Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
1.
J Med Virol ; 96(5): e29642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708812

RESUMO

Molnupiravir, an oral direct-acting antiviral effective in vitro against SARS-CoV-2, has been largely employed during the COVID-19 pandemic, since December 2021. After marketing and widespread usage, a progressive increase in SARS-CoV-2 lineages characterized by a higher transition/transversion ratio, a characteristic signature of molnupiravir action, appeared in the Global Initiative on Sharing All Influenza Data (GISAID) and International Nucleotide Sequence Database Collaboration (INSDC) databases. Here, we assessed the drug effects by SARS-CoV-2 whole-genome sequencing on 38 molnupiravir-treated persistently positive COVID-19 outpatients tested before and after treatment. Seventeen tixagevimab/cilgavimab-treated outpatients served as controls. Mutational analyses confirmed that SARS-CoV-2 exhibits an increased transition/transversion ratio seven days after initiation of molnupiravir. Moreover we observed an increased G->A ratio compared to controls, which was not related to apolipoprotein B mRNAediting enzyme, catalytic polypeptide-like (APOBEC) activity. In addition, we demonstrated for the first time an increased diversity and complexity of the viral quasispecies.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Citidina/análogos & derivados , Genoma Viral , Hidroxilaminas , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Antivirais/uso terapêutico , Antivirais/farmacologia , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Masculino , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Citidina/uso terapêutico , Citidina/farmacologia , Idoso , Adulto , Sequenciamento Completo do Genoma , Variação Genética , Uridina/farmacologia , COVID-19/virologia , Mutação
2.
Iran J Med Sci ; 49(5): 275-285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751873

RESUMO

Background: The RNA-dependent RNA polymerase (RdRp) inhibitors, molnupiravir and VV116, have the potential to maximize clinical benefits in the oral treatment of COVID-19. Subjects who consume these drugs may experience an increased incidence of adverse events. This study aimed to evaluate the safety profile of molnupiravir and VV116. Methods: A comprehensive search of scientific and medical databases, such as PubMed Central/Medline, Embase, Web of Science, and Cochrane Library, was conducted to find relevant articles in English from January 2020 to June 2023. Any kind of adverse events reported in the study were pooled and analyzed in the drug group versus the control group. Estimates of risk effects were summarized through the random effects model using Review Manager version 5.2, and sensitivity analysis was performed by Stata 17.0 software. Results: Fifteen studies involving 32,796 subjects were included. Eleven studies were placebo-controlled, and four were Paxlovid-controlled. Twelve studies reported adverse events for molnupiravir, and three studies described adverse events for VV116. The total odds ratio (OR) for adverse events in the RdRp inhibitor versus the placebo-controlled group was 1.01 (95% CI=0.84-1.22; I2=26%), P=0.88. The total OR for adverse events in the RdRp inhibitor versus the Paxlovid-controlled group was 0.32 (95% CI=0.16-0.65; I2=87%), P=0.002. Individual drug subgroup analysis in the placebo-controlled study showed that compared with the placebo group, a total OR for adverse events was 0.97 (95% CI, 0.85-1.10; I2=0%) in the molnupiravir group and 3.77 (95% CI=0.08-175.77; I2=85%) in the VV116 group. Conclusion: The RdRp inhibitors molnupiravir and VV116 are safe for oral treatment of COVID-19. Further evidence is necessary that RdRp inhibitors have a higher safety profile than Paxlovid.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Citidina , Hidroxilaminas , RNA Polimerase Dependente de RNA , Humanos , Hidroxilaminas/uso terapêutico , Hidroxilaminas/farmacologia , Citidina/análogos & derivados , Citidina/uso terapêutico , Citidina/farmacologia , Antivirais/uso terapêutico , Antivirais/efeitos adversos , Antivirais/farmacologia , Administração Oral , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2 , Adenosina/análogos & derivados
3.
Cell Stress Chaperones ; 29(3): 359-380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570009

RESUMO

Protein misfolding and mislocalization are common themes in neurodegenerative disorders, including motor neuron disease, and amyotrophic lateral sclerosis (ALS). Maintaining proteostasis is a crosscutting therapeutic target, including the upregulation of heat shock proteins (HSP) to increase chaperoning capacity. Motor neurons have a high threshold for upregulating stress-inducible HSPA1A, but constitutively express high levels of HSPA8. This study compared the expression of these HSPs in cultured motor neurons expressing three variants linked to familial ALS: TAR DNA binding protein 43 kDa (TDP-43)G348C, fused in sarcoma (FUS)R521G, or superoxide dismutase I (SOD1)G93A. All variants were poor inducers of Hspa1a, and reduced levels of Hspa8 mRNA and protein, indicating multiple compromises in chaperoning capacity. To promote HSP expression, cultures were treated with the putative HSP coinducer, arimoclomol, and class I histone deacetylase inhibitors, to promote active chromatin for transcription, and with the combination. Treatments had variable, often different effects on the expression of Hspa1a and Hspa8, depending on the ALS variant expressed, mRNA distribution (somata and dendrites), and biomarker of toxicity measured (histone acetylation, maintaining nuclear TDP-43 and the neuronal Brm/Brg-associated factor chromatin remodeling complex component Brg1, mitochondrial transport, FUS aggregation). Overall, histone deacetylase inhibition alone was effective on more measures than arimoclomol. As in the FUS model, arimoclomol failed to induce HSPA1A or preserve Hspa8 mRNA in the TDP-43 model, despite preserving nuclear TDP-43 and Brg1, indicating neuroprotective properties other than HSP induction. The data speak to the complexity of drug mechanisms against multiple biomarkers of ALS pathogenesis, as well as to the importance of HSPA8 for neuronal proteostasis in both somata and dendrites.


Assuntos
Esclerose Lateral Amiotrófica , Biomarcadores , Proteínas de Ligação a DNA , Inibidores de Histona Desacetilases , Neurônios Motores , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/genética , Hidroxilaminas/farmacologia , Células Cultivadas , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética
4.
Bioorg Med Chem Lett ; 106: 129731, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621594

RESUMO

The inhibition of kynurenine production is considered a promising target for cancer immunotherapy. In this study, an amino acid derivative, compound 1 was discovered using a cell-based assay with our screening library. Compound 1 suppressed kynurenine production without inhibiting indoleamine 2,3-dioxygenase 1 (IDO1) activity. The activity of 1 was derived from the inhibition of IDO1 by a metabolite of 1, O-benzylhydroxylamine (OBHA, 2a). A series of N-substituted 2a derivatives that exhibit potent activity in cell-based assays may represent effective prodrugs. Therefore, we synthesized and evaluated novel N,O-substituted hydroxylamine derivatives. The structure-activity relationships revealed that N,O-substituted hydroxylamine 2c inhibits kynurenine production in a cell-based assay. We conducted an in vivo experiment with 2c, although the effectiveness of O-substituted hydroxylamine derivatives in vivo has not been previously reported. The results indicate that N,O-substituted hydroxylamine derivatives are promising IDO1 inhibitors.


Assuntos
Hidroxilamina , Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Cinurenina/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Relação Estrutura-Atividade , Humanos , Hidroxilamina/química , Hidroxilamina/farmacologia , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Estrutura Molecular , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Relação Dose-Resposta a Droga
5.
Nature ; 601(7894): 496, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35064230

Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Desenvolvimento de Medicamentos/tendências , Farmacorresistência Viral , Pesquisadores , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Administração Oral , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Antivirais/administração & dosagem , Antivirais/farmacologia , Antivirais/provisão & distribuição , COVID-19/mortalidade , COVID-19/prevenção & controle , Vacinas contra COVID-19/provisão & distribuição , Citidina/administração & dosagem , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/uso terapêutico , Aprovação de Drogas , Combinação de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Quimioterapia Combinada , Hospitalização/estatística & dados numéricos , Humanos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Lactamas/administração & dosagem , Lactamas/farmacologia , Lactamas/uso terapêutico , Leucina/administração & dosagem , Leucina/farmacologia , Leucina/uso terapêutico , Adesão à Medicação , Terapia de Alvo Molecular , Mutagênese , Nitrilas/administração & dosagem , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Prolina/administração & dosagem , Prolina/farmacologia , Prolina/uso terapêutico , Parcerias Público-Privadas/economia , Ritonavir/administração & dosagem , Ritonavir/farmacologia , Ritonavir/uso terapêutico , SARS-CoV-2/enzimologia , SARS-CoV-2/genética
6.
Expert Opin Ther Pat ; 31(4): 325-337, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33475441

RESUMO

Introduction: The current SARS-CoV-2 pandemic urgently demands for both prevention and treatment strategies. RNA-dependent RNA-polymerase (RdRp), which has no counterpart in human cells, is an excellent target for drug development. Given the time-consuming process of drug development, repurposing drugs approved for other indications or at least successfully tested in terms of safety and tolerability, is an attractive strategy to rapidly provide an effective medication for severe COVID-19 cases.Areas covered: The currently available data and upcominSg studies on RdRp which can be repurposed to halt SARS-CoV-2 replication, are reviewed.Expert opinion: Drug repurposing and design of novel compounds are proceeding in parallel to provide a quick response and new specific drugs, respectively. Notably, the proofreading SARS-CoV-2 exonuclease activity could limit the potential for drugs designed as immediate chain terminators and favor the development of compounds acting through delayed termination. While vaccination is awaited to curb the SARS-CoV-2 epidemic, even partially effective drugs from repurposing strategies can be of help to treat severe cases of disease. Considering the high conservation of RdRp among coronaviruses, an improved knowledge of its activity in vitro can provide useful information for drug development or drug repurposing to combat SARS-CoV-2 as well as future pandemics.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Amidas/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Desenvolvimento de Medicamentos , Reposicionamento de Medicamentos , Humanos , Hidroxilaminas/farmacologia , Pirazinas/farmacologia , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/enzimologia
7.
Nat Microbiol ; 6(1): 11-18, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33273742

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is having a catastrophic impact on human health1. Widespread community transmission has triggered stringent distancing measures with severe socio-economic consequences. Gaining control of the pandemic will depend on the interruption of transmission chains until vaccine-induced or naturally acquired protective herd immunity arises. However, approved antiviral treatments such as remdesivir and reconvalescent serum cannot be delivered orally2,3, making them poorly suitable for transmission control. We previously reported the development of an orally efficacious ribonucleoside analogue inhibitor of influenza viruses, MK-4482/EIDD-2801 (refs. 4,5), that was repurposed for use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently in phase II/III clinical trials (NCT04405570 and NCT04405739). Here, we explored the efficacy of therapeutically administered MK-4482/EIDD-2801 to mitigate SARS-CoV-2 infection and block transmission in the ferret model, given that ferrets and related members of the weasel genus transmit the virus efficiently with minimal clinical signs6-9, which resembles the spread in the human young-adult population. We demonstrate high SARS-CoV-2 burden in nasal tissues and secretions, which coincided with efficient transmission through direct contact. Therapeutic treatment of infected animals with MK-4482/EIDD-2801 twice a day significantly reduced the SARS-CoV-2 load in the upper respiratory tract and completely suppressed spread to untreated contact animals. This study identified oral MK-4482/EIDD-2801 as a promising antiviral countermeasure to break SARS-CoV-2 community transmission chains.


Assuntos
Antivirais/farmacologia , COVID-19/prevenção & controle , COVID-19/transmissão , Citidina/análogos & derivados , Hidroxilaminas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , COVID-19/imunologia , Chlorocebus aethiops , Citidina/farmacologia , Citocinas/imunologia , Modelos Animais de Doenças , Transmissão de Doença Infecciosa/prevenção & controle , Feminino , Furões , Distribuição Aleatória , Células Vero
8.
J Cell Mol Med ; 24(1): 984-995, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31742861

RESUMO

IL-2R pathway is a key regulator in the development of immune cells and has emerged as a promising drug target in cancer treatment, but there is a scarcity of related inhibitors. TPD7 is a novel biphenyl urea taspine derivate, which has been shown anti-cancer effect. Here, we demonstrated the anti-cancer activity of TPD7 in cutaneous T cell lymphoma and investigated the underlying mechanism of TPD7 through IL-2R signalling. The inhibitory effect of TPD7 on cell viability exhibited a strong correlation with the expression level of IL-2R, and cutaneous T cell lymphoma H9 and HUT78 cells were most sensitive to TPD7. TPD7 was nicely bound to IL-2R and down-regulated the mRNA and protein levels of IL-2R. Furthermore, TPD7 suppressed the downstream cascades of IL-2R including JAK/STAT, PI3K/AKT/mTOR and PLCγ/Raf/MAPK signalling, resulting in Bcl-2 mitochondrial apoptosis pathway and cell cycle proteins CDK/Cyclins regulation. And, these were verified by flow cytometry analysis that TPD7 facilitated cell apoptosis in H9 cells via mitochondrial pathway and impeded cell cycle progression at G2/M phase. TPD7 is a novel anti-cancer agent and may be a potential candidate for cutaneous T cell lymphoma treatment by regulating IL-2R signalling pathway.


Assuntos
Biomarcadores Tumorais/metabolismo , Carbanilidas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hidroxilaminas/farmacologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Linfoma Cutâneo de Células T/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
9.
Exp Eye Res ; 188: 107792, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31499034

RESUMO

Oxidative stress and subsequent chronic inflammation result in dysfunction of the retinal pigment epithelium (RPE) and represent therapeutic targets in the context of age-related macular degeneration (AMD). However, molecular mechanisms that linked oxidative stress and inflammation still unclear. As an important byproduct of oxidative stress, 4-hydroxynonenal (4-HNE) induces apoptosis and lysosome dysregulation of RPE cells. In the present study, we evaluated cytokines production of RPE cells induced by 4-HNE by using cytokine array and confirmed that 4-HNE induced IL-6, IL-1ß and TNF-α production in a concentration dependent manner. Specifically, 4-HNE also induced IL-10 and TGF-ß production in low concentration. Molecular analysis revealed that intracellular HSP70 inhibited 4-HNE-induced production of pro-inflammatory cytokines, and 4-HNE exerted proinflammatory effects in RPE cells by enhancing extracellular release of HSP70, as efflux inhibitor Methyl-ß-cyclodextrin (MBC) treatment significantly blocked the release of HSP70 and decreased IL-6 production of RPE cells induced by 4-HNE. Meanwhile, HSP70 inducer arimoclomol increased intracellular HSP70 production, but showed no influence on its extracellular level, also performed anti-inflammatory effects in 4-HNE-stimulated RPE cells. Whereas the anti-inflammatory effects of paeoniflorin, an HSP70 inducer simultaneously promoted its extracellular efflux, was lower than arimoclomol. In addition, we further confirmed that MBC exhibited synergetic effect with both paeoniflorin and arimoclomol to inhibit the production of proinflammatory cytokines induced by 4-HNE. Taken together, these results indicate that HSP70 plays a vital role in regulating inflammation of RPE cells induced by oxidative stress and might be a potential novel target for clinical treatment of AMD.


Assuntos
Aldeídos/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Citocinas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Aldeídos/antagonistas & inibidores , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Hidroxilaminas/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Transfecção , beta-Ciclodextrinas/farmacologia
10.
Mol Pharmacol ; 96(1): 99-108, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31036695

RESUMO

C-terminal binding proteins (CtBP1/2) are oncogenic transcriptional coregulators and dehydrogenases often overexpressed in multiple solid tumors, including breast, colon, and ovarian cancer, and associated with poor survival. CtBPs act by repressing expression of genes responsible for apoptosis (e.g., PUMA, BIK) and metastasis-associated epithelial-mesenchymal transition (e.g., CDH1), and by activating expression of genes that promote migratory and invasive properties of cancer cells (e.g., TIAM1) and genes responsible for enhanced drug resistance (e.g., MDR1). CtBP's transcriptional functions are also critically dependent on oligomerization and nucleation of transcriptional complexes. Recently, we have developed a family of CtBP dehydrogenase inhibitors, based on the parent 2-hydroxyimino-3-phenylpropanoic acid (HIPP), that specifically disrupt cancer cell viability, abrogate CtBP's transcriptional function, and block polyp formation in a mouse model of intestinal polyposis that depends on CtBP's oncogenic functions. Crystallographic analysis revealed that HIPP interacts with CtBP1/2 at a conserved active site tryptophan (W318/324; CtBP1/2) that is unique among eukaryotic D2-dehydrogenases. To better understand the mechanism of action of HIPP-class inhibitors, we investigated the contribution of W324 to CtBP2's biochemical and physiologic activities utilizing mutational analysis. Indeed, W324 was necessary for CtBP2 self-association, as shown by analytical ultracentrifugation and in vivo cross-linking. Additionally, W324 supported CtBP's association with the transcriptional corepressor CoREST, and was critical for CtBP2 induction of cell motility. Notably, the HIPP derivative 4-chloro-HIPP biochemically and biologically phenocopied mutational inactivation of CtBP2 W324. Our data support further optimization of W318/W324-interacting CtBP dehydrogenase inhibitors that are emerging as a novel class of cancer cell-specific therapeutic.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Inibidores Enzimáticos/farmacologia , Polipose Intestinal/tratamento farmacológico , Triptofano/metabolismo , Oxirredutases do Álcool/antagonistas & inibidores , Animais , Antineoplásicos/química , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores Enzimáticos/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Polipose Intestinal/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Viruses ; 11(5)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083335

RESUMO

Previous results have shown that infection with the cytoplasmic-replicating parainfluenza virus 5 mutant P/V-CPI- sensitizes cells to DNA damaging agents, resulting in the enhanced killing of airway cancer cells. Here, we have tested the hypothesis that histone deacetylase (HDAC) inhibitors can also act with P/V-CPI- infection to enhance cancer cell killing. Using human small cell lung cancer and laryngeal cancer cell lines, 10 HDAC inhibitors were tested for their effect on viability of P/V-CPI- infected cells. HDAC inhibitors such as scriptaid enhanced caspase-3/7, -8 and -9 activity induced by P/V-CPI- and overall cell toxicity. Scriptaid-mediated enhanced killing was eliminated in lung cancer cells that were engineered to express a protein which sequesters double stranded RNA. Scriptaid also enhanced cancer cell killing by two other negative strand RNA viruses - the La Crosse virus and vesicular stomatitis virus. Scriptaid treatment enhanced the spread of the P/V-CPI- virus through a population of cancer cells, and suppressed interferon-beta induction through blocking phosphorylation and nuclear translocation of Interferon Regulatory Factor 3 (IRF-3). Taken together, these data support a role for combinations of a cytoplasmic-replicating RNA virus such as the P/V-CPI- mutant along with chemotherapeutic agents.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Interferon beta/biossíntese , Neoplasias/metabolismo , Vírus Oncolíticos/fisiologia , Vírus da Parainfluenza 5/fisiologia , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Humanos , Hidroxilaminas/farmacologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/virologia , Vírus Oncolíticos/genética , Vírus da Parainfluenza 5/genética , Quinolinas/farmacologia
12.
Sci Rep ; 9(1): 5300, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30923342

RESUMO

Priming haematopoietic stem/progenitor cells (HSPCs) in vitro with specific chromatin modifying agents and cytokines under serum-free-conditions significantly enhances engraftable HSC numbers. We extend these studies by culturing human CD133+ HSPCs on nanofibre scaffolds to mimic the niche for 5-days with the HDAC inhibitor Scriptaid and cytokines. Scriptaid increases absolute Lin-CD34+CD38-CD45RA-CD90+CD49f+ HSPC numbers, while concomitantly decreasing the Lin-CD38-CD34+CD45RA-CD90- subset. Hypothesising that Scriptaid plus cytokines expands the CD90+ subset without differentiation and upregulates CD90 on CD90- cells, we sorted, then cultured Lin-CD34+CD38-CD45RA-CD90- cells with Scriptaid and cytokines. Within 2-days and for at least 5-days, most CD90- cells became CD90+. There was no significant difference in the transcriptomic profile, by RNAsequencing, between cytokine-expanded and purified Lin-CD34+CD38-CD45RA-CD49f+CD90+ cells in the presence or absence of Scriptaid, suggesting that Scriptaid maintains stem cell gene expression programs despite expansion in HSC numbers. Supporting this, 50 genes were significantly differentially expressed between CD90+ and CD90- Lin-CD34+CD38-CD45RA-CD49f+ subsets in Scriptaid-cytokine- and cytokine only-expansion conditions. Thus, Scriptaid treatment of CD133+ cells may be a useful approach to expanding the absolute number of CD90+ HSC, without losing their stem cell characteristics, both through direct effects on HSC and potentially also conversion of their immediate CD90- progeny into CD90+ HSC.


Assuntos
Doenças Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Hidroxilaminas/farmacologia , Quinolinas/farmacologia , Transcriptoma/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Meios de Cultura Livres de Soro , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , RNA-Seq , Análise de Célula Única , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo
13.
Nitric Oxide ; 84: 22-29, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30630055

RESUMO

Garlic has been demonstrated to exert protective effects against oxidative damage using numerous experimental models. The antioxidant effects of garlic are associated with the activation of Nrf2-dependent gene expression. S-1-Propenylcysteine (S1PC) and S-allylcysteine (SAC) are two predominant sulfur amino acids present in aged garlic extract; however, the exact roles of these amino acids within the Keap1/Nrf2 system remain unknown. We hypothesized that sulfur-containing amino acids derived from garlic could activate Nrf2 in the presence of nitric oxide (NO). Neither S1PC nor SAC affected gene expression of either heme oxygenase-1 (HMOX1) or the glutamate-cysteine ligase modifier subunit (GCLM) in human umbilical vein endothelial cells (HUVECs) or human aorta endothelial cells (HAECs). Interestingly, S1PC augmented expression levels induced by nitric oxide donors (NO-donors) such as NOR3 and GSNO. NO-donors were found to induce nuclear accumulation of NRF2 and activation of the eIF2α/ATF4 pathway, whereas S1PC did not further amplify the NO-induced effects on NRF2 or eIF2α/ATF4. Additionally, NO-donors induced the degradation of BTB domain and CNC homolog 1 (BACH1), a transcriptional repressor that can compete with NRF2. In addition, S1PC enhanced BACH1 downregulation within the nucleus. Pretreatment with deferoxamine, an inhibitor of heme synthesis, upregulated BACH1 protein levels and abolished the effect of NO-donors and S1PC on HMOX1 expression. The above results indicate that S1PC could modulate antioxidant gene expression via the NO/heme/BACH1 signaling pathway, thereby suggesting that S1PC-induced degradation of BACH1 may provide a basis for therapeutic applications.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cisteína/análogos & derivados , Cisteína/farmacologia , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Óxido Nítrico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação para Baixo , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Hidroxilaminas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Nitrocompostos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
14.
Eur J Med Chem ; 162: 455-464, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469041

RESUMO

Tryptophan (Trp) catabolizing enzymes play an important and complex role in the development of cancer. Significant evidence implicates them in a range of inflammatory and immunosuppressive activities. Whereas inhibitors of indoleamine 2,3-dioxygenase-1 (IDO1) have been reported and analyzed in the clinic, fewer inhibitors have been described for tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase-2 (IDO2) which also have been implicated more recently in cancer, inflammation and immune control. Consequently the development of dual or pan inhibitors of these Trp catabolizing enzymes may represent a therapeutically important area of research. This is the first report to describe the development of dual and pan inhibitors of IDO1, TDO and IDO2.


Assuntos
Hidroxilaminas/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Triptofano Oxigenase/antagonistas & inibidores , Animais , Anti-Inflamatórios , Antineoplásicos , Humanos , Fatores Imunológicos
15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 26(4): 1116-1121, 2018 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-30111417

RESUMO

OBJECTIVE: To study the effect of HDAC inhibitor Scriptaid on multiple myeloma IM9 cells and preliminarily clarify the mechanism of Scriptaid-induced cell apoptosis. METHODS: The cell viability, cell cycle and cell apoptosis were measured by CCK8 assay and flow cytometry respectively, the relative target gene expression levels were detected by RT-PCR, the effect of Scriptaid on p21 promoter activity was detected by using luciferase reporter assay. RESULTS: Scriptaid inhibited IM9 cell viability in a dose-dependent manner. Scriptaid induced IM9 cell cycle arrest at G2/M phase in a dose-dependent manner. Scriptaid triggered IM9 cell apoptosis was obviously, the mRNA levels of apoptosis-related proteins Caspase 9, Caspase 3 and PARP1 were also activated. The apoptosis-associated factors BAD, PTEN and p21 increased following treatment with different dose of Scriptaid, meanwhile, p21 promoter activity was also activated significantly. CONCLUSION: HDAC inhibitor Scriptaid can promote IM9 cell apoptosis by transcriptional activation of p21 promoter in concentration-dependent manner.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Hidroxilaminas/farmacologia , Quinolinas/farmacologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21 , Humanos
16.
Biosci Rep ; 38(4)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29945926

RESUMO

Recurrence is one of the major causes of poor prognosis for patients with hepatocellular carcinoma (HCC), and drug resistance is closely associated with disease recurrence. Histone deacetylase (HDAC) inhibitor scriptaid functions as an anticancer agent in many different types of tumors, but its possible roles in HCC progression have not been explored to date. Herein, we show that HDAC inhibitor scriptaid decreases HCC cell proliferation and induces cell cycle G2/M-phase arrest in a dose-dependent manner. Furthermore, scriptaid triggered HCC cell death via transcriptional activation of p21 and subsequent elevated global H3Ac levels. Importantly, we found that scriptaid showed robust antitumor activity against HCC. Thus, our findings indicate that HDAC inhibitor scriptaid could be an important potential candidate for treatment of HCC patients.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Hidroxilaminas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Quinolinas/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Histona Desacetilases/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
17.
Oncol Rep ; 40(2): 1064-1072, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29901176

RESUMO

We recently reported that TPD7 suppressed tumor cell proliferation, and inhibited invasion, through the suppression of C-X-C chemokine receptor type 4 (CXCR4). In the present study, we investigated the anticancer effect of TPD7 on apoptosis and invasion of cervical cancer HeLa cells. Cell cycle analysis revealed that TPD7 decreased cyclin-dependent kinase (CDK)1 and cyclin D1 expression, and increased cyclin A expression, following S phase blockade. TPD7 induced chromatin condensation and significantly elevated the number of apoptotic cells, suggesting that its inhibitory effect on HeLa cells was due to the induction of cell cycle blockade and apoptosis. Mechanistically, TPD7 altered the extrinsic apoptosis pathway by upregulating Fas expression, and the intrinsic pathway by modulating Bcl-2 family proteins, p53, and NF-κB p65, leading to enhanced apoptosis. TPD7 inhibited HeLa cell invasion by downregulating the expression of matrix metalloproteinase (MMP)-9 and CXCR4 proteins. In vivo experiments revealed that TPD7 inhibited tumor growth in HeLa cell xenografted mice. These findings indicated that TPD7 may be a potential chemoprevention agent for the management of cervical carcinoma.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Carbanilidas/farmacologia , Hidroxilaminas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ureia/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Receptor fas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Receptores CXCR4/metabolismo , Fase S/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo
18.
Eur Rev Med Pharmacol Sci ; 22(4): 950-960, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29509243

RESUMO

OBJECTIVE: Endometrial cancer is increasingly prevalent in western societies and affects mainly postmenopausal women; notably incidence rates have been rising by 1.9% per year on average since 2005. Although the early-stage endometrial cancer can be effectively managed with surgery, more advanced stages of the disease require multimodality treatment with varying results. In recent years, endometrial cancer has been extensively studied at the molecular level in an attempt to develop effective therapies. Recently, a family of compounds that alter epigenetic expression, namely histone deacetylase inhibitors, have shown promise as possible therapeutic agents in endometrial cancer. The present review aims to discuss the therapeutic potential of these agents. MATERIALS AND METHODS: This literature review was performed using the MEDLINE database; the search terms histone, deacetylase, inhibitors, endometrial, targeted therapies for endometrial cancer were employed to identify relevant studies. We only reviewed English language publications and also considered studies that were not entirely focused on endometrial cancer. Ultimately, sixty-four articles published until January 2018 were incorporated into our review. RESULTS: Studies in cell cultures have demonstrated that histone deacetylase inhibitors exert their antineoplastic activity by promoting expression of p21WAF1 and p27KIP1, cyclin-dependent kinase inhibitors, that have important roles in cell cycle regulation; importantly, the transcription of specific genes (e.g., E-cadherin, PTEN) that are commonly silenced in endometrial cancer is also enhanced. In addition to these abstracts effects, novel compounds with histone deacetylase inhibitor activity (e.g., scriptaid, trichostatin, entinostat) have also demonstrated significant antineoplastic activity both in vitro and in vivo, by liming tumor growth, inducing apoptosis, inhibiting angiogenesis and potentiating the effects of chemotherapy. CONCLUSIONS: The applications of histone deacetylase inhibitors in endometrial cancer appear promising; nonetheless, additional trials are necessary to establish the therapeutic role, clinical utility, and safety of these promising compounds.


Assuntos
Antineoplásicos/metabolismo , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Quinolinas/metabolismo , Quinolinas/farmacologia , Quinolinas/uso terapêutico
19.
Oncol Rep ; 39(4): 1999-2005, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29436692

RESUMO

Despite debulking surgery and good initial response to chemotherapy, the majority of patients with advanced ovarian cancer relapse and succumb to their disease. Thus, there is a pressing need to improve treatment outcome. In the present study, the antitumor activity of histone deacetylase (HDAC) inhibitor scriptaid in combination with bortezomib or conventional chemotherapeutics was tested in vitro against representative ovarian cancer cell lines: SKOV­3, MDAH 2774, and OVP­10. Incubation of ovarian cancer cells with scriptaid and bortezomib (or doxorubicin) led to synergistic antitumor effects. As shown in the Annexin V-FITC/PI assay and western blot analysis of caspase­3/-9 and p21 protein expression, these synergistic antitumor effects were due to both induction of apoptosis and inhibition of proliferation. Since synergistic antitumor activity of scriptaid and bortezomib appeared in suboptimal concentrations, one can assume that the administration of the combination of these agents to ovarian cancer patients can exert the therapeutic effect in parallel with limited general toxicity of the treatment.


Assuntos
Bortezomib/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Hidroxilaminas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Quinolinas/farmacologia , Apoptose/efeitos dos fármacos , Caspases/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/patologia , Quinases Ativadas por p21/genética
20.
Exp Hematol ; 60: 63-72, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29305109

RESUMO

Multiple myeloma (MM) is an extremely serious plasma cell malignancy. Despite the recent introduction of chemotherapies such as bortezomib and lenalidomide, it remains an incurable disease due to the high rate of relapse and the development of drug resistance. Epigenetic regulation is closely related to MM progression, but the epigenetic modification mechanism of MM cell apoptosis has remained unclear. As a novel histone deacetylase inhibitor (HDACi), Scriptaid's possible roles in MM progression have not been explored. Herein, we found that Scriptaid decreased several human MM cell viabilities in a dose-dependent manner. Scriptaid was also able to dose dependently and significantly induce MM cell cycle arrest at the G2/M phase. Moreover, Scriptaid facilitates p21 transcriptional activities by mediating H3Ac gene-activated modification, eventually leading to MM cell apoptosis. Overall, our results show that Scriptaid is an inducer of MM cell death, suggesting the possibility for Scriptaid-mediated therapeutics to cure refractory/relapsed MM.


Assuntos
Apoptose/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Epigênese Genética/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hidroxilaminas/farmacologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Quinolinas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Células HEK293 , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA