Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Microbiol Spectr ; 12(8): e0031124, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916312

RESUMO

Helicobacter pylori is a microaerophilic Gram-negative bacterium that resides in the human stomach and is classified as a class I carcinogen for gastric cancer. Numerous studies have demonstrated that H. pylori infection plays a role in regulating the function of host cells, thereby contributing to the malignant transformation of these cells. However, H. pylori infection is a chronic process, and short-term cellular experiments may not provide a comprehensive understanding of the in vivo situation, especially when considering the lower oxygen levels in the human stomach. In this study, we aimed to investigate the mechanisms underlying gastric cell dysfunction after prolonged exposure to H. pylori under hypoxic conditions. We conducted a co-culture experiment using the gastric cell line GES-1 and H. pylori for 30 generations under intermittent hypoxic conditions. By closely monitoring cell proliferation, migration, invasion, autophagy, and apoptosis, we revealed that sustained H. pylori stimulation under hypoxic conditions significantly influences the function of GES-1 cells. This stimulation induces epithelial-mesenchymal transition and contributes to the propensity for malignant transformation of gastric cells. To confirm the in vitro results, we conducted an experiment involving Mongolian gerbils infected with H. pylori for 85 weeks. All the results strongly suggest that the Nod1 receptor signaling pathway plays a crucial role in H. pylori-related apoptosis and autophagy. In summary, continuous stimulation by H. pylori affects the functioning of gastric cells through the Nod1 receptor signaling pathway, increasing the likelihood of cell carcinogenesis. The presence of hypoxic conditions further exacerbates this process.IMPORTANCEDeciphering the collaborative effects of Helicobacter pylori infection on gastric epithelial cell function is key to unraveling the development mechanisms of gastric cancer. Prior research has solely examined the outcomes of short-term H. pylori stimulation on gastric epithelial cells under aerobic conditions, neglecting the bacterium's nature as a microaerophilic organism that leads to cancer following prolonged stomach colonization. This study mimics a more genuine in vivo infection scenario by repeatedly exposing gastric epithelial cells to H. pylori under hypoxic conditions for up to 30 generations. The results show that chronic exposure to H. pylori in hypoxia substantially increases cell migration, invasion, and epithelial-mesenchymal transition, while suppressing autophagy and apoptosis. This highlights the significance of hypoxic conditions in intensifying the carcinogenic impact of H. pylori infection. By accurately replicating the in vivo gastric environment, this study enhances our comprehension of H. pylori's pathogenic mechanisms in gastric cancer.


Assuntos
Transformação Celular Neoplásica , Células Epiteliais , Transição Epitelial-Mesenquimal , Mucosa Gástrica , Gerbillinae , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Helicobacter pylori/patogenicidade , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Animais , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Humanos , Células Epiteliais/microbiologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Hipóxia/microbiologia , Linhagem Celular , Proliferação de Células , Apoptose , Movimento Celular , Autofagia , Estômago/microbiologia , Estômago/patologia
2.
J Biol Chem ; 295(30): 10493-10505, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32503843

RESUMO

The gastrointestinal tract is a highly proliferative and regenerative tissue. The intestine also harbors a large and diverse microbial population collectively called the gut microbiome (microbiota). The microbiome-intestine cross-talk includes a dynamic exchange of gaseous signaling mediators generated by bacterial and intestinal metabolisms. Moreover, the microbiome initiates and maintains the hypoxic environment of the intestine that is critical for nutrient absorption, intestinal barrier function, and innate and adaptive immune responses in the mucosal cells of the intestine. The response to hypoxia is mediated by hypoxia-inducible factors (HIFs). In hypoxic conditions, the HIF activation regulates the expression of a cohort of genes that promote adaptation to hypoxia. Physiologically, HIF-dependent genes contribute to the aforementioned maintenance of epithelial barrier function, nutrient absorption, and immune regulation. However, chronic HIF activation exacerbates disease conditions, leading to intestinal injury, inflammation, and colorectal cancer. In this review, we aim to outline the major roles of physiological and pathological hypoxic conditions in the maintenance of intestinal homeostasis and in the onset and progression of disease with a major focus on understanding the complex pathophysiology of the intestine.


Assuntos
Imunidade Adaptativa , Neoplasias Colorretais , Microbioma Gastrointestinal/imunologia , Hipóxia , Imunidade Inata , Oxigênio/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Humanos , Hipóxia/imunologia , Hipóxia/microbiologia , Hipóxia/patologia , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia
3.
Physiology (Bethesda) ; 35(4): 234-243, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490751

RESUMO

The supply of oxygen to tissues is controlled by microcirculatory blood flow. One of the more surprising discoveries in cardiovascular physiology is the critical dependence of microcirculatory blood flow on a single conserved cysteine within the ß-subunit (ßCys93) of hemoglobin (Hb). ßCys93 is the primary site of Hb S-nitrosylation [i.e., S-nitrosothiol (SNO) formation to produce S-nitrosohemoglobin (SNO-Hb)]. Notably, S-nitrosylation of ßCys93 by NO is favored in the oxygenated conformation of Hb, and deoxygenated Hb releases SNO from ßCys93. Since SNOs are vasodilatory, this mechanism provides a physiological basis for how tissue hypoxia increases microcirculatory blood flow (hypoxic autoregulation of blood flow). Mice expressing ßCys93A mutant Hb (C93A) have been applied to understand the role of ßCys93, and RBCs more generally, in cardiovascular physiology. Notably, C93A mice are unable to effect hypoxic autoregulation of blood flow and exhibit widespread tissue hypoxia. Moreover, reactive hyperemia (augmentation of blood flow following transient ischemia) is markedly impaired. C93A mice display multiple compensations to preserve RBC vasodilation and overcome tissue hypoxia, including shifting SNOs to other thiols on adult and fetal Hbs and elsewhere in RBCs, and growing new blood vessels. However, compensatory vasodilation in C93A mice is uncoupled from hypoxic control, both peripherally (e.g., predisposing to ischemic injury) and centrally (e.g., impairing hypoxic drive to breathe). Altogether, physiological studies utilizing C93A mice are confirming the allosterically controlled role of SNO-Hb in microvascular blood flow, uncovering essential roles for RBC-mediated vasodilation in cardiovascular physiology and revealing new roles for RBCs in cardiovascular disease.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Hemoglobinas/metabolismo , Hipóxia/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Animais , Hemodinâmica , Hemoglobinas/química , Humanos , Hipóxia/microbiologia , Hipóxia/patologia , Microcirculação , Vasodilatação
5.
J Physiol ; 597(12): 3029-3051, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31081119

RESUMO

KEY POINTS: Maternal obesity has been associated with shifts in intestinal microbiota, which may contribute to impaired barrier function Impaired barrier function may expose the placenta and fetus to pro-inflammatory mediators We investigated the impacts of diet-induced obesity in mice on maternal and fetal intestinal structure and placental vascularization Diet-induced obesity decreased maternal intestinal short chain fatty acids and their receptors, impaired gut barrier integrity and was associated with fetal intestinal inflammation. Placenta from obese mothers showed blood vessel immaturity, hypoxia, increased transcript levels of inflammation, autophagy and altered levels of endoplasmic reticulum stress markers. These data suggest that maternal intestinal changes probably contribute to adverse placental adaptations and also impart an increased risk of obesity in the offspring via alterations in fetal gut development. ABSTRACT: Shifts in maternal intestinal microbiota have been implicated in metabolic adaptations to pregnancy. In the present study, we generated cohorts of female C57BL/6J mice fed a control (17% kcal fat, n = 10-14) or a high-fat diet (HFD 60% kcal from fat, n = 10-14; ad libitum) aiming to investigate the impact on the maternal gut microbiota, intestinal inflammation and gut barrier integrity, placental inflammation and fetal intestinal development at embryonic day 18.5. HFD was associated with decreased relative abundances of short-chain fatty acid (SCFA) producing genera during pregnancy. These diet-induced shifts paralleled decreased maternal intestinal mRNA levels of SCFA receptor Gpr41, modestly decreased cecal butyrate, and altered mRNA levels of inflammatory cytokines and immune cell markers in the maternal intestine. Maternal HFD resulted in impaired gut barrier integrity, with corresponding increases in circulating maternal levels of lipopolysaccharide (LPS) and tumour necrosis factor. Placentas from HFD dams demonstrated blood vessel immaturity and hypoxia; decreased free carnitine, acylcarnitine derivatives and trimethylamine-N-oxide; and altered mRNA levels of inflammation, autophagy, and ER stress markers. HFD exposed fetuses had increased activation of nuclear factor-kappa B and inhibition of the unfolded protein response in the developing intestine. Taken together, these data suggest that HFD intake prior to and during pregnancy shifts the composition of the maternal gut microbiota and impairs gut barrier integrity, resulting in increased maternal circulating LPS, which may ultimate contribute to changes in placental vascularization and fetal gut development.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Hipóxia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Obesidade , Placenta/irrigação sanguínea , Animais , Feminino , Desenvolvimento Fetal , Feto , Hipóxia/metabolismo , Hipóxia/microbiologia , Hipóxia/fisiopatologia , Mucosa Intestinal/microbiologia , Lipopolissacarídeos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/fisiopatologia , Placenta/metabolismo , Gravidez
6.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30082478

RESUMO

Hypoxia modulates bacterial virulence and the inflammation response through hypoxia-inducible factor 1α (HIF-1α). Here we study the influence of hypoxia on Acinetobacter baumannii and Pseudomonas aeruginosa infections. In vitro, hypoxia increases the bactericidal activities of epithelial cells against A. baumannii and P. aeruginosa, reducing extracellular bacterial concentrations to 50.5% ± 7.5% and 90.8% ± 13.9%, respectively, at 2 h postinfection. The same phenomenon occurs in macrophages (67.6% ± 18.2% for A. baumannii at 2 h and 50.3% ± 10.9% for P. aeruginosa at 24 h). Hypoxia decreases the adherence of A. baumannii to epithelial cells (42.87% ± 8.16% at 2 h) and macrophages (52.0% ± 18.7% at 24 h), as well as that of P. aeruginosa (24.9% ± 4.5% in epithelial cells and 65.7% ± 5.5% in macrophages at 2 h). Moreover, hypoxia decreases the invasion of epithelial cells (48.6% ± 3.8%) and macrophages (8.7% ± 6.9%) by A. baumannii at 24 h postinfection and by P. aeruginosa at 2 h postinfection (75.0% ± 16.3% and 63.4% ± 5.4%, respectively). In vivo, hypoxia diminishes bacterial loads in fluids and tissues in animal models of infection by both pathogens. In contrast, mouse survival time was shorter under hypoxia (23.92 versus 36.42 h) with A. baumannii infection. No differences in the production of cytokines or HIF-1α were found between hypoxia and normoxia in vitro or in vivo We conclude that hypoxia increases the bactericidal activities of host cells against both pathogens and reduces the interaction of pathogens with host cells. Moreover, hypoxia accelerates the rate at which animals die despite the lower bacterial concentrations in vivo.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/patogenicidade , Hipóxia/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/metabolismo , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/fisiologia , Animais , Aderência Bacteriana , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Oxigênio/metabolismo , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Virulência
7.
Nat Commun ; 9(1): 2020, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789585

RESUMO

Systemic chronic hypoxia is a feature of many diseases and may influence the communication between bone marrow (BM) and gut microbiota. Here we analyse patients with cyanotic congenital heart disease (CCHD) who are experiencing chronic hypoxia and characterize the association between bone marrow mesenchymal stem cells (BMSCs) and gut microbiome under systemic hypoxia. We observe premature senescence of BMSCs and abnormal D-galactose accumulation in patients with CCHD. The hypoxia that these patients experience results in an altered diversity of gut microbial communities, with a remarkable decrease in the number of Lactobacilli and a noticeable reduction in the amount of enzyme-degraded D-galactose. Replenishing chronic hypoxic rats with Lactobacillus reduced the accumulation of D-galactose and restored the deficient BMSCs. Together, our findings show that chronic hypoxia predisposes BMSCs to premature senescence, which may be due to gut dysbiosis and thus induced D-galactose accumulation.


Assuntos
Células da Medula Óssea/microbiologia , Cianose/microbiologia , Microbioma Gastrointestinal , Cardiopatias Congênitas/microbiologia , Hipóxia/microbiologia , Células-Tronco Mesenquimais/microbiologia , Animais , Animais Recém-Nascidos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Senescência Celular , Pré-Escolar , Doença Crônica , Cianose/metabolismo , Cianose/patologia , Modelos Animais de Doenças , Feminino , Galactose/metabolismo , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Lactente , Lactobacillus/fisiologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Ratos , Ratos Sprague-Dawley
8.
Chest ; 154(4): 754-759, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29548630

RESUMO

OSA has emerged as a highly prevalent public health problem that imposes important mid- and long-term consequences, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. OSA is characterized by increased upper airway resistance, alveolar hypoventilation, and recurrent upper airway obstruction during sleep. Recurrent collapse of the upper airway develops with sleep onset and is associated with both intermittent hypoxemia and sleep fragmentation. The microbiome is a vast and complex polymicrobial ecosystem that coexists with the human organism, and it has been identified as playing significant roles in the development of host immunologic phenotypes. In humans and animal models, changes in gut microbial communities occur with lifestyle behaviors, such as smoking, long-distance travel, dietary preferences, physical exercise, and circadian rhythm disturbances. In parallel, diseases previously attributed in part to lifestyle such as obesity, coronary heart disease, depression, and asthma (also associated with OSA) are now claimed as microbiota related. We therefore posit that altered patterns of sleep and oxygenation, as seen in OSA, will promote specific alterations in gut microbiota that in turn will elicit the immunologic alterations that lead to OSA-induced end-organ morbidities. The present article assesses the potential mechanistic links between OSA-induced changes in gut microbiota and its morbid phenotypes.


Assuntos
Microbioma Gastrointestinal/fisiologia , Apneia Obstrutiva do Sono/microbiologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/microbiologia , Ritmo Circadiano , Humanos , Hipertensão/imunologia , Hipertensão/microbiologia , Hipóxia/imunologia , Hipóxia/microbiologia , Fatores de Risco , Apneia Obstrutiva do Sono/imunologia
9.
PLoS Pathog ; 13(11): e1006752, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29176894

RESUMO

The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen.


Assuntos
Coenzimas/biossíntese , Transferência Genética Horizontal , Metaloproteínas/biossíntese , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxigênio/metabolismo , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Hipóxia/metabolismo , Hipóxia/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Cofatores de Molibdênio , Mycobacterium/genética , Mycobacterium/metabolismo , Nitratos/metabolismo , Pteridinas , Tuberculose/metabolismo
10.
Int J Mol Sci ; 18(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28973965

RESUMO

One of the most common urologic problems afflicting millions of people worldwide is urinary tract infection (UTI). The severity of UTIs ranges from asymptomatic bacteriuria to acute cystitis, and in severe cases, pyelonephritis and urosepsis. The primary cause of UTIs is uropathogenic Escherichia coli (UPEC), for which current antibiotic therapies often fail. UPEC forms multicellular communities known as biofilms on urinary catheters, as well as on and within bladder epithelial cells. Biofilm formation protects UPEC from environmental conditions, antimicrobial therapy, and the host immune system. Previous studies have investigated UPEC biofilm formation in aerobic conditions (21% oxygen); however, urine oxygen tension is reduced (4-6%), and urine contains molecules that can be used by UPEC as alternative terminal electron acceptors (ATEAs) for respiration. This study was designed to determine whether these different terminal electron acceptors utilized by E. coli influence biofilm formation. A panel of 50 urine-associated E. coli isolates was tested for the ability to form biofilm under anaerobic conditions and in the presence of ATEAs. Biofilm production was reduced under all tested sub-atmospheric levels of oxygen, with the notable exception of 4% oxygen, the reported concentration of oxygen within the bladder.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções por Escherichia coli/metabolismo , Oxigênio/metabolismo , Bexiga Urinária/microbiologia , Infecções Urinárias/metabolismo , Escherichia coli Uropatogênica/fisiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/urina , Humanos , Hipóxia/metabolismo , Hipóxia/microbiologia , Hipóxia/urina , Oxigênio/urina , Infecções Urinárias/microbiologia , Infecções Urinárias/urina
11.
Clin Infect Dis ; 65(4): 595-603, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28430880

RESUMO

Background: Cerebral abscess is a recognized complication of pulmonary arteriovenous malformations (PAVMs) that allow systemic venous blood to bypass the pulmonary capillary bed through anatomic right-to-left shunts. Broader implications and mechanisms remain poorly explored. Methods: Between June 2005 and December 2016, at a single institution, 445 consecutive adult patients with computed tomography-confirmed PAVMs (including 403 [90.5%] with hereditary hemorrhagic telangiectasia) were recruited to a prospective series. Multivariate logistic regression was performed and detailed periabscess histories were evaluated to identify potential associations with cerebral abscess. Rates were compared to an earlier nonoverlapping series. Results: Thirty-seven of the 445 (8.3%) patients experienced a cerebral abscess at a median age of 50 years (range, 19-76 years). The rate adjusted for ascertainment bias was 27 of 435 (6.2%). Twenty-nine of 37 (78.4%) patients with abscess had no PAVM diagnosis prior to their abscess, a rate unchanged from earlier UK series. Twenty-one of 37 (56.7%) suffered residual neurological deficits (most commonly memory/cognition impairment), hemiparesis, and visual defects. Isolation of periodontal microbes, and precipitating dental and other interventional events, emphasized potential sources of endovascular inoculations. In multivariate logistic regression, cerebral abscess was associated with low oxygen saturation (indicating greater right-to-left shunting); higher transferrin iron saturation index; intravenous iron use for anemia (adjusted odds ratio, 5.4 [95% confidence interval, 1.4-21.1]); male sex; and venous thromboemboli. There were no relationships with anatomic attributes of PAVMs, or red cell indices often increased due to secondary polycythemia. Conclusions: Greater appreciation of the risk of cerebral abscess in undiagnosed PAVMs is required. Lower oxygen saturation and intravenous iron may be modifiable risk factors.


Assuntos
Malformações Arteriovenosas , Bacteriemia , Abscesso Encefálico , Hipóxia , Telangiectasia Hemorrágica Hereditária , Adulto , Idoso , Malformações Arteriovenosas/complicações , Malformações Arteriovenosas/epidemiologia , Malformações Arteriovenosas/microbiologia , Malformações Arteriovenosas/fisiopatologia , Bacteriemia/complicações , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Bacteriemia/fisiopatologia , Abscesso Encefálico/complicações , Abscesso Encefálico/epidemiologia , Abscesso Encefálico/microbiologia , Abscesso Encefálico/fisiopatologia , Feminino , Humanos , Hipóxia/complicações , Hipóxia/epidemiologia , Hipóxia/microbiologia , Hipóxia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Morbidade , Estudos Prospectivos , Artéria Pulmonar/anormalidades , Veias Pulmonares/anormalidades , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/epidemiologia , Telangiectasia Hemorrágica Hereditária/microbiologia , Telangiectasia Hemorrágica Hereditária/fisiopatologia , Adulto Jovem
12.
J Infect Dis ; 214(8): 1205-11, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27534685

RESUMO

BACKGROUND: It is unknown whether immunosuppression influences the physiologic state of Mycobacterium tuberculosis in vivo. We evaluated the impact of host immunity by comparing M. tuberculosis and human gene transcription in sputum between human immunodeficiency virus (HIV)-infected and uninfected patients with tuberculosis. METHODS: We collected sputum specimens before treatment from Gambians and Ugandans with pulmonary tuberculosis, revealed by positive results of acid-fast bacillus smears. We quantified expression of 2179 M. tuberculosis genes and 234 human immune genes via quantitative reverse transcription-polymerase chain reaction. We summarized genes from key functional categories with significantly increased or decreased expression. RESULTS: A total of 24 of 65 patients with tuberculosis were HIV infected. M. tuberculosis DosR regulon genes were less highly expressed among HIV-infected patients with tuberculosis than among HIV-uninfected patients with tuberculosis (Gambia, P < .0001; Uganda, P = .037). In profiling of human genes from the same sputa, HIV-infected patients had 3.4-fold lower expression of IFNG (P = .005), 4.9-fold higher expression of ARG1 (P = .0006), and 3.4-fold higher expression of IL10 (P = .0002) than in HIV-uninfected patients with tuberculosis. CONCLUSIONS: M. tuberculosis in HIV-infected patients had lower expression of the DosR regulon, a critical metabolic and immunomodulatory switch induced by NO, carbon monoxide, and hypoxia. Our human data suggest that decreased DosR expression may result from alternative pathway activation of macrophages, with consequent decreased NO expression and/or by poor granuloma formation with consequent decreased hypoxic stress.


Assuntos
Adaptação Fisiológica/imunologia , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Adulto , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA , Gâmbia , Granuloma/genética , Granuloma/imunologia , Granuloma/microbiologia , Infecções por HIV/genética , Humanos , Hipóxia/imunologia , Hipóxia/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Óxidos de Nitrogênio/imunologia , Proteínas Quinases/genética , Regulon/genética , Regulon/imunologia , Escarro/microbiologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/microbiologia , Uganda
13.
Nature ; 517(7536): 612-5, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25470057

RESUMO

Pathogenic mycobacteria induce the formation of complex cellular aggregates called granulomas that are the hallmark of tuberculosis. Here we examine the development and consequences of vascularization of the tuberculous granuloma in the zebrafish-Mycobacterium marinum infection model, which is characterized by organized granulomas with necrotic cores that bear striking resemblance to those of human tuberculosis. Using intravital microscopy in the transparent larval zebrafish, we show that granuloma formation is intimately associated with angiogenesis. The initiation of angiogenesis in turn coincides with the generation of local hypoxia and transcriptional induction of the canonical pro-angiogenic molecule Vegfaa. Pharmacological inhibition of the Vegf pathway suppresses granuloma-associated angiogenesis, reduces infection burden and limits dissemination. Moreover, anti-angiogenic therapies synergize with the first-line anti-tubercular antibiotic rifampicin, as well as with the antibiotic metronidazole, which targets hypoxic bacterial populations. Our data indicate that mycobacteria induce granuloma-associated angiogenesis, which promotes mycobacterial growth and increases spread of infection to new tissue sites. We propose the use of anti-angiogenic agents, now being used in cancer regimens, as a host-targeting tuberculosis therapy, particularly in extensively drug-resistant disease for which current antibiotic regimens are largely ineffective.


Assuntos
Inibidores da Angiogênese/farmacologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/crescimento & desenvolvimento , Neovascularização Patológica/microbiologia , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/microbiologia , Inibidores da Angiogênese/uso terapêutico , Animais , Antibióticos Antituberculose/farmacologia , Carga Bacteriana/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Granuloma/tratamento farmacológico , Granuloma/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Hipóxia/metabolismo , Hipóxia/microbiologia , Hipóxia/patologia , Larva/efeitos dos fármacos , Larva/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/metabolismo , Infecções por Mycobacterium não Tuberculosas/patologia , Mycobacterium marinum/patogenicidade , Neovascularização Patológica/tratamento farmacológico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
14.
Indian J Exp Biol ; 52(11): 1098-105, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25434105

RESUMO

At high altitude (HA) hypobaric hypoxic environment manifested several pathophysiological consequences of which gastrointestinal (GI) disorder are very common phenomena. To explore the most possible clue behind this disorder intestinal flora, the major player of the GI functions, were subjected following simulated hypobaric hypoxic treatment in model animal. For this, male albino rats were exposed to 55 kPa (approximately 4872.9 m) air pressure consecutively for 30 days for 8 h/day and its small intestinal microflora, their secreted digestive enzymes and stress induced marker protein were investigated of the luminal epithelia. It was observed that population density of total aerobes significantly decreased, but the quantity of total anaerobes and Escherichia coli increased significantly after 30 days of hypoxic stress. The population density of strict anaerobes like Bifidobacterium sp., Bacteroides sp. and Lactobacillus sp. and obligate anaerobes like Clostridium perfringens and Peptostreptococcus sp. were expanded along with their positive growth direction index (GDI). In relation to the huge multiplication of anaerobes the amount of gas formation as well as content of IgA and IgG increased in duration dependent manner. The activity of some luminal enzymes from microbial origin like a-amylase, gluco-amylase, proteinase, alkaline phosphatase and beta-glucuronidase were also elevated in hypoxic condition. Besides, hypoxia induced in formation of malondialdehyde along with significant attenuation of catalase, glutathione peroxidase, superoxide dismutase activity and lowered GSH/GSSG pool in the intestinal epithelia. Histological study revealed disruption of intestinal epithelial barrier with higher infiltration of lymphocytes in lamina propia and atrophic structure. It can be concluded that hypoxia at HA modified GI microbial imprint and subsequently causes epithelial barrier dysfunction which may relate to the small intestinal dysfunction at HA.


Assuntos
Aclimatação/fisiologia , Pressão Atmosférica , Bactérias Aeróbias/isolamento & purificação , Bactérias Anaeróbias/isolamento & purificação , Hipóxia/microbiologia , Íleo/microbiologia , Microbiota/fisiologia , Altitude , Animais , Câmaras de Exposição Atmosférica , Bactérias Aeróbias/enzimologia , Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/metabolismo , Catalase/análise , Digestão/fisiologia , Modelos Animais de Doenças , Enzimas/metabolismo , Fezes/enzimologia , Glutationa/análise , Hipóxia/etiologia , Hipóxia/fisiopatologia , Íleo/enzimologia , Íleo/ultraestrutura , Peroxidação de Lipídeos , Masculino , Distribuição Aleatória , Ratos , Estresse Fisiológico/fisiologia , Superóxido Dismutase/análise
15.
PLoS Pathog ; 10(9): e1004394, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25233380

RESUMO

Mycobacterium tuberculosis (Mtb) remains a major public health problem, with an effective vaccine continuing to prove elusive. Progress in vaccination strategies has been hampered by a lack of appreciation of the bacterium's response to dynamic changes in the host immune environment. Here, we utilize reporter Mtb strains that respond to specific host immune stresses such as hypoxia and nitric oxide (hspX'::GFP), and phagosomal maturation (rv2390c'::GFP), to investigate vaccine-induced alterations in the environmental niche during experimental murine infections. While vaccination undoubtedly decreased bacterial burden, we found that it also appeared to accelerate Mtb's adoption of a phenotype better equipped to survive in its host. We subsequently utilized a novel replication reporter strain of Mtb to demonstrate that, in addition to these alterations in host stress response, there is a decreased percentage of actively replicating Mtb in vaccinated hosts. This observation was supported by the differential sensitivity of recovered bacteria to the front-line drug isoniazid. Our study documents the natural history of the impact that vaccination has on Mtb's physiology and replication and highlights the value of reporter Mtb strains for probing heterogeneous Mtb populations in the context of a complex, whole animal model.


Assuntos
Imunofluorescência/métodos , Genes Reporter , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/uso terapêutico , Tuberculose/imunologia , Animais , Antituberculosos/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Hipóxia/imunologia , Hipóxia/microbiologia , Isoniazida/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/imunologia , Vacinação
16.
World J Gastroenterol ; 20(16): 4662-74, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24782618

RESUMO

AIM: To investigate the protective effect of glutamine (Gln) on intestinal injury and the bacterial community in rats exposed to hypobaric hypoxia environment. METHODS: Sprague-Dawley rats were divided into control, hypobaric hypoxia (HH), and hypobaric hypoxia + Gln (5.0 g/kg BW·d) (HG) groups. On the first 3 d, all rats were placed in a normal environment. After the third day, the HH and HG groups were transferred into a hypobaric chamber at a simulated elevation of 7000 m for 5 d. The rats in the HG group were given Gln by gavage daily for 8 d. The rats in the control and HH groups were treated with the same volume of saline. The intestinal morphology, serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ) and diamino oxidase (DAO) were examined. We also evaluated the expression levels of occludin, toll-like receptor 4 (TLR4), nuclear factor-κB p65 (NF-κB p65) and myeloid differentiation factor 88 (MyD88), and examined the bacterial community in caecal contents. RESULTS: Hypobaric hypoxia induced the enlargement of the heart, liver, lung and kidney, and caused spleen atrophy. Intestinal villi damage was also observed in the HH group. Supplementation with Gln significantly alleviated hypobaric-induced damage to main organs including the intestine, increased serum SOD (1.14 ± 0.03 vs 0.88 ± 0.04, P < 0.05) and MDA (8.35 ± 1.60, P < 0.01) levels and decreased serum IL-6 (1172.13±30.49 vs 1407.05 ± 34.36, P < 0.05), TNF-α (77.46 ± 0.78 vs 123.70 ± 3.03, P < 0.001), IFN-γ (1355.42 ± 72.80 vs 1830.16 ± 42.07, P < 0.01) and DAO (629.30 ± 9.15 vs 524.10 ± 13.34, P < 0.001) levels. Moreover, Gln significantly increased occludin (0.72 ± 0.05 vs 0.09 ± 0.01, P < 0.001), TLR4 (0.15 ± 0.05 vs 0.30 ±0.09, P < 0.05), MyD88 (0.32 ± 0.08 vs 0.71 ± 0.06, P < 0.01), and NF-κB p65 (0.16 ± 0.04 vs 0.44 ± 0.03, P < 0.01) expression levels and improved the intestinal bacterial community. CONCLUSION: Gln treatment protects from intestinal injury and regulates the gut flora imbalance in hypoxia environment. These effects may be related to the TLR4/MyD88/NF-κB signaling pathway.


Assuntos
Bactérias/efeitos dos fármacos , Glutamina/farmacologia , Hipóxia/tratamento farmacológico , Intestinos/efeitos dos fármacos , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Citocinas/sangue , Citoproteção , Modelos Animais de Doenças , Hipóxia/imunologia , Hipóxia/metabolismo , Hipóxia/microbiologia , Hipóxia/patologia , Mediadores da Inflamação/sangue , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Masculino , Malondialdeído/sangue , Fator 88 de Diferenciação Mieloide/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/sangue , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
17.
J Biol Chem ; 289(7): 4180-90, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24366872

RESUMO

Hypoxia is considered to be a contributor to the pathology associated with administration of anthrax lethal toxin (LT). However, we report here that serum lactate levels in LT-treated mice are reduced, a finding inconsistent with the anaerobic metabolism expected to occur during hypoxia. Reduced lactate levels are also observed in the culture supernatants of LT-treated cells. LT inhibits the accumulation of hypoxia-inducible factor (HIF)-1α, a subunit of HIF-1, the master regulator directing cellular responses to hypoxia. The toxin has no effect on the transcription or protein turnover of HIF-1α, but instead it acts to inhibit HIF-1α translation. LT treatment diminishes phosphorylation of eIF4B, eIF4E, and rpS6, critical components of the intracellular machinery required for HIF-1α translation. Moreover, blockade of MKK1/2-ERK1/2, but not p38 or JNK signaling, lowers HIF-1α protein levels in both normoxic and hypoxic conditions, consistent with a role for MKK1 and MKK2 as the major targets of LT responsible for the inhibition of HIF-1α translation. The physiological importance of the LT-induced translation blockade is demonstrated by the finding that LT treatment decreases the survival of hepatocyte cell lines grown in hypoxic conditions, an effect that is overcome by preinduction of HIF-1α. Taken together, these data support a role for LT in dysregulating HIF-1α and thereby disrupting homeostatic responses to hypoxia, an environmental characteristic of certain tissues at baseline and/or during disseminated infection with Bacillus anthracis.


Assuntos
Antraz/metabolismo , Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Hipóxia/metabolismo , Biossíntese de Proteínas , Animais , Antraz/genética , Antraz/patologia , Hipóxia Celular/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Hep G2 , Humanos , Hipóxia/genética , Hipóxia/microbiologia , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Fosforilação/genética , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo
18.
Cell Host Microbe ; 13(4): 406-16, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23601103

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa causes serious human infections, but effective treatments and the mechanisms mediating pathogenesis remain elusive. Caenorhabditis elegans shares innate immune pathways with humans, making it invaluable to investigate infection. To determine how P. aeruginosa disrupts host biology, we studied how P. aeruginosa kills C. elegans in a liquid-based pathogenesis model. We found that P. aeruginosa-mediated killing does not require quorum-sensing pathways or host colonization. A chemical genetic screen revealed that iron chelators alleviate P. aeruginosa-mediated killing. Consistent with a role for iron in P. aeruginosa pathogenesis, the bacterial siderophore pyoverdin was required for virulence and was sufficient to induce a hypoxic response and death in the absence of bacteria. Loss of the C. elegans hypoxia-inducing factor HIF-1, which regulates iron homeostasis, exacerbated P. aeruginosa pathogenesis, further linking hypoxia and killing. As pyoverdin is indispensable for virulence in mice, pyoverdin-mediated hypoxia is likely to be relevant in human pathogenesis.


Assuntos
Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Ferro/metabolismo , Pseudomonas aeruginosa/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Homeostase/genética , Homeostase/imunologia , Hipóxia/microbiologia , Ferro/imunologia , Mutação/genética , Mutação/imunologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Virulência/genética , Virulência/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
19.
J Infect Dis ; 207(10): 1525-34, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23408846

RESUMO

Tuberculosis is difficult to cure, requiring a minimum of 6 months of treatment with multiple antibiotics. Small numbers of organisms are able to tolerate the antibiotics and persist in the lungs of infected humans, but they still require some metabolic activity to survive. We studied the role of the hypoxia-induced Rv1894c gene in Mycobacterium tuberculosis virulence in guinea pigs, which develop hypoxic, necrotic granulomas histologically resembling those in humans and found this gene to be necessary for full bacillary growth and survival. We characterized the function of the encoded enzyme as a nitronate monooxygenase, which is needed to prevent the buildup of toxic products during hypoxic metabolism and is negatively regulated by the transcriptional repressor KstR. Future studies will focus on developing small-molecule inhibitors that target Rv1894c and its homologs, with the goal of killing persistent bacteria, thereby shortening the time needed to treat tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Hipóxia/microbiologia , Oxigenases de Função Mista/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Clonagem Molecular , Modelos Animais de Doenças , Determinação de Ponto Final , Feminino , Regulação Bacteriana da Expressão Gênica , Genótipo , Cobaias , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Virulência
20.
PLoS One ; 7(10): e46291, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23082119

RESUMO

The role of Toll-like receptor 4 (TLR4)/nuclear factor-kappa-B (NF-κB) in intestinal mucosal barrier damage and bacterial translocation under hypoxic exposure is unclear. Here, we investigated their role using an acute hypobaric hypoxia model. Adult Sprague-Dawley rats were divided into control (C), hypoxia (H), hypoxia+NF-κB inhibitor pyrrolidinedithiocarbamic acid (PDTC) (100 mg. kg) (HP), hypoxia+0.5 mg/kg lipopolysaccharide (HPL), and hypoxia+PDTC+LPS (HPL) group. Except control group, other four groups were placed in a hypobaric chamber set at 7000 m. Samples were collected at 72 h after pressure reduction. Damage in ultrastructure of the intestinal tract was examined by transmission electron microscopy and bacterial translocation was detected by cultivation. Kinetic turbidimetric assay was used to measure the serum LPS.ELISA was performed to detect TNF-α and IL-6 serum concentrations. Fluorescent quantitative RT-PCR was used to measure TLR4 mRNA levels was measured using quantitative RT-PCR and protein of NF-κB p65 was measured by western blotting. Different degrees of intestinal mucosa damage were observed in groups H and HL. The damage was significantly alleviated after blockage of the TLR4/NF-κB signaling pathway. PDTC- treatment also reversed hyoxia- and LPS-induced bacterial translocation rate and increased serum levels of LPS, TNF-α, and IL-6. TLR4 mRNA levels and NF-κB p65 expression were consistent with the serum factor results. This study suggested that TLR4 and NF-κB expression increased in rat intestinal tissues after acute hypoxia exposure. PDTC-treatment reversed TLR4 and NF-κB upregulation and alleviated damage to the intestinal tract and bacterial translocation. Thus, the TLR4/NF-κB signaling pathway may be critical to the mechanism underlying hypoxia-induced damage to intestinal barrier function and bacterial translocation.


Assuntos
Bactérias/metabolismo , Hipóxia/metabolismo , Hipóxia/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Western Blotting , Capilares/ultraestrutura , Fluorescência , Regulação da Expressão Gênica , Hipóxia/sangue , Hipóxia/patologia , Interleucina-6/sangue , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/ultraestrutura , Lipopolissacarídeos/sangue , Masculino , Movimento , Ocludina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptor 4 Toll-Like/genética , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA