Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
PLoS One ; 19(5): e0303449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768097

RESUMO

Candida albicans (C. albicans) can behave as a commensal yeast colonizing the vaginal mucosa, and in this condition is tolerated by the epithelium. When the epithelial tolerance breaks down, due to C. albicans overgrowth and hyphae formation, the generated inflammatory response and cell damage lead to vulvovaginal candidiasis (VVC) symptoms. Here, we focused on the induction of mitochondrial reactive oxygen species (mtROS) in vaginal epithelial cells after C. albicans infection and the involvement of fungal burden, morphogenesis and candidalysin (CL) production in such induction. Bioluminescent (BLI) C. albicans, C. albicans PCA-2 and C. albicans 529L strains were employed in an in vitro infection model including reconstituted vaginal epithelium cells (RVE), produced starting from A-431 cell line. The production of mtROS was kinetically measured by using MitoSOX™ Red probe. The potency of C. albicans to induced cell damage to RVE and C. albicans proliferation have also been evaluated. C. albicans induces a rapid mtROS release from vaginal epithelial cells, in parallel with an increase of the fungal load and hyphal formation. Under the same experimental conditions, the 529L C. albicans strain, known to be defective in CL production, induced a minor mtROS release showing the key role of CL in causing epithelial mithocondrial activation. C. albicans PCA-2, unable to form hyphae, induced comparable but slower mtROS production as compared to BLI C. albicans yeasts. By reducing mtROS through a ROS scavenger, an increased fungal burden was observed during RVE infection but not in fungal cultures grown on abiotic surface. Collectively, we conclude that CL, more than fungal load and hyphae formation, seems to play a key role in the rapid activation of mtROS by epithelial cells and in the induction of cell-damage and that mtROS are key elements in the vaginal epithelial cells response to C. albicans.


Assuntos
Candida albicans , Candidíase Vulvovaginal , Células Epiteliais , Proteínas Fúngicas , Mitocôndrias , Espécies Reativas de Oxigênio , Vagina , Candida albicans/metabolismo , Candida albicans/fisiologia , Feminino , Humanos , Mitocôndrias/metabolismo , Vagina/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Proteínas Fúngicas/metabolismo , Candidíase Vulvovaginal/microbiologia , Hifas/metabolismo , Hifas/crescimento & desenvolvimento , Linhagem Celular
2.
J Cell Mol Med ; 28(9): e18354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686557

RESUMO

Infections caused by Candida species, especially Candida albicans, threaten the public health and create economic burden. Shortage of antifungals and emergence of drug resistance call for new antifungal therapies while natural products were attractive sources for developing new drugs. In our study, fangchinoline, a bis-benzylisoquinoline alkaloid from Chinese herb Stephania tetrandra S. Moore, exerted antifungal effects on planktonic growth of several Candida species including C. albicans, with MIC no more than 50 µg/mL. In addition, results from microscopic, MTT and XTT reduction assays showed that fangchinoline had inhibitory activities against the multiple virulence factors of C. albicans, such as adhesion, hyphal growth and biofilm formation. Furthermore, this compound could also suppress the metabolic activity of preformed C. albicans biofilms. PI staining, followed by confocal laser scanning microscope (CLSM) analysis showed that fangchinoline can elevate permeability of cell membrane. DCFH-DA staining suggested its anti-Candida mechanism also involved overproduction of intracellular ROS, which was further confirmed by N-acetyl-cysteine rescue tests. Moreover, fangchinoline showed synergy with three antifungal drugs (amphotericin B, fluconazole and caspofungin), further indicating its potential use in treating C. albicans infections. Therefore, these results indicated that fangchinoline could be a potential candidate for developing anti-Candida therapies.


Assuntos
Antifúngicos , Benzilisoquinolinas , Biofilmes , Candida albicans , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Benzilisoquinolinas/farmacologia , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento
3.
Microbiol Spectr ; 12(5): e0425522, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587411

RESUMO

tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker's yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.


Assuntos
Candida albicans , Candidíase , Proteínas Fúngicas , Hifas , RNA de Transferência , Candida albicans/genética , Candida albicans/patogenicidade , Candida albicans/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Virulência/genética , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candidíase/microbiologia , Hifas/crescimento & desenvolvimento , Hifas/genética , Hifas/metabolismo , Animais , Candida/patogenicidade , Candida/genética , Candida/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Células Epiteliais/microbiologia
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35169080

RESUMO

Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.


Assuntos
Criptococose/genética , Cryptococcus/genética , Epistasia Genética/genética , Evolução Biológica , Cryptococcus/metabolismo , Cryptococcus/patogenicidade , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento/genética , Hifas/crescimento & desenvolvimento , Morfogênese , Fenótipo , Locos de Características Quantitativas/genética , Reprodução/genética , Reprodução Assexuada
5.
Cell Rep ; 38(1): 110187, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986345

RESUMO

Candida albicans is both a commensal and an opportunistic fungal pathogen. Invading hyphae of C. albicans secrete candidalysin, a pore-forming peptide toxin. To prevent cell death, epithelial cells must protect themselves from direct damage induced by candidalysin and by the mechanical forces exerted by expanding hyphae. We identify two key Ca2+-dependent repair mechanisms employed by epithelial cells to withstand candidalysin-producing hyphae. Using camelid nanobodies, we demonstrate candidalysin secretion directly into the invasion pockets induced by elongating C. albicans hyphae. The toxin induces oscillatory increases in cytosolic [Ca2+], which cause hydrolysis of PtdIns(4,5)P2 and loss of cortical actin. Epithelial cells dispose of damaged membrane regions containing candidalysin by an Alg-2/Alix/ESCRT-III-dependent blebbing process. At later stages, plasmalemmal tears induced mechanically by invading hyphae are repaired by exocytic insertion of lysosomal membranes. These two repair mechanisms maintain epithelial integrity and prevent mucosal damage during both commensal growth and infection by C. albicans.


Assuntos
Candida albicans/metabolismo , Candidíase/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Lisossomos/metabolismo , Mucosa/fisiologia , Animais , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/fisiologia , Células Epiteliais/metabolismo , Exocitose/fisiologia , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Humanos , Hifas/crescimento & desenvolvimento , Camundongos , Mucosa/citologia , Mucosa/microbiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células RAW 264.7
6.
PLoS Pathog ; 17(8): e1009861, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398936

RESUMO

Microbial pathogens grow in a wide range of different morphologies that provide distinct advantages for virulence. In the fungal pathogen Candida albicans, adenylyl cyclase (Cyr1) is thought to be a master regulator of the switch to invasive hyphal morphogenesis and biofilm formation. However, faster growing cyr1Δ/Δ pseudorevertant (PR) mutants were identified that form hyphae in the absence of cAMP. Isolation of additional PR mutants revealed that their improved growth was due to loss of one copy of BCY1, the negative regulatory subunit of protein kinase A (PKA) from the left arm of chromosome 2. Furthermore, hyphal morphogenesis was improved in some of PR mutants by multigenic haploinsufficiency resulting from loss of large regions of the left arm of chromosome 2, including global transcriptional regulators. Interestingly, hyphal-associated genes were also induced in a manner that was independent of cAMP. This indicates that basal protein kinase A activity is an important prerequisite to induce hyphae, but activation of adenylyl cyclase is not needed. Instead, phosphoproteomic analysis indicated that the Cdc28 cyclin-dependent kinase and the casein kinase 1 family member Yck2 play key roles in promoting polarized growth. In addition, integrating transcriptomic and proteomic data reveals hyphal stimuli induce increased production of key transcription factors that contribute to polarized morphogenesis.


Assuntos
Candida albicans/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Morfogênese , Proteoma/análise , Transcriptoma , Adenilil Ciclases/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Hifas/genética , Hifas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
7.
Nat Commun ; 12(1): 3899, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162849

RESUMO

The ability of the fungal pathogen Candida albicans to undergo a yeast-to-hypha transition is believed to be a key virulence factor, as filaments mediate tissue damage. Here, we show that virulence is not necessarily reduced in filament-deficient strains, and the results depend on the infection model used. We generate a filament-deficient strain by deletion or repression of EED1 (known to be required for maintenance of hyphal growth). Consistent with previous studies, the strain is attenuated in damaging epithelial cells and macrophages in vitro and in a mouse model of intraperitoneal infection. However, in a mouse model of systemic infection, the strain is as virulent as the wild type when mice are challenged with intermediate infectious doses, and even more virulent when using low infectious doses. Retained virulence is associated with rapid yeast proliferation, likely the result of metabolic adaptation and improved fitness, leading to high organ fungal loads. Analyses of cytokine responses in vitro and in vivo, as well as systemic infections in immunosuppressed mice, suggest that differences in immunopathology contribute to some extent to retained virulence of the filament-deficient mutant. Our findings challenge the long-standing hypothesis that hyphae are essential for pathogenesis of systemic candidiasis by C. albicans.


Assuntos
Candida albicans/metabolismo , Candidíase/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Animais , Candida albicans/genética , Candida albicans/patogenicidade , Candidíase/microbiologia , Divisão Celular/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Mutação , Neutrófilos/metabolismo , Virulência/genética
8.
Biochem Biophys Res Commun ; 561: 106-112, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34022710

RESUMO

Candida albicans is an important opportunistic fungal pathogen of immunocompromised individuals. The ability to switch between yeast and hyphal growth forms is critical for its pathogenesis. Hyphal development in C. albicans requires two temporally linked regulations for initiation and maintenance. Here, we performed transcriptome sequencing (RNA-Seq) to analyze the transcriptional consequences for the two different phases of hyphal development. Genome-wide transcription profiling reveals that the sets associated with hyphal initiation were significantly enriched in genes for hyphal cell wall, biofilm matrix and actin polarization. In addition to hypha-specific genes, numerous genes involved in iron acquisition, such as FTR1 and SEF1, are highly induced specifically during sustained hyphal development even when additional free iron is supplied in the medium. Therefore, iron uptake genes are induced by signals that can support prolonged hyphal development in an iron-independent manner. The induction of iron acquisition genes during hyphal elongation was further confirmed by quantitative reverse transcription-PCR under various hypha-inducing conditions. Remarkably, preventing C. albicans from acquiring iron blocks BRG1 activation, leading to impaired hyphal maintenance, and ectopically expressed BRG1 can sustain hyphal development bypassing the requirement of iron. Our study elucidates an underlying mechanism of how multiple virulence factors are interconnected and are induced simultaneously during infection.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Ferro/metabolismo , Candida albicans/genética , Proteínas Fúngicas/genética , Hifas/genética , Hifas/metabolismo , Virulência
9.
Cell Rep ; 34(12): 108896, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761358

RESUMO

Severe and often fatal opportunistic fungal infections arise frequently following mucosal damage caused by trauma or cytotoxic chemotherapy. Interaction of fungal pathogens with epithelial cells that comprise mucosae is a key early event associated with invasion, and, therefore, enhancing epithelial defense mechanisms may mitigate infection. Here, we establish a model of mold and yeast infection mediated by inducible epithelial cell loss in larval zebrafish. Epithelial cell loss by extrusion promotes exposure of laminin associated with increased fungal attachment, invasion, and larval lethality, whereas fungi defective in adherence or filamentation have reduced virulence. Transcriptional profiling identifies significant upregulation of the epidermal growth factor receptor ligand epigen (EPGN) upon mucosal damage. Treatment with recombinant human EPGN suppresses epithelial cell extrusion, leading to reduced fungal invasion and significantly enhanced survival. These data support the concept of augmenting epithelial restorative capacity to attenuate pathogenic invasion of fungi associated with human disease.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Mucosa/microbiologia , Mucosa/patologia , Rhizopus/patogenicidade , Animais , Epigen/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Humanos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Larva/microbiologia , Modelos Biológicos , Mucosa/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Proteínas Recombinantes/farmacologia , Rhizopus/ultraestrutura , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia , Fatores de Tempo , Peixe-Zebra/microbiologia
10.
PLoS One ; 16(1): e0244520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439872

RESUMO

Two new wood-inhabiting fungal species, Steccherinum tenuissimum and S. xanthum spp. nov. are described based on a combination of morphological features and molecular evidence. Steccherinum tenuissimum is characterized by an annual growth habit, resupinate basidiomata with an odontioid hymenial surface, a dimitic hyphal system with clamped generative hyphae, strongly encrusted cystidia and basidiospores measuring 3-5 × 2-3.5 µm. Steccherinum xanthum is characterized by odontioid basidiomata and a monomitic hyphal system with generative hyphae bearing clamp connections and covering by crystals, colourless, thin-walled, smooth, IKI-, CB-and has basidiospores measuring 2.7-5.5 × 1.8-4.0 µm. Sequences of the ITS and nLSU nrRNA gene regions of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony and Bayesian inference methods. The phylogenetic analyses based on molecular data of ITS + nLSU sequences showed that two new Steccherinum species felled into the residual polyporoid clade. Further investigation was obtained for more representative taxa in Steccherinum based on ITS + nLSU sequences, which demonstrated that S. tenuissimum and S. xanthum were sister to S. robustius with high support (100% BP, 100% BS and 1.00 BPP).


Assuntos
Filogenia , Polyporales/genética , China , DNA Fúngico/genética , Hifas/classificação , Hifas/genética , Hifas/crescimento & desenvolvimento , Polyporales/classificação , Polyporales/crescimento & desenvolvimento , Análise de Sequência de DNA , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
11.
Curr Genet ; 67(2): 249-254, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33388851

RESUMO

Morphological transitions in Candida species are key factors in facilitating invasion and adapting to environmental changes. N-acetylglucosamine (GlcNAc) is a monosaccharide signalling molecule that can regulate morphological transitions in Candida albicans and Candida tropicalis. Interestingly, although the uptake and metabolic pathways of GlcNAc and GlcNAc-mediated white-to-opaque cell switching are similar between the two Candida species, GlcNAc induces hyphal development in C. albicans, whereas it suppresses hyphal development in C. tropicalis. These findings indicate that the characteristics of C. albicans and C. tropicalis in response to GlcNAc are remarkably different. Here, we compare the conserved and divergent GlcNAc-mediated signalling pathways and catabolism between the two Candida species. Deletion of NGT1, a GlcNAc transportation gene, inhibited hyphal formation in C. albicans but promoted hyphal development in C. tropicalis. To further understand these opposite effects on filamentous growth in response to GlcNAc in the two Candida species, the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signalling pathways in both C. albicans and C. tropicalis were compared. Interestingly, GlcNAc activated the cAMP/PKA signalling pathway of the two Candida species, suggesting that the hyphal development-regulated circuit is remarkably diverse between the two species. Indeed, the Ndt80-like gene REP1, which is critical for regulating GlcNAc catabolism, exhibits distinct roles in the hyphal development of C. albicans and C. tropicalis. These data suggest possible reasons for the divergent hyphal growth response in C. albicans and C. tropicalis upon GlcNAc induction.


Assuntos
Acetilglucosamina/genética , Proteínas Fúngicas/genética , Hifas/genética , N-Acetilglucosaminiltransferases/genética , Acetilglucosamina/metabolismo , Transporte Biológico/genética , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida tropicalis/genética , Candida tropicalis/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Transdução de Sinais/genética
12.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008833

RESUMO

Protein glycosylation requires dolichyl phosphate as a carbohydrate carrier. Dolichols are α-saturated polyprenols, and their saturation in S. cerevisiae is catalyzed by polyprenyl reductase Dfg10 together with some other unknown enzymes. The aim of this study was to identify such enzymes in Candida. The Dfg10 polyprenyl reductase from S. cerevisiae comprises a C-terminal 3-oxo-5-alpha-steroid 4-dehydrogenase domain. Alignment analysis revealed such a domain in two ORFs (orf19.209 and orf19.3293) from C. albicans, which were similar, respectively, to Dfg10 polyprenyl reductase and Tsc13 enoyl-transferase from S. cerevisiae. Deletion of orf19.209 in Candida impaired saturation of polyprenols. The Tsc13 homologue turned out not to be capable of saturating polyprenols, but limiting its expression reduce the cellular level of dolichols and polyprenols. This reduction was not due to a decreased expression of genes encoding cis-prenyltransferases from the dolichol branch but to a lower expression of genes encoding enzymes of the early stages of the mevalonate pathway. Despite the resulting lower consumption of acetyl-CoA, the sole precursor of the mevalonate pathway, it was not redirected towards fatty acid synthesis or elongation. Lowering the expression of TSC13 decreased the expression of the ACC1 gene encoding acetyl-CoA carboxylase, the key regulatory enzyme of fatty acid synthesis and elongation.


Assuntos
Candida albicans/metabolismo , Dolicóis/biossíntese , Ácidos Graxos/metabolismo , Acetilcoenzima A/metabolismo , Sequência de Aminoácidos , Candida albicans/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Humanos , Hifas/crescimento & desenvolvimento , Ácido Mevalônico/metabolismo , Mutação/genética , Filogenia , Poliprenois/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
13.
Metallomics ; 12(12): 2174-2185, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33320152

RESUMO

Iron is an essential nutrient but is toxic in excess mainly under acidic conditions. Yeasts have emerged as low cost, highly efficient soil inoculants for the decontamination of metal-polluted areas, harnessing an increasing understanding of their metal tolerance mechanisms. Here, we investigated the effects of extracellular iron and acid pH stress on the dimorphism of Yarrowia lipolytica. Its growth was unaffected by 1 or 2 mM FeSO4, while a strong cellular iron accumulation was detected. However, the iron treatments decreased the hyphal length and number, mainly at 2 mM FeSO4 and pH 4.5. Inward cell membrane H+ fluxes were found at pH 4.5 and 6.0 correlated with a pH increase at the cell surface and a conspicuous yeast-to-hypha transition activity. Conversely, a remarkable H+ efflux was detected at pH 3.0, related to the extracellular microenvironment acidification and inhibition of yeast-to-hypha transition. Iron treatments intensified H+ influxes at pH 4.5 and 6.0 and inhibited H+ efflux at pH 3.0. Moreover, iron treatments inhibited the expression and activities of the plasma membrane H+-ATPase, with the H+ transport inhibited to a greater extent than the ATP hydrolysis, suggesting an iron-induced uncoupling of the pump. Our data indicate that Y. lipolytica adaptations to high iron and acidic environments occur at the expense of remodelling the yeast morphogenesis through a cellular pH modulation by H+-ATPases and H+ coupled transporters, highlighting the capacity of this non-conventional yeast to accumulate high amounts of iron and its potential application for bioremediation.


Assuntos
Proteínas Fúngicas/metabolismo , Ferro/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Yarrowia/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Concentração de Íons de Hidrogênio , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Yarrowia/metabolismo
14.
Cell Host Microbe ; 28(6): 798-812.e6, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33022213

RESUMO

Phagosomes must maintain membrane integrity to exert their microbicidal function. Some microorganisms, however, survive and grow within phagosomes. In such instances, phagosomes must expand to avoid rupture and microbial escape. We studied whether phagosomes regulate their size to preserve integrity during infection with the fungal pathogen Candida albicans. Phagosomes release calcium as C. albicans hyphae elongate, inducing lysosome recruitment and insertion, thereby increasing the phagosomal surface area. As hyphae grow, the expanding phagosome consumes the majority of free lysosomes. Simultaneously, lysosome biosynthesis is stimulated by activation of TFEB, a transcriptional regulator of lysosomal biogenesis. Preventing lysosomal insertion causes phagosomal rupture, NLRP3 inflammasome activation, IL-1ß secretion and host-cell death. Whole-genome transcriptomic analysis demonstrate that stress responses elicited in C. albicans upon engulfment are reversed if phagosome expansion is prevented. Our findings reveal a mechanism whereby phagosomes maintain integrity while expanding, ensuring that growing pathogens remain entrapped within this microbicidal compartment.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Candida albicans/crescimento & desenvolvimento , Inflamassomos/metabolismo , Lisossomos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fagossomos/fisiologia , Animais , Cálcio/metabolismo , Morte Celular , Linhagem Celular , Células Cultivadas , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Hifas/crescimento & desenvolvimento , Interleucina-1beta/metabolismo , Macrófagos/microbiologia , Macrófagos/fisiologia , Masculino , Fusão de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Micoses/metabolismo , Micoses/microbiologia , Fagocitose
15.
Virulence ; 11(1): 1329-1336, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33017225

RESUMO

Pseudomonas aeruginosa (PA) and Aspergillus fumigatus (AF) chronically colonize the airways of patients with cystic fibrosis or chronic immunosuppression and mutually affect each other's pathogenesis. Here, we evaluated IncuCyte time-lapse imaging and NeuroTrackTM (NT) analysis (Wurster et al., 2019, mBio) as a toolbox to study mycelial expansion and morphogenesis of AF during interaction with PA. Co-incubation of AF with supernatant filtrates of wild-type (WT) PA strains strongly inhibited hyphal growth and branching. Consonant with prior metabolic studies, pyoverdine-deficient PA mutants had significantly attenuated inhibitory capacity. Accordingly, purified PA products pyoverdine and pyocyanin suppressed mycelial expansion of AF in a concentration-dependent way. Using fluorescence-guided tracking of GFP-AF293 mycelia during co-culture with live WT PA cells, we found significant inoculum-dependent mycelial growth inhibition and robust precision of the NT algorithm. Collectively, our experiments position IncuCyte NT as an efficient platform for longitudinal analysis of fungal growth and morphogenesis during bacterial co-infection.


Assuntos
Aspergillus fumigatus/citologia , Aspergillus fumigatus/crescimento & desenvolvimento , Interações Microbianas , Pseudomonas aeruginosa/fisiologia , Imagem com Lapso de Tempo/métodos , Biofilmes/crescimento & desenvolvimento , Proteínas de Fluorescência Verde , Humanos , Hifas/crescimento & desenvolvimento , Imagem Óptica/métodos
16.
Virulence ; 11(1): 1415-1431, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103596

RESUMO

ENA1 and ENA2 are P-type IID/ENA Na+/K+-ATPases required for cellular homeostasis in yeasts but remain poorly understood in filamentous fungal insect pathogens. Here, we characterized seven genes encoding five ENA1/2 homologues (ENA1a-c and ENA2a/b) and two P-type IIC/NK Na+/K+-ATPases (NK1/2) in Beauveria bassiana, an insect-pathogenic fungus serving as a main source of fungal insecticides worldwide. Most of these genes were highly responsive to alkaline pH and Na+/K+ cues at transcription level. Cellular Na+, K+ and H+ homeostasis was disturbed only in the absence of ena1a or ena2b. The disturbed homeostasis featured acceleration of vacuolar acidification, elevation of cytosolic Na+/K+ level at pH 5.0 to 9.0, and stabilization of extracellular H+ level to initial pH 7.5 during a 5-day period of submerged incubation. Despite little defect in hyphal growth and asexual development, the Δena1a and Δena2b mutants were less tolerant to metal cations (Na+, K+, Li+, Zn2+, Mn2+ and Fe3+), cell wall perturbation, oxidation, non-cation hyperosmolarity and UVB irradiation, severely compromised in insect pathogenicity via normal cuticle infection, and attenuated in virulence via hemocoel injection. The deletion mutants of five other ENA and NK genes showed little change in vacuolar pH and all examined phenotypes. Therefore, only ENA1a and ENA2b evidently involved in both transmembrane and vacuolar activities are essential for cellular cation homeostasis, insect pathogenicity and multiple stress tolerance in B. bassiana. These findings provide a novel insight into ENA1a- and ENA2b-dependent vacuolar pH stability, cation-homeostatic process and fungal fitness to host insect and environment.


Assuntos
Beauveria/enzimologia , Beauveria/patogenicidade , Homeostase , Mariposas/microbiologia , ATPase Trocadora de Sódio-Potássio/genética , Animais , Beauveria/genética , Proteínas Fúngicas/genética , Hifas/crescimento & desenvolvimento , Larva/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Estresse Fisiológico , Vacúolos/química , Virulência
17.
Future Microbiol ; 15: 1363-1377, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33085539

RESUMO

Aim: Inositol polyphosphate kinases are involved in regulation of many cellular processes in eukaryotic cells. In this study, we investigated the functions of the inositol polyphosphate kinase Vip1 in autophagy and pathogenicity of Candida albicans. Results: Loss of Vip1 caused significantly increased sensitivity to nitrogen source starvation, abnormal localization and degradation of autophagy protein, higher vacuolar pH and higher (rather than lower) intracellular ATP levels compared with control strains. Besides, the mutant showed attenuated hyphal development and virulence during systemic infection to mice. Conclusion: The results reveal that Vip1 is important to autophagy of C. albicans. The maintenance of vacuolar acidic pH contributed to the role of Vip1 in autophagy. Vip1 is also required for pathogenicity of C. albicans.


Assuntos
Autofagia , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Autofagossomos/metabolismo , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candidíase/microbiologia , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Hifas/crescimento & desenvolvimento , Fosfatos de Inositol/metabolismo , Rim/microbiologia , Camundongos , Mutação , Nitrogênio/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Vacúolos/química , Vacúolos/metabolismo , Virulência
18.
J Nat Prod ; 83(9): 2718-2726, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32881504

RESUMO

Campafungin A is a polyketide that was recognized in the Candida albicans fitness test due to its antiproliferative and antihyphal activity. Its mode of action was hypothesized to involve inhibition of a cAMP-dependent PKA pathway. The originally proposed structure appeared to require a polyketide assembled in a somewhat unusual fashion. However, structural characterization data were never formally published. This background stimulated a reinvestigation in which campafungin A and three closely related minor constituents were purified from fermentations of a strain of the ascomycete fungus Plenodomus enteroleucus. Labeling studies, along with extensive NMR analysis, enabled assignment of a revised structure consistent with conventional polyketide synthetic machinery. The structure elucidation of campafungin A and new analogues encountered in this study, designated here as campafungins B, C, and D, is presented, along with a proposed biosynthetic route. The antimicrobial spectrum was expanded to methicillin-resistant Staphylococcus aureus, Candida tropicalis, Candida glabrata, Cryptococcus neoformans, Aspergillus fumigatus, and Schizosaccharomyces pombe, with MICs ranging as low as 4-8 µg mL-1 in C. neoformans. Mode-of-action studies employing libraries of C. neoformans mutants indicated that multiple pathways were affected, but mutants in PKA/cAMP pathways were unaffected, indicating that the mode of action was distinct from that observed in C. albicans.


Assuntos
Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Ascomicetos/química , Ascomicetos/metabolismo , Bactérias/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Fermentação , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Policetídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos
19.
Fungal Genet Biol ; 144: 103465, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32949723

RESUMO

Wild-type filamentous fungus Neurospora crassa continues to grow its hyphae for a very lengthy period of time (>2 years), whereas mutations at the natural death (nd) locus shorten life span (approximately 20 days). By positional cloning based on heat augmented mutagen sensitivity of the nd strain, we identified a nonsense mutation in the msh1 gene, an eukaryotic homolog of bacterial MutS, and this mutation resulted in encoding non-functional polypeptide. By tagging with GFP, subcellular localization of the MSH1 protein in the mitochondria was observed, and knock out of the msh1 gene caused severe growth deficiency accompanying mitochondrial DNA (mtDNA) aberrations such as large-scale mtDNA deletions and rearrangements as seen in the nd strain. These results suggested that MSH1 may maintain mtDNA integrity. Thus, loss of function compromises mtDNA, leading to the acceleration of cellular aging.


Assuntos
DNA Mitocondrial/genética , Hifas/genética , Longevidade/genética , Proteínas MutS/genética , Sequência de Aminoácidos/genética , Códon sem Sentido/genética , Proteínas de Ligação a DNA/genética , Hifas/crescimento & desenvolvimento , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Recombinação Genética/genética , Saccharomyces cerevisiae/genética
20.
mSphere ; 5(4)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848004

RESUMO

Filamentous fungi produce small cysteine-rich proteins with potent, specific antifungal activity, offering the potential to fight fungal infections that severely threaten human health and food safety and security. The genome of the citrus postharvest fungal pathogen Penicillium digitatum encodes one of these antifungal proteins, namely AfpB. Biotechnologically produced AfpB inhibited the growth of major pathogenic fungi at minimal concentrations, surprisingly including its parental fungus, and conferred protection to crop plants against fungal infections. This study reports an in-depth characterization of the AfpB mechanism of action, showing that it is a cell-penetrating protein that triggers a regulated cell death program in the target fungus. We prove the importance of AfpB interaction with the fungal cell wall to exert its killing activity, for which protein mannosylation is required. We also show that the potent activity of AfpB correlates with its rapid and efficient uptake by fungal cells through an energy-dependent process. Once internalized, AfpB induces a transcriptional reprogramming signaled by reactive oxygen species that ends in cell death. Our data show that AfpB activates a self-injury program, suggesting that this protein has a biological function in the parental fungus beyond defense against competitors, presumably more related to regulation of the fungal population. Our results demonstrate that this protein is a potent antifungal that acts through various targets to kill fungal cells through a regulated process, making AfpB a promising compound for the development of novel biofungicides with multiple fields of application in crop and postharvest protection, food preservation, and medical therapies.IMPORTANCE Disease-causing fungi pose a serious threat to human health and food safety and security. The limited number of licensed antifungals, together with the emergence of pathogenic fungi with multiple resistance to available antifungals, represents a serious challenge for medicine and agriculture. Therefore, there is an urgent need for new compounds with high fungal specificity and novel antifungal mechanisms. Antifungal proteins in general, and AfpB from Penicillium digitatum in particular, are promising molecules for the development of novel antifungals. This study on AfpB's mode of action demonstrates its potent, specific fungicidal activity through the interaction with multiple targets, presumably reducing the risk of evolving fungal resistance, and through a regulated cell death process, uncovering this protein as an excellent candidate for a novel biofungicide. The in-depth knowledge on AfpB mechanistic function presented in this work is important to guide its possible future clinical and agricultural applications.


Assuntos
Proteínas Fúngicas/genética , Penicillium/citologia , Penicillium/genética , Morte Celular Regulada/genética , Parede Celular/metabolismo , Citrus/microbiologia , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA