enzymes that degrade polyP to generate shorter chains and free inorganic phosphate are ideally positioned to mediate polyP dynamics. However, little is known about how the activities of these enzymes are linked to specific cellular functions and how they might be regulated. Here, we provide an in-depth overview of polyphosphatase enzymes in budding yeast, which has served as a workhorse for polyP research, and in mammalian cells where the enzymes that make and degrade polyP have remained elusive. We identify critical open questions in both systems and propose strategies to guide future work.


Assuntos
Hidrolases Anidrido Ácido , Saccharomyces cerevisiae , Animais , Humanos , Hidrolases Anidrido Ácido/metabolismo , Saccharomyces cerevisiae/metabolismo , Células Eucarióticas/metabolismo , Polifosfatos/metabolismo , Mamíferos/metabolismo
8.
J Biol Chem ; 299(1): 102752, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436562

RESUMO

The MRE11-RAD50-NBS1 (MRN) complex plays essential roles in the cellular response to DNA double-strand breaks (DSBs), which are the most cytotoxic DNA lesions, and is a target of various modifications and controls. Recently, lysine 48-linked ubiquitination of NBS1, resulting in premature disassembly of the MRN complex from DSB sites, was observed in cells lacking RECQL4 helicase activity. However, the role and control of this ubiquitination during the DSB response in cells with intact RECQL4 remain unknown. Here, we showed that USP2 counteracts this ubiquitination and stabilizes the MRN complex during the DSB response. By screening deubiquitinases that increase the stability of the MRN complex in RECQL4-deficient cells, USP2 was identified as a new deubiquitinase that acts at DSB sites to counteract NBS1 ubiquitination. We determined that USP2 is recruited to DSB sites in a manner dependent on ATM, a major checkpoint kinase against DSBs, and stably interacts with NBS1 and RECQL4 in immunoprecipitation experiments. Phosphorylation of two critical residues in the N terminus of USP2 by ATM is required for its recruitment to DSBs and its interaction with RECQL4. While inactivation of USP2 alone does not substantially influence the DSB response, we found that inactivation of USP2 and USP28, another deubiquitinase influencing NBS1 ubiquitination, results in premature disassembly of the MRN complex from DSB sites as well as defects in ATM activation and homologous recombination repair abilities. These results suggest that deubiquitinases counteracting NBS1 ubiquitination are essential for the stable maintenance of the MRN complex and proper cellular response to DSBs.


Assuntos
Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Enzimas Desubiquitinantes/genética , DNA , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteína Homóloga a MRE11/genética , Ubiquitinação , Humanos , Linhagem Celular Tumoral , Ubiquitina Tiolesterase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidrolases Anidrido Ácido/metabolismo
9.
J Pept Sci ; 29(3): e3458, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36264037

RESUMO

Intracellular dinucleoside polyphosphates (Npn Ns) have been known for decades but the functional role remains enigmatic. Diadenosine triphosphate (Ap3 A) is one of the most prominent examples, and its intercellular concentration was shown to increase upon cellular stress. By employment of previously reported Ap3 A-based photoaffinity-labeling probes (PALPs) in chemical proteomics, we investigated the Ap3 A interactome in the human lung carcinoma cell line H1299. The cell line is deficient of the fragile histidine triade (Fhit) protein, a hydrolase of Ap3 A and tumor suppressor. Overall, the number of identified potential interaction partners was significantly lower than in the previously investigated HEK293T cell line. Gene ontology term analysis revealed that the identified proteins participate in similar pathways as for HEK293T, but the percentage of proteins involved in RNA-related processes is higher for H1299. The obtained results highlight similarities and differences of the Ap3 A interaction network in different cell lines and give further indications regarding the importance of the presence of Fhit.


Assuntos
Fosfatos de Dinucleosídeos , Neoplasias , Humanos , Fosfatos de Dinucleosídeos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Guanosina Pentafosfato , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Células HEK293 , Proteômica
10.
Cell Death Differ ; 30(2): 488-499, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36477079

RESUMO

Cisplatin and other platinum-based anticancer agents are among the most widely used chemotherapy drugs in the treatment of different types of cancer. However, it is common to find patients who respond well to treatment at first but later relapse due to the appearance of resistance to cisplatin. Among the mechanisms responsible for this phenomenon is the increase in DNA damage repair. Here, we elucidate the effect of cisplatin on the MRN (MRE11-RAD50-NBS1) DNA damage sensor complex. We found that the tumor suppressor FBXW7 is a key factor in controlling the turnover of the MRN complex by inducing its degradation through lysosomes. Inhibition of lysosomal enzymes allowed the detection of the association of FBXW7-dependent ubiquitylated MRN with LC3 and the autophagy adaptor p62/SQSTM1 and the localization of MRN in lysosomes. Furthermore, cisplatin-induced cell death increased MRN degradation, suggesting that this complex is one of the targets that favor cell death. These findings open the possibility of using the induction of the degradation of the MRN complex after genotoxic damage as a potential therapeutic strategy to eliminate tumor cells.


Assuntos
Cisplatino , Enzimas Reparadoras do DNA , Humanos , Cisplatino/farmacologia , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína Homóloga a MRE11 , Enzimas Reparadoras do DNA/genética , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidrolases Anidrido Ácido/metabolismo
11.
Oncogene ; 42(8): 586-600, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36550358

RESUMO

The MRE11-RAD50-NBS1 (MRN) complex plays a crucial role in DNA double-strand breaks (DSBs) sensing and initiation of signaling cascades. However, the precise mechanisms by which the recruitment of MRN complex is regulated has yet to be elucidated. Here, we identified TRIpartite motif-containing protein 24 (TRIM24), a protein considered as an oncogene overexpressed in cancers, as a novel signaling molecule in response to DSBs. TRIM24 is essential for DSBs-induced recruitment of MRN complex and activation of downstream signaling. In the absence of TRIM24, MRN mediated DSBs repair is remarkably diminished. Mechanistically, TRIM24 is phosphorylated by ataxia-telangiectasia mutated (ATM) and then recruited to DSBs sites, facilitating the accumulation of the MRN components to chromatin. Depletion of TRIM24 sensitizes human hepatocellular carcinoma cells to cancer therapy agent-induced apoptosis and retards the tumor growth in a subcutaneous xenograft tumor mouse model. Together, our data reveal a novel function of TRIM24 in response to DSBs through regulating the MRN complex, which suggests that TRIM24 may be a potential therapeutic molecular target for tumor treatment.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Animais , Humanos , Camundongos , Hidrolases Anidrido Ácido/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
12.
J Biol Chem ; 298(11): 102438, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36049521

RESUMO

Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metaloproteínas , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Polifosfatos , Metaloproteínas/química , Hidrolases Anidrido Ácido/metabolismo
13.
Turk J Med Sci ; 52(1): 124-130, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36161592

RESUMO

BACKGROUND: The main aim of the study is to assess expression levels of CDH1, FHIT, PTEN, and TTPAL genes in tumors and peripheral bloods of colorectal cancer patients in staged I-IV. METHODS: Gene expression analysis of related genes were performed for tumor tissues and peripheral blood samples of 51 colorectal cancer patients and colon tissues and blood samples of 5 healthy individuals. The real-time-PCR reaction method was used for the analysis. RESULTS: Alteration of mRNA levels of related genes in tumor tissues of colorectal cancer cases was determined compared to control tissues. GAPDH and TBP were used for the normalization. While the mRNA levels of CDH1 decreased, the mRNA level of the FHIT and TTPAL genes increased in the tumor tissues. There was no PTEN gene expression difference in tumor tissues (total). The mRNA levels of the CDH1 and PTEN genes were increased while the mRNA levels of FHIT and TTPAL genes decreased in the blood (total). T he mRNA levels of the CDH1 gene decreased at each stage (I-IV) in the tumor tissues and increased at each stage (I-IV) in the blood. T he PTEN gene mRNA levels at each stage were controversial. The mRNA levels of the FHIT gene increased at stage I-II-III, decreased at stage IV in the tissues and decreased at each stage (I-IV) in the blood. The mRNA levels of TTPAL gene increased at each stage (I-IV) in the tissues and decreased at each stage (I-IV) in the blood.


Assuntos
Hidrolases Anidrido Ácido , Neoplasias Colorretais , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Antígenos CD/genética , Caderinas/genética , Neoplasias Colorretais/patologia , Humanos , Proteínas de Neoplasias , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro/genética
14.
Mol Cell ; 82(18): 3513-3522.e6, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987200

RESUMO

DNA double-strand breaks (DSBs) threaten genome stability and are linked to tumorigenesis in humans. Repair of DSBs requires the removal of attached proteins and hairpins through a poorly understood but physiologically critical endonuclease activity by the Mre11-Rad50 complex. Here, we report cryoelectron microscopy (cryo-EM) structures of the bacterial Mre11-Rad50 homolog SbcCD bound to a protein-blocked DNA end and a DNA hairpin. The structures reveal that Mre11-Rad50 bends internal DNA for endonucleolytic cleavage and show how internal DNA, DNA ends, and hairpins are processed through a similar ATP-regulated conformational state. Furthermore, Mre11-Rad50 is loaded onto blocked DNA ends with Mre11 pointing away from the block, explaining the distinct biochemistries of 3' → 5' exonucleolytic and endonucleolytic incision through the way Mre11-Rad50 interacts with diverse DNA ends. In summary, our results unify Mre11-Rad50's enigmatic nuclease diversity within a single structural framework and reveal how blocked DNA ends and hairpins are processed.


Assuntos
Proteínas de Ligação a DNA , DNA , Proteína Homóloga a MRE11/química , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Humanos , Conformação de Ácido Nucleico
15.
ACS Sens ; 7(9): 2732-2742, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-35981239

RESUMO

Fluorescence-guided cancer surgery can dramatically improve recurrence rates and postoperative quality of life of patients by accurately distinguishing the boundary between normal and cancer tissues during surgery, thereby minimizing excision of normal tissue. One promising target in early stage cancer is fragile histidine triad (FHIT), a cancer suppressor protein with dinucleoside triphosphate hydrolase activity. In this study, we have developed fluorescence probes containing a nucleoside diphosphate moiety, which dramatically improves the reactivity and specificity for FHIT, and a moderately lipophilic ester moiety to increase the membrane permeability. The ester moiety is cleaved by ubiquitous intracellular esterases, and then, FHIT in the cells specifically cleaves nucleoside monophosphate. The remaining phosphate moiety is rapidly cleaved by ubiquitous intracellular phosphatases to release the fluorescent dye. We confirmed that this probe can detect FHIT activity in living cells. A comprehensive evaluation of the effects of various ester moieties revealed that probes with CLogP = 5-7 showed good membrane permeability and were good substrates of the target enzyme; these findings may be helpful in the rational design of other multiple phosphate-containing probes targeting intracellular enzymes.


Assuntos
Hidrolases Anidrido Ácido , Histidina , Hidrolases Anidrido Ácido/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Difosfatos , Esterases , Ésteres , Fluorescência , Corantes Fluorescentes , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Neoplasias/metabolismo , Nucleosídeos , Monoéster Fosfórico Hidrolases , Qualidade de Vida
16.
J Am Chem Soc ; 144(19): 8613-8623, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35522782

RESUMO

The tumor suppressor protein fragile histidine triad (Fhit) is known to be associated with genomic instability and apoptosis. The tumor-suppressive function of Fhit depends on the interaction with the alarmone diadenosine triphosphate (Ap3A), a noncanonical nucleotide whose concentration increases upon cellular stress. How the Fhit-Ap3A complex exerts its signaling function is unknown. Here, guided by a chemical proteomics approach employing a synthetic stable Fhit-Ap3A complex, we found that the Fhit-Ap3A complex, but not Fhit or Ap3A alone, impedes translation. Our findings provide a mechanistic model in which Fhit translocates from the nucleolus into the cytosol upon stress to form an Fhit-Ap3A complex. The Fhit-Ap3A complex impedes translation both in vitro and in vivo, resulting in reduced cell viability. Overall, our findings provide a mechanistic model by which the tumor suppressor Fhit collaborates with the alarmone Ap3A to regulate cellular proliferation.


Assuntos
Hidrolases Anidrido Ácido , Proteínas de Neoplasias , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Guanosina Pentafosfato , Proteínas de Neoplasias/metabolismo , Proteômica , Transdução de Sinais
17.
Nat Commun ; 13(1): 2374, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501303

RESUMO

The conserved Mre11-Rad50 complex is crucial for the detection, signaling, end tethering and processing of DNA double-strand breaks. While it is known that Mre11-Rad50 foci formation at DNA lesions accompanies repair, the underlying molecular assembly mechanisms and functional implications remained unclear. Combining pathway reconstitution in electron microscopy, biochemical assays and genetic studies, we show that S. cerevisiae Mre11-Rad50 with or without Xrs2 forms higher-order assemblies in solution and on DNA. Rad50 mediates such oligomerization, and mutations in a conserved Rad50 beta-sheet enhance or disrupt oligomerization. We demonstrate that Mre11-Rad50-Xrs2 oligomerization facilitates foci formation, DNA damage signaling, repair, and telomere maintenance in vivo. Mre11-Rad50 oligomerization does not affect its exonuclease activity but drives endonucleolytic cleavage at multiple sites on the 5'-DNA strand near double-strand breaks. Interestingly, mutations in the human RAD50 beta-sheet are linked to hereditary cancer predisposition and our findings might provide insights into their potential role in chemoresistance.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Hidrolases Anidrido Ácido/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Int J Biol Markers ; 37(2): 158-169, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35254116

RESUMO

BACKGROUND: Fragile histidine triad (FHIT) is a strong tumor suppressor gene, and cells deficient in FHIT are prone to acquiring cancer-promoting mutations. Due to its location, deletions within FHIT are common in cancer. Over 50% of cancers show loss of FHIT expression. However, to date, expression levels, gene regulatory networks, prognostic value, and target prediction of FHIT in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) have not been fully reported. Therefore, systematic analysis of FHIT expression, gene regulatory network, prognostic value, and targeted prediction in patients with LUAD and LUSC has important guiding significance, providing new therapeutic targets and strategies for clinical treatment of lung cancer to further improve the therapeutic effect of lung cancer. METHODS: Multiple free online databases were used for the abovementioned analysis in this study, including cBioPortal, TRRUST, Human Protein Atlas, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. RESULTS: FHIT was upregulated in patients with LUAD, and downregulated in patients with LUSC. Genetic alterations of FHIT were found in patients with LUAD (7%), and LUSC (10%). The promoter methylation of FHIT was lower in patients with LUAD and LUSC. FHIT expression significantly correlated with LUSC pathological stages. Furthermore, patients with LUAD and LUSC having low FHIT expression levels had a longer survival than those having high FHIT expression levels. FHIT and its neighboring genes (the 50 most frequently altered neighboring genes of FHIT) functioned in the regulation of protein kinase and DNA binding in patients with LUAD, as well as cell channels and membrane potential in patients with LUSC. Gene ontology enrichment analysis revealed that the functions of FHIT and its neighboring genes are mainly related to disordered domain-specific binding, protein kinase binding, and ion gated channel activity in patients with LUAD, as well as calcium ion binding and intracellular ligand-gated ion channel activity in patients with LUSC. Transcription factor targets of FHIT and its neighboring genes in patients with lung cancer were found: USF1, SOX6, USF2, SIRT1, VHL, LEF1, EZH2, TP53, HDAC1, ESR1, EGR1, YY1, MYC, RELA, NFKB1, and E2F1 in LUAD; and HDAC1, DNMT1, and E2F1 in LUSC. We further explored the FHIT-associated kinase (PRKCQ, AURKB and ATM in LUAD as well as PLK3 in LUSC) and FHIT-associated miRNA targets (MIR-188, MIR-323, and MIR-518A-2 in LUAD). Furthermore, the following genes had the strongest correlation with FHIT expression in patients with lung cancer: NICN1, HEMK1, and BDH2 in LUAD, and ZMAT1, TTC21A, and NICN1 in LUSC. FHIT expression was positively associated with immune cell infiltration (B cell) in patients with LUAD, as well as B cell, CD8 + T, CD4 + T cells, macrophages, and dendritic cells in patients with LUSC. Nevertheless, FHIT expression was negatively associated with CD8 + T cells and neutrophils in patients with LUAD. CONCLUSIONS: The expression, gene regulatory network, prognostic value and targeted prediction of FHIT in patients with LUAD and LUSC were systematically analyzed and revealed in this study, thereby laying a foundation for further research on the role of FHIT in LUAD and LUSC occurrence. This study provides new LUAD and LUSC therapeutic targets and prognostic biomarkers as a reference for fundamental and clinical research.


Assuntos
Hidrolases Anidrido Ácido , Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Proteínas de Neoplasias , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Hidroxibutirato Desidrogenase/genética , Hidroxibutirato Desidrogenase/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Prognóstico
19.
Microbiol Spectr ; 10(1): e0034521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196785

RESUMO

Polyphosphate (polyP) accumulation is an important trait of microorganisms. Implication of polyP accumulating bacteria (PAB) in enhanced biological phosphate removal, heavy metal sequestration, and dissolution of dental enamel is well studied. Phosphorous (P) accumulated within microbial biomass also regulates labile P in soil; however, abundance and diversity of the PAB in soil is still unexplored. Present study investigated the genetic and functional diversity of PAB in rhizosphere soil. Here, we report the abundance of Pseudomonas spp. as high PAB in soil, suggesting their contribution to global P cycling. Additional subset analysis of functional genes i.e., polyphosphate kinase (ppk) and exopolyphosphatase (ppx) in all PAB, indicates their significance in bacterial growth and metabolism. Distribution of functional genes in phylogenetic tree represent a more biologically realistic discrimination for the two genes. Distribution of ppx gene disclosed its phylogenetic conservation at species level, however, clustering of ppk gene of similar species in different clades illustrated its environmental condition mediated modifications. Selected PAB showed tolerance to abiotic stress and strong correlation with plant growth promotary (PGP) traits viz. phosphate solubilization, auxin and siderophore production. Interaction of PAB with A. thaliana enhanced the growth and phosphate status of the plant under salinity stress, suggestive of their importance in P cycling and stress alleviation. IMPORTANCE Study discovered the abundance of Pseudomonas genera as a high phosphate accumulator in soil. The presence of functional genes (polyphosphate kinase [ppk] and exopolyphosphatase [ppx]) in all PAB depicts their importance in polyphosphate metabolism in bacteria. Genetic and functional diversity reveals conservation of the ppx gene at species level. Furthermore, we found a positive correlation between PAB and plant growth promotary traits, stress tolerance, and salinity stress alleviation in A. thaliana.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Polifosfatos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Microbiologia do Solo , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Variação Genética , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Filogenia , Pseudomonas/classificação , Pseudomonas/enzimologia , Rizosfera , Sideróforos/biossíntese , Solo/química
20.
Virology ; 565: 82-95, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34768112

RESUMO

Adenovirus (Ad) early region 4 (E4) mutants activate cellular DNA damage responses (DDRs) that include non-homologous end joining (NHEJ) pathways mediated by the DNA repair kinase DNA-PK and its associated factors Ku70/Ku86. NHEJ results in concatenation of the viral linear double-stranded DNA genome and inhibits a productive infection. E4 proteins normally prevent activation of cellular DDRs in wild-type Ad type 5 (Ad5) infections, thereby promoting efficient viral growth. The purpose of this study was to evaluate the factors that govern DNA-PK activation during adenovirus infection. Our data indicate that viral DNA replication promotes DNA-PK activation, which is required for genome concatenation by NHEJ. Although the Mre11/Rad50/Nbs1 (MRN) DDR sensor complex is not required for DNA-PK activation, Mre11 is important for recruitment of the NHEJ factor Ku86 to viral replication centers. Our study addresses the interplay between the DNA-PK and MRN complexes during viral genome concatenation by NHEJ.


Assuntos
Infecções por Adenoviridae/metabolismo , Infecções por Adenoviridae/virologia , Adenoviridae/metabolismo , Reparo do DNA por Junção de Extremidades , Replicação do DNA , DNA Viral/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Proteínas E4 de Adenovirus/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Chlorocebus aethiops , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Genoma Viral , Células HEK293 , Células HeLa , Humanos , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA