Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.524
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Cells ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39056780

RESUMO

Background: Angiogenesis is essential for various physiological and pathological processes, such as embryonic development and cancer cell proliferation, migration, and invasion. Long noncoding RNAs (lncRNAs) play pivotal roles in normal homeostasis and disease processes by regulating gene expression through various mechanisms, including competing endogenous RNAs (ceRNAs) of target microRNAs (miRNAs). The lncRNA MYU is known to promote prostate cancer proliferation via the miR-184/c-Myc regulatory axis and to be upregulated in vascular endothelial cells under hypoxic conditions, which often occurs in solid tumors. In the present study, we investigated whether MYU might affect cancer growth by regulating angiogenesis in vascular endothelial cells under hypoxia. Methods: The expression of MYU-regulated miR-23a-3p and interleukin-8 (IL-8) in HUVEC cell lines was examined using qRT-PCR. The CCK-8 assay, EdU assay, wound-healing assay, and tube-formation assay were used to assess the effects of MYU on cell proliferation, migration, and tube formation of HUVEC cells in vitro. The dual-luciferase reporter assay was performed to examine the effects of miR-23a-3p on MYU and IL-8 expression. Results: We found that the overexpression of MYU and knockdown of miR-23a-3p in human umbilical vein endothelial cells (HUVECs) under hypoxia promoted cell proliferation, migration, and tube formation. Mechanistically, MYU was shown to bind competitively to miR-23a-3p, thereby preventing miR-23a-3p binding to the 3' untranslated region of IL-8 mRNA. In turn, increased production of pro-angiogenic IL-8 promoted HUVEC proliferation, migration, and tube formation under hypoxia. Conclusion: This study identified a new role for lncRNA MYU as a ceRNA for miR-23a-3p and uncovered a novel MYU-miR-23a-3p-IL-8 regulatory axis for angiogenesis. MYU and/or miR-23a-3p may thus represent new targets for the treatment of hypoxia-related diseases by promoting angiogenesis.


Assuntos
Hipóxia Celular , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Interleucina-8 , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proliferação de Células/genética , Hipóxia Celular/genética , Movimento Celular/genética , Interleucina-8/metabolismo , Interleucina-8/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Células Endoteliais/metabolismo , Angiogênese
3.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063226

RESUMO

Glioblastoma poses significant challenges in oncology, with bevacizumab showing promise as an antiangiogenic treatment but with limited efficacy. microRNAs (miRNAs) 10b and 21 have emerged as potential biomarkers for bevacizumab response in glioblastoma patients. This study delves into the expression dynamics of miR-21 and miR-10b in response to hypoxia and explores their circulation mechanisms. In vitro experiments exposed glioma cells (A172, U87MG, U251) and human umbilical vein endothelial cells (HUVEC) to hypoxic conditions (1% oxygen) for 24 h, revealing heightened levels of miR-10b and miR-21 in glioblastoma cells. Manipulating miR-10b expression in U87MG, demonstrating a significant decrease in VEGF alpha (VEGFA) following miR-10b overexpression under hypoxic conditions. Size exclusion chromatography illustrated a notable shift towards miR-21 and miR-10b exosomal packaging during hypoxia. A proposed model suggests that effective bevacizumab treatment reduces VEGFA levels, heightening hypoxia and subsequently upregulating miR-21 and miR-10b expression. These miRNAs, released via exosomes, might impact various cellular processes, with miR-10b notably contributing to VEGFA level reduction. However, post-treatment increases in miR-10b and miR-21 could potentially restore cells to normoxic conditions through the downregulation of VEGF. This study highlights the intricate feedback loop involving miR-10b, miR-21, and VEGFA in glioblastoma treatment, underscoring the necessity for personalized therapeutic strategies. Further research should explore clinical implications for personalized glioma treatments.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma , Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Fator A de Crescimento do Endotélio Vascular , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Linhagem Celular Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia Celular/genética , Bevacizumab/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Exossomos/metabolismo , Exossomos/genética
4.
J Cell Mol Med ; 28(13): e18471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984951

RESUMO

Diabetes mellitus is a major cause of blindness and chronic ulcers in the working-age population worldwide. Wound healing is deeply dependent on neovascularization to restore blood flow. Former research has found that differentially expressed circular RNAs (circRNAs) are associated with hyperglycaemia-induced endothelial cell damage, and hypoxia-pretreated adipose-derived stem cells (ADSCs)-extracellular vesicle (HEV) transplants have a more therapeutic effect to enhance wound healing in diabetic mice by delivery circRNA. The current investigation employed high-throughput sequencing to identify circRNAs that are abnormally expressed between EV and HEV. The regulatory mechanism and predicted targets of one differentially expressed circRNA, circ-IGF1R, were investigated utilizing bioinformatics analyses, luciferase reporter assays, angiogenic differentiation assays, flow cytometric apoptosis analysis and RT-qPCR. Circ-IGF1R expression increased in HEV, and downregulation of circ-IGF1R suppressed and reversed the promotion effect of HEV on angiogenesis in ulcerated tissue. Bioinformatics analyses and luciferase reporter assays confirmed that miR-503-5p was the downstream target of circ-IGF1R, and inhibiting miR-503-5p restored the promotion effect of HEV on angiogenesis after circ-IGF1R silence. The study also found that miR-503-5p can interact with 3'-UTR of both HK2 and VEGFA. Overexpression of HK2 or VEGFA restored the promotion effect of HExo on angiogenesis after circ-IGF1R silence. Overexpression miR-503-5p or silence HK2/VEGFA reversed the protective effect of circ-IGF1R to MLMECs angiogenic differentiation. Overexpression of circ-IGF1R increased the protective effect of HEV on the promotion of wound healing in mice with diabetes. Circ-IGF1R promotes HIF-1α expression through miR-503-5p sponging. Our data demonstrate that circ-IGF1R overexpression EVs from ADSCs suppress high glucose-induced endothelial cell damage by regulating miR-503-5p/HK2/VEGFA axis.


Assuntos
Vesículas Extracelulares , MicroRNAs , RNA Circular , Receptor IGF Tipo 1 , Fator A de Crescimento do Endotélio Vascular , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Humanos , Células-Tronco/metabolismo , Masculino , Regulação da Expressão Gênica , Cicatrização/genética , Hipóxia Celular/genética , Transdução de Sinais , Regulação para Cima/genética , Neovascularização Fisiológica/genética
5.
Endocr Regul ; 58(1): 144-152, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861539

RESUMO

Objective. Serine hydroxymethyltransferase (SHMT2) plays a multifunctional role in mitochondria (folate-dependent tRNA methylation, translation, and thymidylate synthesis). The endoplasmic reticulum stress, hypoxia, and glucose and glutamine supply are significant factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) pathway of endoplasmic reticulum stress strongly suppressed glioblastoma cell proliferation and modified the sensitivity of these cells to hypoxia and glucose or glutamine deprivations. The present study aimed to investigate the regulation of the SHMT2 gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in sensitivity of this gene expression to hypoxia and nutrient supply. Methods. The control U87MG glioblastoma cells (transfected by an empty vector) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (500 ng/ml for 4 h). For glucose and glutamine deprivations, cells were exposed in DMEM without glucose and glutamine, respectively for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of the SHMT2 gene was studied by real-time qPCR and normalized to ACTB. Results. It was found that inhibition of ERN1 endoribonuclease and protein kinase in glioblastoma cells led to a down-regulation of SHMT2 gene expression in U87MG cells. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease, but tunicamycin strongly increased its expression. Moreover, the expression of the SHMT2 gene was not affected in U87MG cells after silencing of XBP1. Hypoxia up-regulated the expression level of the SHMT2 gene in both control and ERN1 knockdown U87MG cells. The expression of this gene was significantly up-regulated in glioblastoma cells under glucose and glutamine deprivations and ERN1 knockdown significantly increased the sensitivity of the SHMT2 gene to these nutrient deprivation conditions. Conclusion. The results of the present study demonstrate that the expression of the SHMT2 gene responsible for serine metabolism and formation of folate one-carbon is controlled by ERN1 protein kinase and induced by hypoxia as well as glutamine and glucose deprivation conditions in glioblastoma cells and reflects the ERN1-mediated reprogramming of sensitivity this gene expression to nutrient deprivation.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glicina Hidroximetiltransferase , Humanos , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Estresse do Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/genética , Linhagem Celular Tumoral , Endorribonucleases/genética , Endorribonucleases/metabolismo , Glucose/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Hipóxia Celular/fisiologia , Hipóxia Celular/genética , Glutamina/metabolismo , Técnicas de Silenciamento de Genes
6.
J Cell Mol Med ; 28(12): e18482, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899556

RESUMO

Hypoxia poses a significant challenge to the effectiveness of radiotherapy in head and neck squamous cell carcinoma (HNSCC) patients, and it is imperative to discover novel approaches to overcome this. In this study, we investigated the underlying mechanisms contributing to x-ray radioresistance in HPV-negative HNSCC cells under mild hypoxic conditions (1% oxygen) and explored the potential for autophagy modulation as a promising therapeutic strategy. Our findings show that HNSCC cells exposed to mild hypoxic conditions exhibit increased radioresistance, which is largely mediated by the hypoxia-inducible factor (HIF) pathway. We demonstrate that siRNA knockdown of HIF-1α and HIF-1ß leads to increased radiosensitivity in HNSCC cells under hypoxia. Hypoxia-induced radioresistance was not attributed to differences in DNA double strand break repair kinetics, as these remain largely unchanged under normoxic and hypoxic conditions. Rather, we identify autophagy as a critical protective mechanism in HNSCC cells following irradiation under mild hypoxia conditions. Targeting key autophagy genes, such as BECLIN1 and BNIP3/3L, using siRNA sensitizes these cells to irradiation. Whilst autophagy's role in hypoxic radioresistance remains controversial, this study highlights the importance of autophagy modulation as a potential therapeutic approach to enhance the effectiveness of radiotherapy in HNSCC.


Assuntos
Autofagia , Hipóxia Celular , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Autofagia/efeitos da radiação , Autofagia/genética , Tolerância a Radiação/genética , Linhagem Celular Tumoral , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Reparo do DNA/efeitos da radiação , Reparo do DNA/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Raios X , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteínas Supressoras de Tumor
7.
J Transl Med ; 22(1): 587, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902737

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a serious global health burden because of its high morbidity and mortality rates. Hypoxia and massive lactate production are hallmarks of the CRC microenvironment. However, the effects of hypoxia and lactate metabolism on CRC have not been fully elucidated. This study aimed to develop a novel molecular subtyping based on hypoxia-related genes (HRGs) and lactate metabolism-related genes (LMRGs) and construct a signature to predict the prognosis of patients with CRC and treatment efficacy. METHODS: Bulk and single-cell RNA-sequencing and clinical data of CRC were downloaded from the TCGA and GEO databases. HRGs and LMRGs were obtained from the Molecular Signatures Database. The R software package DESeq2 was used to perform differential expression analysis. Molecular subtyping was performed using unsupervised clustering. A predictive signature was developed using univariate Cox regression, random forest model, LASSO, and multivariate Cox regression analyses. Finally, the sensitivity of tumor cells to chemotherapeutic agents before and after hypoxia was verified using in vitro experiments. RESULTS: We classified 575 patients with CRC into three molecular subtypes and were able to distinguish their prognoses clearly. The C1 subtype, which exhibits high levels of hypoxia, has a low proportion of CD8 + T cells and a high proportion of macrophages. The expression of immune checkpoint genes is generally elevated in C1 patients with severe immune dysfunction. Subsequently, we constructed a predictive model, the HLM score, which effectively predicts the prognosis of patients with CRC and the efficacy of immunotherapy. The HLM score was validated in GSE39582, GSE106584, GSE17536, and IMvigor210 datasets. Patients with high HLM scores exhibit high infiltration of CD8 + exhausted T cells (Tex), especially terminal Tex, and oxidative phosphorylation (OXPHOS)-Tex in the immune microenvironment. Finally, in vitro experiments confirmed that CRC cell lines were less sensitive to 5-fluorouracil, oxaliplatin, and irinotecan under hypoxic conditions. CONCLUSION: We constructed novel hypoxia- and lactate metabolism-related molecular subtypes and revealed their immunological and genetic characteristics. We also developed an HLM scoring system that could be used to predict the prognosis and efficacy of immunotherapy in patients with CRC.


Assuntos
Neoplasias Colorretais , Ácido Láctico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Prognóstico , Ácido Láctico/metabolismo , Regulação Neoplásica da Expressão Gênica , Masculino , Hipóxia/genética , Hipóxia/metabolismo , Microambiente Tumoral/genética , Feminino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Hipóxia Celular/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732107

RESUMO

Arteriovenous malformations (AVMs) are congenital vascular anomalies with a poor prognosis. AVMs are considered intractable diseases, as there is no established approach for early diagnosis and treatment. Therefore, this study aimed to provide new evidence by analyzing microRNAs (miRNAs) associated with AVM. We present fundamental evidence for the early diagnosis and treatment of AVM by analyzing miRNAs in the endothelial cells of AVMs. This study performed sequencing and validation of miRNAs in endothelial cells from normal and AVM tissues. Five upregulated and two downregulated miRNAs were subsequently analyzed under hypoxia and vascular endothelial growth factor (VEGF) treatment by one-way analysis of variance (ANOVA). Under hypoxic conditions, miR-135b-5p was significantly upregulated in the AVM compared to that under normal conditions, corresponding to increased endothelial activity (p-value = 0.0238). VEGF treatment showed no significant increase in miR-135b-5p under normal conditions, however, a surge in AVM was observed. Under both hypoxia and VEGF treatment, comparison indicated a downregulation of miR-135b-5p in AVM. Therefore, miR-135b-5p was assumed to affect the pathophysiological process of AVM and might play a vital role as a potential biomarker of AVMs for application related to diagnosis and treatment.


Assuntos
Malformações Arteriovenosas , Biomarcadores , Células Endoteliais , MicroRNAs , Fator A de Crescimento do Endotélio Vascular , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/metabolismo , Malformações Arteriovenosas/patologia , Malformações Arteriovenosas/diagnóstico , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Masculino , Feminino , Adulto , Hipóxia Celular/genética
9.
J Cell Mol Med ; 28(10): e18411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780505

RESUMO

Hepatocellular carcinoma (HCC) represents a significant global health burden, necessitating an in-depth exploration of its molecular underpinnings to facilitate the development of effective therapeutic strategies. This investigation delves into the complex role of long non-coding RNAs (lncRNAs) in the modulation of hypoxia-induced HCC progression, with a specific emphasis on delineating and functionally characterizing the novel KLF4/Lnc18q22.2/ULBP3 axis. To elucidate the effects of hypoxic conditions on HCC cells, we established in vitro models under both normoxic and hypoxic environments, followed by lncRNA microarray analyses. Among the lncRNAs identified, Lnc18q22.2 was found to be significantly upregulated in HCC cells subjected to hypoxia. Subsequent investigations affirmed the oncogenic role of Lnc18q22.2, highlighting its critical function in augmenting HCC cell proliferation and migration. Further examination disclosed that Kruppel-like factor 4 (KLF4) transcriptionally governs Lnc18q22.2 expression in HCC cells, particularly under hypoxic stress. KLF4 subsequently enhances the tumorigenic capabilities of HCC cells through the modulation of Lnc18q22.2 expression. Advancing downstream in the molecular cascade, our study elucidates a novel interaction between Lnc18q22.2 and UL16-binding protein 3 (ULBP3), culminating in the stabilization of ULBP3 protein expression. Notably, ULBP3 was identified as a pivotal element, exerting dual functions by facilitating HCC tumorigenesis and mitigating immune evasion in hypoxia-exposed HCC cells. The comprehensive insights gained from our research delineate a hitherto unidentified KLF4/Lnc18q22.2/ULBP3 axis integral to the understanding of HCC tumorigenesis and immune escape under hypoxic conditions. This newly unveiled molecular pathway not only enriches our understanding of hypoxia-induced HCC progression but also presents novel avenues for therapeutic intervention.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , RNA Longo não Codificante/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Animais , Movimento Celular/genética , Evasão Tumoral/genética , Camundongos , Hipóxia Celular/genética , Transdução de Sinais
10.
Anal Cell Pathol (Amst) ; 2024: 5523283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766303

RESUMO

Solid tumors frequently experience hypoxia or low O2 levels. In these conditions, hypoxia-inducible factor 1 alpha (HIF-1α) is activated and acts as a transcription factor that regulates cancer cell adaptation to O2 and nutrient deprivation. HIF-1α controls gene expression associated with various signaling pathways that promote cancer cell proliferation and survival. MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs that play a role in various biological processes essential for cancer progression. This review presents an overview of how hypoxia regulates the expression of multiple miRNAs in the progression of cancer cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
11.
Endocr Regul ; 58(1): 47-56, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563293

RESUMO

OBJECTIVE.: Homeobox genes play an important role in health and disease including oncogenesis. The present investigation aimed to study ERN1-dependent hypoxic regulation of the expression of genes encoding homeobox proteins MEIS (zinc finger E-box binding homeobox 2) and LIM homeobox 1 family, SPAG4 (sperm associated antigen 4) and NKX3-1 (NK3 homeobox 1) in U87MG glioblastoma cells in response to inhibition of ERN1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of glioblastoma growth. METHODS.: The expression level of homeobox genes was studied in control (transfected by vector) and ERN1 knockdown U87MG glioblastoma cells under hypoxia induced by dimethyloxalylglycine (0.5 mM for 4 h) by quantitative polymerase chain reaction and normalized to ACTB. RESULTS.: It was found that hypoxia down-regulated the expression level of LHX2, LHX6, MEIS2, and NKX3-1 genes but up-regulated the expression level of MEIS1, LHX1, MEIS3, and SPAG4 genes in control glioblastoma cells. At the same time, ERN1 knockdown of glioblastoma cells significantly modified the sensitivity of all studied genes to a hypoxic condition. Thus, ERN1 knockdown of glioblastoma cells removed the effect of hypoxia on the expression of MEIS1 and LHX1 genes, but increased the sensitivity of MEIS2, LHX2, and LHX6 genes to hypoxia. However, the expression of MEIS3, NKX3-1, and SPAG4 genes had decreased sensitivity to hypoxia in ERN1 knockdown glioblastoma cells. Moreover, more pronounced changes under the conditions of ERN1 inhibition were detected for the pro-oncogenic gene SPAG4. CONCLUSION.: The results of the present study demonstrate that hypoxia affected the expression of homeobox genes MEIS1, MEIS2, MEIS3, LHX1, LHX2, LHX6, SPAG4, and NKX3-1 in U87MG glioblastoma cells in gene-specific manner and that the sensitivity of all studied genes to hypoxia condition is mediated by ERN1, the major pathway of the endoplasmic reticulum stress signaling, and possibly contributed to the control of glioblastoma growth. A fundamentally new results of this work is the establishment of the fact regarding the dependence of hypoxic regulation of SPAG4 gene expression on ER stress, in particular ERN1, which is associated with suppression of cell proliferation and tumor growth.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Genes Homeobox , Proteínas Serina-Treonina Quinases/genética , Proteínas com Homeodomínio LIM/genética , Hipóxia Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Hipóxia/genética , Fatores de Transcrição/genética , Expressão Gênica , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Endorribonucleases/genética
12.
Sci Rep ; 14(1): 6275, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491188

RESUMO

Hypoxic responses have been implicated in critical pathologies, including inflammation, immunity, and tumorigenesis. Recently, efforts to identify effective natural remedies and health supplements are increasing. Previous studies have reported that the cell lysates and the cell wall-bound lipoteichoic acids of Lactiplantibacillus plantarum K8 (K8) exert anti-inflammatory and immunomodulative effects. However, the effect of K8 on cellular hypoxic responses remains unknown. In this study, we found that K8 lysates had a potent suppressive effect on gene expression under hypoxia. K8 lysates markedly downregulated hypoxia-induced HIF1α accumulation in the human bone marrow and lung cancer cell lines, SH-SY5Y and H460. Consequently, the transcription of known HIF1α target genes, such as p21, GLUT1, and ALDOC, was notably suppressed in the K8 lysate supplement and purified lipoteichoic acids of K8, upon hypoxic induction. Intriguingly, K8 lysates decreased the expression of PHD2 and VHL proteins, which are responsible for HIF1α destabilization under normoxic conditions, suggesting that K8 may regulate HIF1α stability in a non-canonical pathway. Overall, our results suggest that K8 lysates desensitize the cells to hypoxic stresses and suppress HIF1α-mediated hypoxic gene activation.


Assuntos
Neuroblastoma , Humanos , Hipóxia Celular/genética , Linhagem Celular , Hipóxia/metabolismo , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L102-L113, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501173

RESUMO

We have reported previously that during hypoxia exposure, the expression of mature miR-17∼92 was first upregulated and then downregulated in pulmonary artery smooth muscle cells (PASMC) and in mouse lungs in vitro and in vivo. Here, we investigated the mechanisms regulating this biphasic expression of miR-17∼92 in PASMC in hypoxia. We measured the level of primary miR-17∼92 in PASMC during hypoxia exposure and found that short-term hypoxia exposure (3% O2, 6 h) induced the level of primary miR-17∼92, whereas long-term hypoxia exposure (3% O2, 24 h) decreased its level, suggesting a biphasic regulation of miR-17∼92 expression at the transcriptional level. We found that short-term hypoxia-induced upregulation of miR-17∼92 was hypoxia-inducible factor 1α (HIF1α) and E2F1 dependent. Two HIF1α binding sites on miR-17∼92 promoter were identified. We also found that long-term hypoxia-induced suppression of miR-17∼92 expression could be restored by silencing of p53. Mutation of the p53-binding sites in the miR-17∼92 promoter increased miR-17∼92 promoter activity in both normoxia and hypoxia. Our findings suggest that the biphasic transcriptional regulation of miR-17∼92 during hypoxia is controlled by HIF1/E2F1 and p53 in PASMC: during short-term hypoxia exposure, stabilization of HIF1 and induction of E2F1 induce the transcription of miR-17∼92, whereas during long-term hypoxia exposure, hyperphosphorylation of p53 suppresses the expression of miR-17∼92.NEW & NOTEWORTHY We showed that the biphasic transcriptional regulation of miR-17∼92 during hypoxia is controlled by two distinct mechanisms: during short-term hypoxia exposure, induction of HIF1 and E2F1 upregulates miR-17∼92. Longer hypoxia exposure induces hyperphosphorylation of p53 at ser15, which leads to its binding to miR-17∼92 promoter and inhibition of its expression. Our findings provide novel insights into the spatiotemporal regulation of miR-17∼92 that may play a role in the development of human lung diseases including pulmonary hypertension (PH).


Assuntos
Fator de Transcrição E2F1 , Subunidade alfa do Fator 1 Induzível por Hipóxia , MicroRNAs , Artéria Pulmonar , Proteína Supressora de Tumor p53 , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fosforilação , Humanos , Animais , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Transcrição Gênica , Hipóxia Celular/genética , Miócitos de Músculo Liso/metabolismo , Regiões Promotoras Genéticas/genética , Camundongos , Hipóxia/metabolismo , Hipóxia/genética , Serina/metabolismo , Regulação da Expressão Gênica , Células Cultivadas
14.
Sci Rep ; 14(1): 7246, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538643

RESUMO

Glioblastoma (GBM) is the most common primary malignant cancer of the central nervous system. Insufficient oxygenation (hypoxia) has been linked to GBM invasion and aggression, leading to poor patient outcomes. Hypoxia induces gene expression for cellular adaptations. However, GBM is characterized by high intertumoral (molecular subtypes) and intratumoral heterogeneity (cell states), and it is not well understood to what extent hypoxia triggers patient-specific gene responses and cellular diversity in GBM. Here, we surveyed eight patient-derived GBM stem cell lines for invasion phenotypes in 3D culture, which identified two GBM lines showing increased invasiveness in response to hypoxia. RNA-seq analysis of the two patient GBM lines revealed a set of shared hypoxia response genes concerning glucose metabolism, angiogenesis, and autophagy, but also a large set of patient-specific hypoxia-induced genes featuring cell migration and anti-inflammation, highlighting intertumoral diversity of hypoxia responses in GBM. We further applied the Shared GBM Hypoxia gene signature to single cell RNA-seq datasets of glioma patients, which showed that hypoxic cells displayed a shift towards mesenchymal-like (MES) and astrocyte-like (AC) states. Interestingly, in response to hypoxia, tumor cells in IDH-mutant gliomas displayed a strong shift to the AC state, whereas tumor cells in IDH-wildtype gliomas mainly shifted to the MES state. This distinct hypoxia response of IDH-mutant gliomas may contribute to its more favorable prognosis. Our transcriptomic studies provide a basis for future approaches to better understand the diversity of hypoxic niches in gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Glioblastoma/patologia , Hipóxia/genética , Hipóxia/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Hipóxia Celular/genética
15.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396757

RESUMO

The hypoxic pattern of glioblastoma (GBM) is known to be a primary cause of radioresistance. Our study explored the possibility of using gene knockdown of key factors involved in the molecular response to hypoxia, to overcome GBM radioresistance. We used the U87 cell line subjected to chemical hypoxia generated by CoCl2 and exposed to 2 Gy of X-rays, as single or combined treatments, and evaluated gene expression changes of biomarkers involved in the Warburg effect, cell cycle control, and survival to identify the best molecular targets to be knocked-down, among those directly activated by the HIF-1α transcription factor. By this approach, glut-3 and pdk-1 genes were chosen, and the effects of their morpholino-induced gene silencing were evaluated by exploring the proliferative rates and the molecular modifications of the above-mentioned biomarkers. We found that, after combined treatments, glut-3 gene knockdown induced a greater decrease in cell proliferation, compared to pdk-1 gene knockdown and strong upregulation of glut-1 and ldha, as a sign of cell response to restore the anaerobic glycolysis pathway. Overall, glut-3 gene knockdown offered a better chance of controlling the anaerobic use of pyruvate and a better proliferation rate reduction, suggesting it is a suitable silencing target to overcome radioresistance.


Assuntos
Glioblastoma , Transportador de Glucose Tipo 3 , Humanos , Biomarcadores/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Hipóxia , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo
16.
Antioxid Redox Signal ; 41(1-3): 138-151, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38299557

RESUMO

Aims: This research was aimed at investigating the effects of hypoxia inducible factor-1 alpha (HIF-1α)-mediated DNA methylation enzymes (ten-eleven translocase-2 [TET2] and DNA methyltransferase-3a [DNMT3a]) under hypoxic conditions on S100A6 transcription, thereby promoting the growth and metastasis of lung cancer cells. Methods: The expression of HIF-1α or S100A6 in lung cancer cells was interfered with under normoxic and hypoxic conditions, and the cell proliferative, migratory, and invasive properties were assessed. The mechanism of HIF-1α-regulated TET2 and DNMT3 effects on S100A6 transcription under hypoxic conditions was further investigated. Results: Functionally, S100A6 over-expression promoted lung cancer cell proliferation and metastasis. S100A6 over-expression reversed the inhibitory effects of HIF-1α interference on the proliferation and metastasis of lung cancer cells. S100A6 was induced to express in an HIF-1α-dependent manner under hypoxic conditions, and silencing S100A6 or HIF-1α suppressed lung cancer cell proliferation and metastasis under hypoxic conditions. Further, The Cancer Genome Atlas-lung adenocarcinoma database analysis revealed that S100A6 mRNA levels had a negative correlation with methylation levels. Mechanistically, CpG hypomethylation status in the S100A6 promoter hypoxia response element had an association with HIF-1α induction. TET2 was enriched in S100A6 promoter region of lung cancer cells under hypoxic conditions, whereas DNMT3a enrichment was reduced in S100A6 promoter region. HIF-1α-mediated S100A6 activation was linked to DNMT3a-associated epigenetic inactivation and TET2 activation. Innovation: The activation of HIF-1α-mediated DNA methylation enzymes under hypoxic conditions regulated S100A6 transcription, thereby promoting lung cancer cell growth and metastasis. Conclusion: In lung cancer progression, hypoxia-induced factor HIF-1α combined with DNA methylation modifications co-regulates S100A6 transcriptional activation and promotes lung cancer cell growth and metastasis.


Assuntos
Proliferação de Células , DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA Metiltransferase 3A , Proteínas de Ligação a DNA , Dioxigenases , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Dioxigenases/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proliferação de Células/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral , Metástase Neoplásica , Hipóxia Celular/genética , Transcrição Gênica
17.
Cardiovasc Res ; 120(5): 531-547, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38332738

RESUMO

AIMS: Heart failure due to ischaemic heart disease (IHD) is a leading cause of mortality worldwide. A major contributing factor to IHD-induced cardiac damage is hypoxia. Sequestosome 1 (p62) is a multi-functional adaptor protein with pleiotropic roles in autophagy, proteostasis, inflammation, and cancer. Despite abundant expression in cardiomyocytes, the role of p62 in cardiac physiology is not well understood. We hypothesized that cardiomyocyte-specific p62 deletion evokes hypoxia-induced cardiac pathology by impairing hypoxia-inducible factor 1α (Hif-1α) and nuclear factor erythroid 2-related factor 2 (Nrf2) signalling. METHODS AND RESULTS: Adult mice with germline deletion of cardiomyocyte p62 exhibited mild cardiac dysfunction under normoxic conditions. Transcriptomic analyses revealed a selective impairment in Nrf2 target genes in the hearts from these mice. Demonstrating the functional importance of this adaptor protein, adult mice with inducible depletion of cardiomyocyte p62 displayed hypoxia-induced contractile dysfunction, oxidative stress, and cell death. Mechanistically, p62-depleted hearts exhibit impaired Hif-1α and Nrf2 transcriptional activity. Because findings from these two murine models suggested a cardioprotective role for p62, mechanisms were evaluated using H9c2 cardiomyoblasts. Loss of p62 in H9c2 cells exposed to hypoxia reduced Hif-1α and Nrf2 protein levels. Further, the lack of p62 decreased Nrf2 protein expression, nuclear translocation, and transcriptional activity. Repressed Nrf2 activity associated with heightened Nrf2-Keap1 co-localization in p62-deficient cells, which was concurrent with increased Nrf2 ubiquitination facilitated by the E3 ligase Cullin 3, followed by proteasomal-mediated degradation. Substantiating our results, a gain of p62 in H9c2 cells stabilized Nrf2 and increased the transcriptional activity of Nrf2 downstream targets. CONCLUSION: Cardiac p62 mitigates hypoxia-induced cardiac dysfunction by stabilizing Hif-1α and Nrf2.


Assuntos
Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Proteína Sequestossoma-1 , Animais , Hipóxia Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Estabilidade Proteica , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Transdução de Sinais , Ubiquitinação , Camundongos
18.
Cell Death Differ ; 31(4): 447-459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413797

RESUMO

Hypoxia is a hallmark of cancer development. However, the molecular mechanisms by which hypoxia promotes tumor metastasis are not fully understood. In this study, we demonstrate that hypoxia promotes breast cancer metastasis through suppression of ΔNp63α in a HIF1α-independent manner. We show that hypoxia-activated XBP1s forms a stable repressor protein complex with HDAC2 and EZH2 to suppress ΔNp63α transcription. Notably, H3K27ac is predominantly occupied on the ΔNp63 promoter under normoxia, while H3K27me3 on the promoter under hypoxia. We show that XBP1s binds to the ΔNp63 promoter to recruit HDAC2 and EZH2 in facilitating the switch of H3K27ac to H3K27me3. Pharmacological inhibition or the knockdown of either HDAC2 or EZH2 leads to increased H3K27ac, accompanied by the reduced H3K27me3 and restoration of ΔNp63α expression suppressed by hypoxia, resulting in inhibition of cell migration. Furthermore, the pharmacological inhibition of IRE1α, but not HIF1α, upregulates ΔNp63α expression in vitro and inhibits tumor metastasis in vivo. Clinical analyses reveal that reduced p63 expression is correlated with the elevated expression of XBP1, HDAC2, or EZH2, and is associated with poor overall survival in human breast cancer patients. Together, these results indicate that hypoxia-activated XBP1s modulates the epigenetic program in suppression of ΔNp63α to promote breast cancer metastasis independent of HIF1α and provides a molecular basis for targeting the XBP1s/HDAC2/EZH2-ΔNp63α axis as a putative strategy in the treatment of breast cancer metastasis.


Assuntos
Neoplasias da Mama , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Histona Desacetilase 2 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas Supressoras de Tumor , Proteína 1 de Ligação a X-Box , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular Tumoral , Metástase Neoplásica , Camundongos , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Hipóxia Celular/genética
19.
Cell Cycle ; 23(2): 188-204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38357935

RESUMO

Hypoxia is a major contributor to tumor microenvironment (TME) and metastasis in most solid tumors. We seek to screen hypoxia-related genes affecting metastasis in breast cancer and to reveal relative potential regulatory pathway. Based on gene expression profiling of GSE17188 dataset, differential expressed genes (DEGs) were identified between highly metastatic breast cancer cells under hypoxia and samples under normoxia. The protein-protein interaction (PPI) network was utilized to determine hub genes. The gene expression profiling interactive analysis database (GEPIA2) and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were employed to quantify hub genes. Moreover, overexpression of zinc finger CCCH-type containing 12A (ZC3H12A) was performed both in breast cancer cells and xenograft mouse model to determine the role of ZC3H12A. We identified 134 DEGs between hypoxic and normoxic samples. Based on PPI analysis, 5 hub genes interleukin (IL)-6, GALN (GAL), CD22 molecule (CD22), ZC3H12A and TNF receptor associated factor 1 (TRAF1) were determined; the expression levels of TRAF1, IL-6, ZC3H12A and GAL were remarkably downregulated while CD22 was upregulated in breast cancer cells. Besides, patients with higher expression of ZC3H12A had favorable prognosis. Overexpression of ZC3H12A could inhibit metastasis and tumor growth of breast cancer; overexpression of ZC3H12A downregulated the expression of IL-17 signaling pathway-related proteins such as IL-17 receptor A (IL-17RA), IL-17A and nuclear factor κB activator 1 (Act1). This study reveals ZC3H12A and IL-17 signaling pathway as potential therapeutic targets for hypoxic breast cancer.


Assuntos
Neoplasias da Mama , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Interleucina-17 , Camundongos Nus , Transdução de Sinais , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Transdução de Sinais/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Animais , Linhagem Celular Tumoral , Camundongos , Proliferação de Células/genética , Metástase Neoplásica , Camundongos Endogâmicos BALB C , Mapas de Interação de Proteínas/genética , Microambiente Tumoral/genética , Hipóxia Celular/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
20.
FEBS Lett ; 598(5): 503-520, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281767

RESUMO

Cells remodel splicing and translation machineries to mount specialized gene expression responses to stress. Here, we show that hypoxic human cells in 2D and 3D culture models increase the relative abundance of a longer mRNA variant of ribosomal protein S24 (RPS24L) compared to a shorter mRNA variant (RPS24S) by favoring the inclusion of a 22 bp cassette exon. Mechanistically, RPS24L and RPS24S are induced and repressed, respectively, by distinct pathways in hypoxia: RPS24L is induced in an autophagy-dependent manner, while RPS24S is reduced by mTORC1 repression in a hypoxia-inducible factor-dependent manner. RPS24L produces a more stable protein isoform that aids in hypoxic cell survival and growth, which could be exploited by cancer cells in the tumor microenvironment.


Assuntos
Processamento Alternativo , Hipóxia , Humanos , Autofagia/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA