Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
J Pharmacol Exp Ther ; 375(3): 478-487, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020194

RESUMO

The lysyl hydroxylases (procollagen-lysine 5-dioxygenases) PLOD1, PLOD2, and PLOD3 have been proposed as pathogenic mediators of stunted lung development in bronchopulmonary dysplasia (BPD), a common complication of preterm birth. In affected infants, pulmonary oxygen toxicity stunts lung development. Mice lacking Plod1 exhibit 15% mortality, and mice lacking Plod2 or Plod3 exhibit embryonic lethality. Therefore, to address any pathogenic role of lysyl hydroxylases in stunted lung development associated with BPD, minoxidil was administered to newborn mice in an oxygen toxicity-based BPD animal model. Minoxidil, which has attracted much interest in the management of systemic hypertension and androgenetic alopecia, can also be used to reduce lysyl hydroxylase activity in cultured cells. An in vivo pilot dosing study established 50 mg⋅kg-1⋅day-1 as the maximum possible minoxidil dose for intraperitoneal administration in newborn mouse pups. When administered at 50 mg⋅kg-1⋅day-1 to newborn mouse pups, minoxidil was detected in the lungs but did not impact lysine hydroxylation, collagen crosslinking, or lysyl hydroxylase expression in the lungs. Consistent with no impact on mouse lung extracellular matrix structures, minoxidil administration did not alter the course of normal or stunted lung development in newborn mice. At doses of up to 50 mg⋅kg⋅day-1, pharmacologically active concentrations of minoxidil were not achieved in neonatal mouse lung tissue; thus, minoxidil cannot be used to attenuate lysyl hydroxylase expression or activity during mouse lung development. These data also highlight the need for new and specific lysyl hydroxylase inhibitors. SIGNIFICANCE STATEMENT: Extracellular matrix crosslinking is mediated by lysyl hydroxylases, which generate hydroxylated lysyl residues in procollagen peptides. Deregulated collagen crosslinking is a pathogenic component of a spectrum of diseases, and thus, there is interest in validating lysyl hydroxylases as pathogenic mediators of disease and potential "druggable" targets. Minoxidil, administered at the maximum possible dose, did not inhibit lysyl hydroxylation in newborn mouse lungs, suggesting that minoxidil was unlikely to be of use in studies that pharmacologically target lysyl hydroxylation in vivo.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/crescimento & desenvolvimento , Minoxidil/farmacologia , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Animais , Citosol/efeitos dos fármacos , Citosol/metabolismo , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hidroxilação/efeitos dos fármacos , Lisina/metabolismo , Camundongos , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , RNA Mensageiro/genética
2.
Sci Rep ; 10(1): 8650, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457455

RESUMO

The human 2-oxoglutarate dependent oxygenase aspartate/asparagine-ß-hydroxylase (AspH) catalyses the hydroxylation of Asp/Asn-residues in epidermal growth factor-like domains (EGFDs). AspH is upregulated on the surface of malign cancer cells; increased AspH levels correlate with tumour invasiveness. Due to a lack of efficient assays to monitor the activity of isolated AspH, there are few reports of studies aimed at identifying small-molecule AspH inhibitors. Recently, it was reported that AspH substrates have a non-canonical EGFD disulfide pattern. Here we report that a stable synthetic thioether mimic of AspH substrates can be employed in solid phase extraction mass spectrometry based high-throughput AspH inhibition assays which are of excellent robustness, as indicated by high Z'-factors and good signal-to-noise/background ratios. The AspH inhibition assay was applied to screen approximately 1500 bioactive small-molecules, including natural products and active pharmaceutical ingredients of approved human therapeutics. Potent AspH inhibitors were identified from both compound classes. Our AspH inhibition assay should enable the development of potent and selective small-molecule AspH inhibitors and contribute towards the development of safer inhibitors for other 2OG oxygenases, e.g. screens of the hypoxia-inducible factor prolyl-hydroxylase inhibitors revealed that vadadustat inhibits AspH with moderate potency.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/farmacologia , Oxigenases de Função Mista/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Hidroxilação/efeitos dos fármacos , Espectrometria de Massas , Oxigenases de Função Mista/química , Neoplasias/enzimologia , Neoplasias/patologia , Piridinas/química , Piridinas/farmacologia
3.
Oncogene ; 39(2): 414-427, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31477841

RESUMO

Drug resistance is a major problem limiting the efficacy of chemotherapy in cancer treatment, and the hypoxia-induced stabilization of HIF-1α plays a role in this process. HIF-1α overexpression has been observed in a variety of human cancers, including colorectal cancer (CRC). Therefore, targeting HIF-1α is a promising strategy for overcoming chemoresistance to enhance the efficacy of chemotherapies in CRC. Here, we show that DNMT inhibitors can induce HIF-1α degradation to overcome oxaliplatin resistance and enhance anti-CRC therapy. We found that a low-toxicity DNMT inhibitor, zebularine, could downregulate HIF-1α expression and overcome hypoxia-induced oxaliplatin resistance in HCT116 cells and showed efficacy in HCT116 xenograft models and AOM/DSS-induced CRC mouse models. Zebularine could induce the degradation of HIF-1α protein through hydroxylation. LC-MS analysis showed a decrease in succinate in various CRC cells under hypoxia and in colon tissues of AOM/DSS-induced CRC mice. The decrease was reversed by zebularine. Tumor angiogenesis was also reduced by zebularine. Furthermore, zebularine potentiated the anticancer effect of oxaliplatin in AOM/DSS-induced CRC models. This finding provides a new strategy in which an increase in HIF-1α hydroxylation could overcome oxaliplatin resistance to enhance anti-CRC therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Terapia de Alvo Molecular , Oxaliplatina/farmacologia , Animais , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Citidina/análogos & derivados , Citidina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Hidroxilação/efeitos dos fármacos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Oxaliplatina/uso terapêutico , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Steroid Biochem Mol Biol ; 195: 105484, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31574299

RESUMO

Vitamin D deficiency has been associated with increased risk for aggressive prostate cancer (PCa). Prostate epithelium has a unique metabolism compared to other tissues. Normal prostate exhibits low levels of mitochondrial respiration and there is a metabolic switch to increased oxidative phosphorylation in PCa. 25-hydroxyvitamin D (25(OH)D) is the major circulating form of vitamin D and is used clinically to determine vitamin D status. Activation of 25(OH)D to the transcriptionally active form, 1,25(OH)2D occurs via a reduction-oxidation (redox) reaction within the mitochondria that is catalyzed by the P450 enzyme, CYP27B1. We sought to determine if hydroxylation of 25(OH)D by CYP27B1 contributes to non-genomic activity of vitamin D by altering the redox-dependent state of the mitochondria in benign prostate epithelial cells. Exposure to 25(OH)D produced a transient pro-oxidant effect and change in mitochondrial membrane potential that was dependent on CYP27B1. Extended exposure ultimately suppressed mitochondrial respiration, consistent with a protective effect of 25(OH)D in supporting benign prostate metabolism. To model physiologically relevant changes in vitamin D, cells were cultured in constant 25(OH)D then changed to high or deficient concentrations. This model also incurred a biphasic effect with a pro-oxidant shift after short exposure followed by decreased respiration after 16 h. Several genes involved in redox cycling and Mitochondrial Health were regulated by 25(OH)D in these cells. These results indicate a secondary non-genomic mechanism for vitamin D to contribute to prostate cell health by supporting normal mitochondrial respiration.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Mitocôndrias/efeitos dos fármacos , Próstata/citologia , Próstata/metabolismo , Vitamina D/farmacologia , Vitaminas/farmacologia , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Genômica , Humanos , Hidroxilação/efeitos dos fármacos , Masculino , Mitocôndrias/metabolismo , RNA Interferente Pequeno/genética , Receptores de Calcitriol/genética
5.
Mater Sci Eng C Mater Biol Appl ; 104: 109945, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499967

RESUMO

The toxicity of C60(OH)30, C70(OH)30, and C120O(OH)n fullerenols, prepared by a new original method, has been studied. This method allowed us to obtain high-purity fullerenols and eliminate the risks of synthesis of preparations containing insoluble fractions contaminated with impurities such as fullerenes not completely reacted by hydroxylation. All fullerenols were detected inside cultured cells. The MTT assay as well as the analysis of apoptosis and cell cycle showed that С60(ОН)30 and С70(OH)30 are non-toxic for cultured V79 и HeLa cells at concentrations exceeding physiological levels by an order of magnitude. С120O(OH)n caused low toxicity. Studies in Drosophila melanogaster showed that any preparations used did not result in a decreased lifespan or in behavior abnormalities in flies.


Assuntos
Fulerenos/química , Fulerenos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Cricetulus , Drosophila melanogaster/efeitos dos fármacos , Células HeLa , Humanos , Hidroxilação/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 116(34): 16997-17006, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31375625

RESUMO

Despite the discovery of the oxygen-sensitive regulation of HIFα by the von Hippel-Lindau (VHL) protein, the mechanisms underlying the complex genotype/phenotype correlations in VHL disease remain unknown. Some germline VHL mutations cause familial pheochromocytoma and encode proteins that preserve their ability to down-regulate HIFα. While type 1, 2A, and 2B VHL mutants are defective in regulating HIFα, type 2C mutants encode proteins that preserve their ability to down-regulate HIFα. Here, we identified an oxygen-sensitive function of VHL that is abolished by VHL type 2C mutations. We found that BIM-EL, a proapoptotic BH3-only protein, is hydroxylated by EglN3 and subsequently bound by VHL. VHL mutants fail to bind hydroxylated BIM-EL, regardless of whether they have the ability to bind hydroxylated HIFα or not. VHL binding inhibits BIM-EL phosphorylation by extracellular signal-related kinase (ERK) on serine 69. This causes BIM-EL to escape from proteasomal degradation, allowing it to enhance EglN3-induced apoptosis. BIM-EL was rapidly degraded in cells lacking wild-type VHL or in which EglN3 was inactivated genetically or by lack of oxygen, leading to enhanced cell survival and chemotherapy resistance. Combination therapy using ERK inhibitors, however, resensitizes VHL- and EglN3-deficient cells that are otherwise cisplatin-resistant.


Assuntos
Neoplasias das Glândulas Suprarrenais , Proteína 11 Semelhante a Bcl-2/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mutação , Feocromocitoma , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteína 11 Semelhante a Bcl-2/genética , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Hidroxilação/efeitos dos fármacos , Hidroxilação/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Células PC12 , Feocromocitoma/tratamento farmacológico , Feocromocitoma/metabolismo , Feocromocitoma/patologia , Proteólise/efeitos dos fármacos , Ratos , Proteína Supressora de Tumor Von Hippel-Lindau/genética
7.
Drug Dev Res ; 80(7): 948-957, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31318064

RESUMO

Diclofenac is one of the world's largest selling nonsteroidal anti-inflammatory drugs. The major concerns related to oral diclofenac therapy are gastrointestinal and cardiovascular side effects for which explicitly emphasis has been given to use it at lowest effective dose for the shortest duration. On the other hand, IS01957 has been designed under the purview of anti-inflammatory drug and bioavailability enhancer. IS01957 have dual action on inflammation and nociception with acceptable safety profile. In the quest for a suitable combination with improved therapeutic efficacy and better tolerability, pharmacodynamic and pharmacokinetic interaction studies were performed for diclofenac with or without IS01957 in mice model. Results showed that IS01957 enhanced both anti-inflammatory effect and plasma concentration of diclofenac upon concomitant oral administration. These interesting results steered to enumerate the possible role of IS01957 towards diclofenac pharmacokinetics through a panel of mechanistic investigations: (a) BCRP dependent ATPase activity was markedly interfered by IS01957; (b) IS01957 increased the intestinal permeability of diclofenac in the single pass in-situ perfusion model; (c) IS01957 inhibited the CYP2C9 catalyzed diclofenac 4-hydroxylation in human liver microsomes. Immunoblotting results suggest that diclofenac action was improved significantly in the presence of IS01957 involving MAPK pathways. Finally acute gastric damage study showed that IS01957 in combination with diclofenac was better to improve the desired PGE2 level as compare to alone. In nutshell, IS01957 have potential to augment the efficacy of diclofenac through pharmacokinetic modulation. Further investigations are required for dose reduction of diclofenac to combat its liabilities before going into clinical setting.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Diclofenaco/farmacocinética , Morfolinas/farmacologia , Propionatos/farmacologia , Adenosina Trifosfatases/antagonistas & inibidores , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Citocromo P-450 CYP2C9/metabolismo , Diclofenaco/administração & dosagem , Dinoprostona/metabolismo , Interações Medicamentosas , Sinergismo Farmacológico , Feminino , Mucosa Gástrica/metabolismo , Hidroxilação/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Morfolinas/administração & dosagem , Permeabilidade/efeitos dos fármacos , Ratos
8.
Biopharm Drug Dispos ; 40(7): 225-233, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31215040

RESUMO

The study examined the effect of doxorubicin (DOX) on the hepatic expression of CYP2C and its activity for metabolizing tolbutamide (TB), a specific CYP2C substrate, in rats and whether the pharmacokinetics of tolbutamide were altered by doxorubicin exposure. The expression level of hepatic CYP2C11 was depressed 1 day after doxorubicin administration (day 1), and this effect on CYP2C11 was augmented on day 4. However, the expression level of hepatic CYP2C6 remained unchanged. The activity of tolbutamide 4-hydroxylation in hepatic microsomes was decreased with time following doxorubicin administration. Regarding the enzyme kinetic parameters for tolbutamide 4-hydroxylation on day 4, the maximum velocity (Vmax ) was significantly lower in the DOX group than that in the control group, while the Michaelis constant (Km ) was unaffected. On pharmacokinetic examination, the total clearance (CLtot ) of tolbutamide on day 4 was increased, despite the decreased metabolic capacity. On the other hand, the serum unbound fraction (fu ) of tolbutamide was elevated with a reduced serum albumin concentration in the DOX group. Contrary to CLtot , CLtot /fu , a parameter approximated to the hepatic intrinsic clearance of unbound tolbutamide, was estimated to be significantly reduced in the DOX group. These findings indicate that the metabolic capacity of CYP2C11 in the liver is depressed time-dependently by down-regulation after doxorubicin exposure in rats, and that the decreased enzyme activity of TB 4-hydroxylation in hepatic microsomes reflects the pharmacokinetic change of unbound tolbutamide, not total tolbutamide, in serum.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Hipoglicemiantes/farmacocinética , Tolbutamida/farmacocinética , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450/metabolismo , Interações Medicamentosas , Hidroxilação/efeitos dos fármacos , Hipoglicemiantes/sangue , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos Sprague-Dawley , Albumina Sérica/metabolismo , Esteroide 16-alfa-Hidroxilase/metabolismo , Tolbutamida/sangue
9.
Int J Biochem Cell Biol ; 110: 111-121, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858141

RESUMO

The extrahepatic CYP enzymes, CYP1B1 and CYP2U1, have been predominantly found in both astrocytes and brain microvessels. We investigated the alteration in the production of hydroxyeicosatetraenoic acids (HETEs) from arachidonic acid (AA) mainly via CYP1B1 and CYP2U1 by glutamate. CYP1B1 and CYP2U1 mRNA levels were dose-dependently induced by glutamate in human U251 glioma cells and hCMEC/D3 blood-brain barrier cells. The increases in the CYP1B1 and CYP2U1 mRNA levels and the binding of CREB to CYP1B1 and CYP2U1 promoters following glutamate treatment were attenuated by mGlu5 receptor antagonist. The mRNA levels of CYP1B1 and CYP2U1 were increased in the cortex, hippocampus, and cerebellum from adult rats that received a subcutaneous injection of monosodium l-glutamate at 1, 3, 5, and 7 days of age; meanwhile, the protein levels of CYP1B1 and CYP2U1 in the astrocytes were induced by glutamate. Glutamate treatment significantly increased the production of 5-HETE, 8-HETE, 11-HETE, and 20-HETE in the cortex and cerebellum. These data suggested that the neuron-astrocyte reciprocal signaling can change the CYP-mediated AA metabolism (e.g. EETs and HETEs) in astrocytes via its specific receptor.


Assuntos
Ácido Araquidônico/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Família 2 do Citocromo P450/metabolismo , Ácido Glutâmico/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxieicosatetraenoicos/biossíntese , Hidroxilação/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
10.
Nature ; 568(7750): 117-121, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30814728

RESUMO

The extracellular matrix is a major component of the local environment-that is, the niche-that determines cell behaviour1. During metastatic growth, cancer cells shape the extracellular matrix of the metastatic niche by hydroxylating collagen to promote their own metastatic growth2,3. However, only particular nutrients might support the ability of cancer cells to hydroxylate collagen, because nutrients dictate which enzymatic reactions are active in cancer cells4,5. Here we show that breast cancer cells rely on the nutrient pyruvate to drive collagen-based remodelling of the extracellular matrix in the lung metastatic niche. Specifically, we discovered that pyruvate uptake induces the production of α-ketoglutarate. This metabolite in turn activates collagen hydroxylation by increasing the activity of the enzyme collagen prolyl-4-hydroxylase (P4HA). Inhibition of pyruvate metabolism was sufficient to impair collagen hydroxylation and consequently the growth of breast-cancer-derived lung metastases in different mouse models. In summary, we provide a mechanistic understanding of the link between collagen remodelling and the nutrient environment in the metastatic niche.


Assuntos
Neoplasias da Mama/patologia , Metástase Neoplásica/patologia , Ácido Pirúvico/metabolismo , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Colágeno/química , Colágeno/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Humanos , Hidroxilação/efeitos dos fármacos , Ácidos Cetoglutáricos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Ácido Pirúvico/farmacologia , Microambiente Tumoral/efeitos dos fármacos
11.
Xenobiotica ; 49(12): 1470-1477, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30714842

RESUMO

1. 5-Fluorouracil (5-FU) is a pyrimidine derivative widely used for the treatment of cancer. In this study, we investigated the effects of 5-FU on the protein expression of hepatic CYP3A and their enzyme activity for metabolizing midazolam (MDZ), a typical substrate of CYP3A, in rat liver microsomes. We also examined the pharmacokinetic behavior of intravenously administered MDZ in rats treated with 5-FU (120 mg/kg, ip). 2. 5-FU was shown to induce hepatic CYP3A2 protein 2 days after administration without changing the expression of CYP3A1/3A23. However, affinity of 5-FU-inducible CYP3A protein to MDZ for its 4- and 1'-hydroxylation was decreased. Furthermore, the susceptibility of MDZ hydroxylation activity to a CYP3A inhibitor differed between the control and 5-FU groups. 3. Pharmacokinetic analysis of the MDZ disposition demonstrated no significant differences in the total clearance (CLtot) and elimination rate constant (ke) between the control and 5-FU-treated rats. Lack of alteration in the metabolic clearance of MDZ may be attributable to the induction of CYP3A protein with reduced affinity for the substrate of CYP3A enzymes. 4. Our findings provide novel information regarding the manifestation of inductive and interfering actions of 5-FU toward hepatic CYP3A to help in assessing the pharmacokinetics of CYP3A substrate drugs.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Fluoruracila/farmacocinética , Fígado/metabolismo , Midazolam/farmacocinética , Administração Intravenosa , Animais , Peso Corporal/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP3A/farmacologia , Hidroxilação/efeitos dos fármacos , Inativação Metabólica , Cinética , Fígado/efeitos dos fármacos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Midazolam/administração & dosagem , Midazolam/sangue , Tamanho do Órgão/efeitos dos fármacos , Ratos Sprague-Dawley
12.
Biotechnol J ; 14(3): e1700706, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29877623

RESUMO

Phosphorylation and hydroxylation are post translational modifications (PTMs) rarely observed or reported in biopharmaceuticals. While developing a stable CHO cell line and a fed-batch process to produce a biosimilar dulaglutide, a GLP1-Fc fusion protein, the authors identified both serine phosphorylation and lysine hydroxylation. While the innovator dulaglutide contains less than 2% phosphorylated and only ≈6.5% hydroxylated GLP1-Fc molecules, the clones that the authors obtained in the platform fed-batch process have ≈20% phosphorylated and 25% hydroxylated GLP1-Fc molecules. An optimization of the nutrient feed is carried out, which successfully reduces the phosphorylation level to ≈3% and the hydroxylation level to 9.4% using the lead clone. Four components, cysteine, vitamin C, ferric citrate, and niacinamide, are found to be important in reducing the phosphorylation level. An increase in vitamin C, ferric citrate, and niacinamide feeding rates and a decrease in the cysteine feeding rate helps to reduce the phosphorylation level. Niacinamide and cysteine are also found to be critical for hydroxylation. An increase in the niacinamide and cysteine feeding rate is beneficial in reducing the hydroxylation level. This study is the first to report the impact of nutrient components on serine phosphorylation and lysine hydroxylation in biopharmaceuticals.


Assuntos
Peptídeos Semelhantes ao Glucagon/análogos & derivados , Hidroxilação/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas/metabolismo , Nutrientes/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Animais , Células CHO , Cricetulus , Meios de Cultura/metabolismo , Peptídeos Semelhantes ao Glucagon/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
13.
Nucleic Acids Res ; 47(3): 1268-1277, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30517733

RESUMO

In addition to DNA cytosine methylation (5-methyl-2'-deoxycytidine, m5dC), DNA adenine methylation (N6-methyl-2'-deoxyadenosine, m6dA) is another DNA modification that has been discovered in eukaryotes. Recent studies demonstrated that the content and distribution of m6dA in genomic DNA of vertebrates and mammals exhibit dynamic regulation, indicating m6dA may function as a potential epigenetic mark in DNA of eukaryotes besides m5dC. Whether m6dA undergoes the further oxidation in a similar way to m5dC remains elusive. Here, we reported the existence of a new DNA modification, N6-hydroxymethyl-2'-deoxyadenosine (hm6dA), in genomic DNA of mammalian cells and tissues. We found that hm6dA can be formed from the hydroxylation of m6dA by the Fe2+- and 2-oxoglutarate-dependent ALKBH1 protein in genomic DNA of mammals. In addition, the content of hm6dA exhibited significant increase in lung carcinoma tissues. The increased expression of ALKBH1 in lung carcinoma tissues may contribute to the increase of hm6dA in DNA. Taken together, our study reported the existence and formation of hm6dA in genomic DNA of mammals.


Assuntos
Adenina/metabolismo , Metilação de DNA/genética , DNA/genética , Epigênese Genética , Adenina/análogos & derivados , Adenina/síntese química , Adenina/farmacologia , Animais , DNA/efeitos dos fármacos , DNA/metabolismo , Genoma/efeitos dos fármacos , Células HeLa , Humanos , Hidroxilação/efeitos dos fármacos , Mamíferos
14.
J Pharm Biomed Anal ; 157: 59-74, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29772457

RESUMO

Palbociclib (PAB) is a CDK4/6 inhibitor and U. S Food and Drug Administration (FDA) granted regular approval for the treatment of hormone receptor (HR) positive, metastatic breast cancer in combination with an aromatase inhibitor in postmenopausal women. Metabolite identification is a crucial aspect during drug discovery and development as the drug metabolites may be pharmacologically active or possess toxicological activity. As there are no reports on the metabolism studies of the PAB, the present study focused on investigation of the in vitro and in vivo metabolic fate of the drug. The in vitro metabolism studies were carried out by using microsomes (HLM and RLM) and S9 fractions (Human and rat). The in vivo metabolism of the drug was studied by administration of the PAB orally to the Sprague-Dawley rats followed by analysis of urine, faeces and plasma samples. The sample preparation includes simple protein precipitation (PP) followed by solid phase extraction (SPE). The extracted samples were analyzed by ultrahigh-performance liquid chromatography-quadruple time-of-flight tandem mass spectrometry (UHPLC/Q-TOF/MS/MS). A total of 14 metabolites were detected in in vivo matrices. The PAB was metabolized via hydroxylation, oxidation, sulphation, N-dealkylation, acetylation and carbonylation pathways. A few of the metabolites were also detected in in vitro samples. Metabolite identification and characterization were performed by using UHPLC/Q-TOF/MS/MS in combination with HRMS data. To identify the toxicity potential of these metabolites, in silico toxicity assessment was carried out using TOPKAT and DEREK softwares.


Assuntos
Piperazinas/química , Piperazinas/metabolismo , Piridinas/química , Piridinas/metabolismo , Acetilação/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Simulação por Computador , Remoção de Radical Alquila/efeitos dos fármacos , Fezes/química , Humanos , Hidroxilação/efeitos dos fármacos , Masculino , Microssomos Hepáticos/metabolismo , Oxirredução/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Software , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
15.
Talanta ; 181: 172-181, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29426497

RESUMO

Hydroxyl radical (.OH) is highly reactive, and therefore very short-lived. Finding new means to accurately detect .OH, and testing the ability of known .OH scavengers to neutralize them in human biological fluids would leverage our ability to more effectively counter oxidative (.OH) stress-mediated damage in human diseases. To achieve this, we pursued the evaluation of secondary products resulting from .OH attack, using a detection system based on Fenton reaction-mediated D-phenylalanine (D-Phe) hydroxylation. This reaction in turn generates o-tyrosine (o-tyr), m-tyrosine (m-tyr) and p-tyrosine (p-tyr). Here, these isomers were separated by HPLC, equipped with fluorescence detectors due to the natural fluorescence of these hydrotyrosines. By extension, we found that, adding radical scavengers competed with D-Phe on .OH attack, thus allowing to determine the .OH quenching capacity of a given compound expressed as inhibition ratio percent (IR%). Using a kinetic approach, we then tested the .OH scavenging capacity (OHSC) of well-known antioxidant molecules. In a test tube, N,N'-dimethylthiourea (DMTU) was the most efficient scavenger as compared to Trolox and N-Acethyl-L-cysteine, with NAC being the less effective. OHSC assay was then applied to biological fluid samples as seminal plasma, human serum from normal subjects and patients undergoing hemodialysis (HD), colostrum and human breast milk from mothers that received daily doses of 30g of chocolate (70% cocoa) during pregnancy. We found that a daily administration of dark chocolate during pregnancy almost doubled OHSC levels in breast milk (1.88 ± 0.12 times, p < 0.01). Furthermore, HD treatment determined a significant reduction of serum OHSC concentration (54.63 ± 2.82%, p < 0.001). Our results provide evidence that Fenton reaction-mediated D-Phe hydroxylation is a suitable method for routine and non-invasive evaluation of .OH detection and its scavenging in human biological fluids.


Assuntos
Sequestradores de Radicais Livres/análise , Radical Hidroxila/análise , Fenilalanina/química , Tirosina/química , Adulto , Chocolate , Dieta , Feminino , Sequestradores de Radicais Livres/sangue , Sequestradores de Radicais Livres/farmacologia , Humanos , Peróxido de Hidrogênio/química , Radical Hidroxila/antagonistas & inibidores , Radical Hidroxila/química , Hidroxilação/efeitos dos fármacos , Ferro/química , Masculino , Pessoa de Meia-Idade , Leite Humano/química , Gravidez , Reprodutibilidade dos Testes , Sêmen/química , Tioureia/análogos & derivados , Tioureia/química , Tioureia/farmacologia , Adulto Jovem
16.
Toxicol Mech Methods ; 28(3): 230-237, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29022416

RESUMO

2-Amino-9H-pyrido[2,3-b]indole (AαC), which is a hazardous compound present in cigarette smoke, has been listed as probable human carcinogens (Group 2B). The carcinogenicity and genotoxicity of AαC were activated by the process of metabolic bio-activation. Whereas, few studies about genotoxicity induced by AαC have been reported. In this study, we took HepG2 cells as the model to investigate the relationship between oxidative DNA damage induced by AαC and metabolic bio-activation of AαC, which is of importance to unveil the mechanism of AαC genotoxicity. Firstly, the HepG2 cells were treated with 10 and 20 µg/mL AαC, respectively. Then different concentrations of protein ranging from 0 to 1 mg/mL in S9 mixture solution were utilized to make cells have different capacities for metabolic activation. Intracellular AαC hydroxylated metabolites and 8-OHdG were estimated by using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results showed that, at the same concentration of AαC, with the increment of concentration of protein in S9 mixture solution, the levels of hydroxylated metabolites and 8-OHdG/106dG increased. And at the same concentration of protein in S9 mixture solution, with the increment of concentration of AαC, the levels of hydroxylated metabolites and 8-OHdG/106dG increased. The hydroxylated metabolites and 8-OHdG were positively related by correlation analysis. In addition, the correlation coefficients of N-OH-AαC and 8-OHdG were maximum (R2 = 0.73 and 0.66). Taken together, these results indicated that the metabolic bio-activation of AαC might result in oxidative DNA damage.


Assuntos
Carbolinas/toxicidade , Carcinógenos Ambientais/toxicidade , Dano ao DNA , Hepatoblastoma/induzido quimicamente , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Ativação Metabólica , Animais , Biomarcadores/metabolismo , Carbolinas/química , Carbolinas/metabolismo , Carcinógenos Ambientais/química , Carcinógenos Ambientais/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Células Hep G2 , Hepatoblastoma/metabolismo , Hepatoblastoma/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Hidroxilação/efeitos dos fármacos , Cinética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Microssomos/enzimologia , Microssomos/metabolismo , Estrutura Molecular , Mutagênicos/química , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Ratos
17.
Drug Metab Dispos ; 45(12): 1364-1371, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29018033

RESUMO

CYP4Z1 is an "orphan" cytochrome P450 (P450) enzyme that has provoked interest because of its hypothesized role in breast cancer through formation of the signaling molecule 20-hydroxyeicosatetraenoic acid (20-HETE). We expressed human CYP4Z1 in Saccharomyces cerevisiae and evaluated its catalytic capabilities toward arachidonic and lauric acids (AA and LA). Specific and sensitive mass spectrometry assays enabled discrimination of the regioselectivity of hydroxylation of these two fatty acids. CYP4Z1 generated 7-, 8-, 9-, 10-, and 11-hydroxy LA, whereas the 12-hydroxy metabolite was not detected. HET0016, the prototypic CYP4 inhibitor, only weakly inhibited laurate metabolite formation (IC50 ∼15 µM). CYP4Z1 preferentially oxidized AA to the 14(S),15(R)-epoxide with high regioselectivity and stereoselectivity, a reaction that was also insensitive to HET0016, but neither 20-HETE nor 20-carboxy-AA were detectable metabolites. Docking of LA and AA into a CYP4Z1 homology model was consistent with this preference for internal fatty acid oxidation. Thus, human CYP4Z1 has an inhibitor profile and product regioselectivity distinct from most other CYP4 enzymes, consistent with CYP4Z1's lack of a covalently linked heme. These data suggest that, if CYP4Z1 modulates breast cancer progression, it does so by a mechanism other than direct production of 20-HETE.


Assuntos
Neoplasias da Mama/metabolismo , Família 4 do Citocromo P450/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Láuricos/metabolismo , Amidinas/farmacologia , Família 4 do Citocromo P450/antagonistas & inibidores , Família 4 do Citocromo P450/química , Família 4 do Citocromo P450/isolamento & purificação , Progressão da Doença , Humanos , Hidroxilação/efeitos dos fármacos , Quinases Associadas a Receptores de Interleucina-1 , Espectrometria de Massas , Microssomos Hepáticos , Simulação de Acoplamento Molecular , Oxirredução/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae
18.
Arch Toxicol ; 91(10): 3307-3316, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28337504

RESUMO

Reconstructed human epidermis (RHE) is used for risk assessment of chemicals and cosmetics and RHE as well as reconstructed human full-thickness skin (RHS) become important for e.g., the pre-clinical development of drugs. Yet, the knowledge regarding their biotransformation capacity is still limited, although the metabolic activity is highly relevant for skin sensitization, genotoxicity, and the efficacy of topical dermatics. The biotransformation of the aromatic amine 2,4-toluenediamine (2,4-TDA) has been compared in two commercially available RHS to normal human skin ex vivo, and in primary epidermal keratinocytes and dermal fibroblasts as well as in vitro generated epidermal Langerhans cells and dermal dendritic cells. The mono N-acetylated derivative N-(3-amino-4-methyl-phenyl)acetamide (M1) was the only metabolite detectable in substantial amounts indicating the predominance of N-acetylation. RHS exceeded human skin ex vivo in N-acetyltransferase activity and in cell cultures metabolite formation ranked as follows: keratinocytes > fibroblasts ~ Langerhans cells ~ dendritic cells. In conclusion, our results underline the principal suitability of RHS as an adequate test matrix for the investigation of N-acetylation of xenobiotics which is most relevant for risk assessment associated with cutaneous exposure to aromatic amines.


Assuntos
Fenilenodiaminas/farmacocinética , Pele/efeitos dos fármacos , Testes de Toxicidade/métodos , Acetilação , Biotransformação , Células Cultivadas/efeitos dos fármacos , Procedimentos Cirúrgicos Dermatológicos , Epiderme/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Hidroxilação/efeitos dos fármacos , Inativação Metabólica , Queratinócitos , Fenilenodiaminas/administração & dosagem , Fenilenodiaminas/toxicidade , Procedimentos de Cirurgia Plástica , Pele/citologia , Xenobióticos/farmacocinética
19.
Nature ; 537(7619): 214-219, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27479323

RESUMO

Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.


Assuntos
Aminoácidos/química , Aminoácidos/síntese química , Ferro/química , Ferro/farmacologia , Peptídeos/química , Peptídeos/síntese química , Catálise/efeitos dos fármacos , Hidroxilação/efeitos dos fármacos , Compostos Macrocíclicos/química , Estrutura Molecular , Prolina/química , Estereoisomerismo
20.
Biochem Pharmacol ; 116: 153-61, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422753

RESUMO

Ketoconazole (KC), an antifungal agent, rarely causes severe liver injury when orally administered. It has been reported that KC is mainly hydrolyzed to N-deacetyl ketoconazole (DAK), followed by the N-hydroxylation of DAK by flavin-containing monooxygenase (FMO). Although the metabolism of KC has been considered to be associated with hepatotoxicity, the responsible enzyme(s) remain unknown. The purpose of this study was to identify the responsible enzyme(s) for KC hydrolysis in humans and to clarify their relevance to KC-induced toxicity. Kinetic analysis and inhibition studies using human liver microsomes (HLM) and recombinant enzymes revealed that human arylacetamide deacetylase (AADAC) is responsible for KC hydrolysis to form DAK, and confirmed that FMO3 is the enzyme responsible for DAK N-hydroxylation. In HLM, the clearance of KC hydrolysis occurred to the same extent as DAK N-hydroxylation, which indicates that both processes are not rate-limiting pathways. Cytotoxicity of KC and DAK was evaluated using HepaRG cells and human primary hepatocytes. Treatment of HepaRG cells with DAK for 24h showed cytotoxicity in a dose-dependent manner, whereas treatment with KC did not show due to the low expression of AADAC. Overexpression of AADAC in HepaRG cells with an adenovirus expression system elicited the cytotoxicity of KC. Cytotoxicity of KC in human primary hepatocytes was attenuated by diisopropylfluorophosphate, an AADAC inhibitor. In conclusion, the present study demonstrated that human AADAC hydrolyzes KC to trigger hepatocellular toxicity.


Assuntos
Antifúngicos/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Inibidores do Citocromo P-450 CYP3A/metabolismo , Hepatócitos/metabolismo , Cetoconazol/metabolismo , Microssomos Hepáticos/enzimologia , Ativação Metabólica/efeitos dos fármacos , Antifúngicos/efeitos adversos , Biocatálise/efeitos dos fármacos , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Linhagem Celular Tumoral , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Inibidores do Citocromo P-450 CYP3A/efeitos adversos , Inibidores Enzimáticos/farmacologia , Feminino , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Hidrólise/efeitos dos fármacos , Hidroxilação/efeitos dos fármacos , Isoflurofato/farmacologia , Cetoconazol/efeitos adversos , Cetoconazol/análogos & derivados , Cetoconazol/toxicidade , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Oxigenases/antagonistas & inibidores , Oxigenases/genética , Oxigenases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA