Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Nutrients ; 16(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39064695

RESUMO

Neonatal hypoxic-ischemic (HI) brain injury is a prominent cause of neurological morbidity, urging the development of novel therapies. Interventions with n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) and mesenchymal stem cells (MSCs) provide neuroprotection and neuroregeneration in neonatal HI animal models. While lysophosphatidylcholine (LPC)-bound n-3 LCPUFAs enhance brain incorporation, their effect on HI brain injury remains unstudied. This study investigates the efficacy of oral LPC-n-3 LCPUFAs from Lysoveta following neonatal HI in mice and explores potential additive effects in combination with MSC therapy. HI was induced in 9-day-old C57BL/6 mice and Lysoveta was orally supplemented for 7 subsequent days, with or without intranasal MSCs at 3 days post-HI. At 21-28 days post-HI, functional outcome was determined using cylinder rearing, novel object recognition, and open field tasks, followed by the assessment of gray (MAP2) and white (MBP) matter injury. Oral Lysoveta diminished gray and white matter injury but did not ameliorate functional deficits following HI. Lysoveta did not further enhance the therapeutic potential of MSC therapy. In vitro, Lysoveta protected SH-SY5Y neurons against oxidative stress. In conclusion, short-term oral administration of Lysoveta LPC-n-3 LCPUFAs provides neuroprotection against neonatal HI by mitigating oxidative stress injury but does not augment the efficacy of MSC therapy.


Assuntos
Animais Recém-Nascidos , Ácidos Graxos Ômega-3 , Hipóxia-Isquemia Encefálica , Lisofosfatidilcolinas , Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Animais , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/prevenção & controle , Camundongos , Transplante de Células-Tronco Mesenquimais/métodos , Modelos Animais de Doenças , Suplementos Nutricionais , Lesões Encefálicas/prevenção & controle , Lesões Encefálicas/terapia , Fármacos Neuroprotetores/farmacologia , Células-Tronco Mesenquimais , Masculino , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Proteína Básica da Mielina
2.
Nutrients ; 14(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145168

RESUMO

Due to the rate of occurrence of neonatal hypoxia-ischemia, its neuronal sequelae, and the lack of effective therapies, the development of new neuroprotective strategies is required. Polyphenols (including resveratrol) are molecules whose anti-apoptotic, anti-inflammatory, and anti-oxidative properties could be effective against the damage induced by neonatal hypoxia-ischemia. In this review article, very recent data concerning the neuroprotective role of polyphenols and the mechanisms at play are detailed, including a boost in brain energy metabolism. The results obtained with innovative approaches, such as maternal supplementation at nutritional doses, suggest that polyphenols could be a promising prophylactic treatment for neonatal hypoxia-ischemia.


Assuntos
Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/prevenção & controle , Isquemia/complicações , Isquemia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Polifenóis/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico
3.
Nutrients ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35215424

RESUMO

Polyphenols are natural compounds with promising prophylactic and therapeutic applications. However, their methods of extraction, using organic solvents, may prove to be unsuitable for daily consumption or for certain medical indications. Here, we describe the neuroprotective effects of grape polyphenols extracted in an eco-sustainable manner in a rat model of neonatal hypoxia-ischemia (NHI). Polyphenols (resveratrol, pterostilben and viniferin) were obtained using a subcritical water extraction technology to avoid organic solvents and heavy metals associated with chemical synthesis processes. A resveratrol or a polyphenol cocktail were administered to pregnant females at a nutritional dose and different time windows, prior to induction of NHI in pups. Reduced brain edema and lesion volumes were observed in rat pups whose mothers were supplemented with polyphenols. Moreover, the preservation of motor and cognitive functions (including learning and memory) was evidenced in the same animals. Our results pave the way to the use of polyphenols to prevent brain lesions and their associated deficits that follow NHI, which is a major cause of neonatal death and disabilities.


Assuntos
Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Vitis , Animais , Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Isquemia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Gravidez , Ratos , Vitis/química
4.
Am J Perinatol ; 39(16): 1754-1763, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33853147

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) causes permanent motor deficit "cerebral palsy (CP)," and may result in significant disability and death. Therapeutic hypothermia (TH) had been established as the first effective therapy for neonates with HIE; however, TH must be initiated within the first 6 hours after birth, and the number needed to treat is from 9 to 11 to prevent brain damage from HIE. Therefore, additional therapies for HIE are highly needed. In this review, we provide an introduction on the mechanisms of HIE cascade and how TH and cell therapies such as umbilical cord blood cells and mesenchymal stromal cells (MSCs), especially umbilical cord-derived MSCs (UC-MSCs), may protect the brain in newborns, and discuss recent progress in regenerative therapies using UC-MSCs for neurological disorders.The brain damage process "HIE cascade" was divided into six stages: (1) energy depletion, (2) impairment of microglia, (3) inflammation, (4) excitotoxity, (5) oxidative stress, and (6) apoptosis in capillary, glia, synapse and/or neuron. The authors showed recent 13 clinical trials using UC-MSCs for neurological disorders.The authors suggest that the next step will include reaching a consensus on cell therapies for HIE and establishment of effective protocols for cell therapy for HIE. KEY POINTS: · This study includes new insights about cell therapy for neonatal HIE and CP in schema.. · This study shows precise mechanism of neonatal HIE cascade.. · The mechanism of cell therapy by comparing umbilical cord blood stem cell with MSC is shown.. · The review of recent clinical trials of UC-MSC is shown..


Assuntos
Lesões Encefálicas , Paralisia Cerebral , Hipóxia-Isquemia Encefálica , Células-Tronco Mesenquimais , Humanos , Recém-Nascido , Hipóxia-Isquemia Encefálica/prevenção & controle , Hipóxia-Isquemia Encefálica/etiologia , Sangue Fetal , Cordão Umbilical , Lesões Encefálicas/complicações , Encéfalo
5.
J Neuroinflammation ; 18(1): 226, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645465

RESUMO

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is a severe anoxic brain injury that leads to premature mortality or long-term disabilities in infants. Neuroinflammation is a vital contributor to the pathogenic cascade post-HIE and a mediator to secondary neuronal death. As a plasma membrane G-protein-coupled receptor, GPR39, exhibits anti-inflammatory activity in several diseases. This study aimed to explore the neuroprotective function of GPR39 through inhibition of inflammation post-hypoxic-ischemic (HI) injury and to elaborate the contribution of sirtuin 1(SIRT1)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)/nuclear factor, erythroid 2 like 2(Nrf2) in G-protein-coupled receptor 39 (GPR39)-mediated protection. METHODS: A total of 206 10-day-old Sprague Dawley rat pups were subjected to HIE or sham surgery. TC-G 1008 was administered intranasally at 1 h, 25 h, 49 h, and 73 h post-HIE induction. SIRT1 inhibitor EX527, GPR39 CRISPR, and PGC-1α CRISPR were administered to elucidate the underlying mechanisms. Brain infarct area, short-term and long-term neurobehavioral tests, Nissl staining, western blot, and immunofluorescence staining were performed post-HIE. RESULTS: The expression of GPR39 and pathway-related proteins, SIRT1, PGC-1α and Nrf2 were increased in a time-dependent manner, peaking at 24 h or 48-h post-HIE. Intranasal administration of TC-G 1008 reduced the percent infarcted area and improved short-term and long-term neurological deficits. Moreover, TC-G 1008 treatment significantly increased the expression of SIRT1, PGC-1α and Nrf2, but downregulated the expressions of IL-6, IL-1ß, and TNF-α. GPR39 CRISPR EX527 and PGC-1α CRISPR abolished GPR39's neuroprotective effects post-HIE. CONCLUSIONS: TC-G 1008 attenuated neuroinflammation in part via the SIRT1/PGC-1α/Nrf2 pathway in a neonatal rat model of HIE. TC-G 1008 may be a novel therapeutic target for treatment post-neonatal HIE injury.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossíntese , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/biossíntese , Sirtuína 1/biossíntese , Sulfonamidas/farmacologia , Animais , Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sulfonamidas/uso terapêutico
6.
Cells ; 10(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34359883

RESUMO

While sudden loss of perfusion is responsible for ischemia, failure to supply the required amount of oxygen to the tissues is defined as hypoxia. Among several pathological conditions that can impair brain perfusion and oxygenation, cardiocirculatory arrest is characterized by a complete loss of perfusion to the brain, determining a whole brain ischemic-anoxic injury. Differently from other threatening situations of reduced cerebral perfusion, i.e., caused by increased intracranial pressure or circulatory shock, resuscitated patients after a cardiac arrest experience a sudden restoration of cerebral blood flow and are exposed to a massive reperfusion injury, which could significantly alter cellular metabolism. Current evidence suggests that cell populations in the central nervous system might use alternative metabolic pathways to glucose and that neurons may rely on a lactate-centered metabolism. Indeed, lactate does not require adenosine triphosphate (ATP) to be oxidated and it could therefore serve as an alternative substrate in condition of depleted energy reserves, i.e., reperfusion injury, even in presence of adequate tissue oxygen delivery. Lactate enriched solutions were studied in recent years in healthy subjects, acute heart failure, and severe traumatic brain injured patients, showing possible benefits that extend beyond the role as alternative energetic substrates. In this manuscript, we addressed some key aspects of the cellular metabolic derangements occurring after cerebral ischemia-reperfusion injury and examined the possible rationale for the administration of lactate enriched solutions in resuscitated patients after cardiac arrest.


Assuntos
Acidose/prevenção & controle , Lesões Encefálicas Traumáticas/prevenção & controle , Parada Cardíaca/complicações , Hipóxia-Isquemia Encefálica/prevenção & controle , Ácido Láctico/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Acidose/etiologia , Acidose/patologia , Animais , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/patologia , Morte Celular/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Parada Cardíaca/patologia , Parada Cardíaca/terapia , Humanos , Soluções Hipertônicas , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Ressuscitação/métodos
7.
Histol Histopathol ; 36(6): 675-684, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34013967

RESUMO

OBJECTIVES: Neuronal damage is an important pathological mechanism in neonatal hypoxic-ischemic brain damage (HIBD). We found in our previous studies that oligodendrocyte transcription factor 2 (Olig2) downregulation was able to increase cell survival in the brain. However, the specific mechanism has yet to be clarified. METHODS: Sprague-Dawley rats aged 3 d were randomly divided into three groups: the normal control group, the Olig2-RNAi group, and the RNAi-negative control group. The normal control group received no treatment, the Olig2-RNAi group received the Olig2 RNAi adenovirus, and the RNAi-negative control group was given the control adenovirus after the completion of the HIBD model. Infarct lesions and their volumes were observed by triphenyltetrazolium chloride (TTC) staining 3 d after the completion of the adenovirus local injection. The condition of the tissue was characterized by hematoxylin-eosin staining 7 d after the model was established, and cell viability was determined by azure methylene blue staining. Subcellular damage was analyzed by transmission electron microscopy. Rotarod analysis was performed to detect moving behavior ability and an MWM assay was conducted to evaluate the memory. RESULTS: TTC staining showed a smaller brain injury area in the Olig2-RNAi group than in the RNAi-negative control group. Hematoxylin-eosin staining indicated the presence of severe cell injury in the hippocampal region after HIBD, which improved after Olig2 knockdown. Azure methylene blue staining and electron microscopy results suggested that the cells improved after Olig2 knockdown. The rats stayed longer on the rotating rod, and their latency in the water maze test was gradually shortened relative to that of the rats in the Olig2-RNAi negative control group. CONCLUSION: Olig2 knockdown can promote the repair of hypoxic-ischemic brain damage in newborn rats.


Assuntos
Hipóxia-Isquemia Encefálica , Neurônios , Fator de Transcrição 2 de Oligodendrócitos , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Fármacos Neuroprotetores , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Interferência de RNA , Ratos , Ratos Sprague-Dawley
8.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802413

RESUMO

Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.


Assuntos
Encéfalo/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/prevenção & controle , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Animais Recém-Nascidos , Disfunção Cognitiva/prevenção & controle , Suplementos Nutricionais , Humanos
9.
Am J Pathol ; 191(3): 503-514, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33608066

RESUMO

Long noncoding RNAs play critical roles in cellular homeostasis, and long noncoding RNA H19 (H19) is implicated in several pathologic conditions. The putative role of H19 in the pathogenesis and progression of hypoxic-ischemic brain damage (HIBD) is not yet understood. Therefore, a series of in vivo and in vitro experiments were designed to investigate the potential roles of H19 in neuronal apoptosis and cognitive dysfunction in HIBD. H19 expression was decreased in HIBD rat models established by partial occlusion of carotid artery. H19 bound to and decreased the expression of miR-107, which also increased VEGF expression. H19 overexpression reduced neuronal apoptosis and alleviated cognitive dysfunction in HIBD rats. The up-regulation of miR-107 reversed the protective effects conferred by H19. In addition, the cell model of HIBD was established by oxygen-glucose deprivation in neuronal cells used. H19 overexpression in oxygen-glucose deprivation neurons increased B-cell lymphoma-2 and decreased B-cell lymphoma-2-associated X, total and cleaved caspase-3 expressions. Taken together, the results showed that H19 expresses at a low level in HIBD. H19 overexpression decreased miR-107 and increased VEGF expression, which resulted in repressed neuronal apoptosis and alleviated cognitive dysfunction. Thus, H19 may serve as a molecular target for translational research for HIBD therapy.


Assuntos
Regulação da Expressão Gênica , Hipóxia-Isquemia Encefálica/prevenção & controle , MicroRNAs/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Comportamento Animal , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/patologia , Masculino , MicroRNAs/genética , Fármacos Neuroprotetores , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/genética
10.
J Neuroinflammation ; 18(1): 55, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33612099

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/prevenção & controle , Neuroproteção/fisiologia , Animais , Animais Recém-Nascidos , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Humanos , Hipóxia-Isquemia Encefálica/patologia , Recém-Nascido , Neurogênese/fisiologia
11.
Biomed Pharmacother ; 135: 111207, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33460958

RESUMO

We previously reported that L-Cysteine, H2S donor, remarkably attenuated neuroinflammation following hypoxia-ischemia (HI) brain injury in neonatal mice. However, its anti-inflammatory mechanism for HI insult is still unknown. The study focus on the effects of L-Cysteine on immune cell populations, Ca2+ mobilization and phagocytosis after neonatal HI. We found that L-Cysteine treatment skewed CD11b+/CD45low microglia and CD11b+/CD45high brain monocytes/macrophages towards a more anti-inflammatory property 72 h after HI-injured brain. Moreover, L-Cysteine treatment reduced cerebral infiltration of CD4 T cells 7 days following HI insult. Furthermore, CD4 T cell subset analysis revealed that L-Cysteine treatment decreased Th1 and Th2 counts, while increased Th17/Th2 ratio. Moreover, L-Cysteine treatment suppressed LPS-induced cytosolic Ca2+ and LPS-stimulated phagocytosis in primary microglia. The anti-inflammatory effect of L-Cysteine was associated with improving neurobehavioral impairment following HI insult. Our results demonstrate L-Cysteine treatment suppressed the invasion of peripheral immune cells, increasing [Ca2+]i and excessive phagocytosis to improve neurobehavioral deficits following hypoxia-ischemia injury in neonatal mice by H2S release.


Assuntos
Infarto Encefálico/prevenção & controle , Encéfalo/efeitos dos fármacos , Cálcio/metabolismo , Cisteína/farmacologia , Sulfeto de Hidrogênio/farmacologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fagocitose/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Infarto Encefálico/imunologia , Infarto Encefálico/metabolismo , Infarto Encefálico/patologia , Sinalização do Cálcio , Células Cultivadas , Cisteína/metabolismo , Modelos Animais de Doenças , Sulfeto de Hidrogênio/metabolismo , Hipóxia-Isquemia Encefálica/imunologia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Fármacos Neuroprotetores/metabolismo
12.
Neurotoxicology ; 83: 28-39, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309839

RESUMO

Exosomes play critical roles in neurogenesis. This study aims to explore the mechanism of astrocyte-derived exosomes in neonatal rats with hypoxic-ischemic brain damage (HIBD). Astrocytes were collected and astrocyte-derived exosomes were isolated and identified. Neonatal rats were pre-treated with exosomes and then subjected to HIBD induction. Then the neurobehaviors, neuronal apoptosis, inflammation and oxidative stress in rat brain were measured. Differentially expressed microRNAs (miRNAs) in rat brain before and after HI procedure were analyzed. H19-7 cells were subjected to oxygen and glucose deprivation (OGD) for in vitro studies. Target relation between miR-17-5p and BNIP2 was identified. Gain- and loss-of functions of miR-17-5p and BNIP2 were conducted to identify their roles in viability, apoptosis, oxidative stress and inflammation of OGD-treated cells. Collectively, astrocyte-derived exosomes improved neurobehaviors, and reduced cerebral infarction, neuronal apoptosis, oxidative and inflammation in vivo and in vitro. The exosomes carried miR-17-5p bound to BNIP2 and negatively regulated BNIP2 expression in OGD-treated cells. Over-expression of miR-17-5p increased viability, and decreased OGD-induced apoptosis, oxidative stress and inflammation of H19-7 cells, which were reversed by over-expression of BNIP2. Taken together, the study suggested that astrocyte-derived exosomes could carry miR-17-5p to protect neonatal rats from HIBD via inhibiting BNIP-2 expression.


Assuntos
Astrócitos/transplante , Encéfalo/metabolismo , Exossomos/transplante , Terapia Genética , Hipóxia-Isquemia Encefálica/prevenção & controle , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Astrócitos/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Exossomos/genética , Exossomos/metabolismo , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Mediadores da Inflamação/metabolismo , MicroRNAs/genética , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos Sprague-Dawley
13.
Eur J Pharmacol ; 883: 173360, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32707187

RESUMO

Inhibition of the oxidative stress induced by hypoxia and ischemia would be beneficial for reducing neuroinflammation and promoting nerve cell survival. We had previously reported a kind of anthocyanin (pentunidin-3-O-rutinoside (p-coumaroyl)-5-O-glucoside) to reduce the damage to neurovascular unit in middle cerebral artery occlusion (MCAO) rats. However, the neuroprotective mechanism of anthocyanin remains to be elucidated. Neuronal autophagy, after ischemic hypoxia, seems to be part of the pro-survival signal. In the current study, we used oxygen and glucose deprivation (OGD) to stimulate SH-SY5Y cells, and observed whether anthocyanin could reduce the inflammatory response and apoptosis, and explored the role of autophagy in this process. Anthocyanin significantly increased the autophagic flux, inhibited oxidative stress, and reduced inflammatory response and neuronal apoptosis in OGD exposed SH-SY5Y cells. The autophagy agonist rapamycin enhanced the anti-inflammatory effect of anthocyanin, while the autophagy inhibitor 3-methyladenine (3-MA) forbade its protective effect. Our finding, therefore, suggested the reduction of hypoxia and ischemia induced oxidative stress, along with inflammation and apoptosis, by anthocyanin, to occur via increase of autophagic flux in SH-SY5Y cells.


Assuntos
Antocianinas/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Encefalite/prevenção & controle , Hipóxia-Isquemia Encefálica/prevenção & controle , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Encefalite/metabolismo , Encefalite/patologia , Glucose/deficiência , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Mediadores da Inflamação/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais
14.
Mol Cell Biochem ; 472(1-2): 1-8, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32632609

RESUMO

Hypoxic-ischemic (HI) brain damage (HIBD) leads to high neonatal mortality and severe neurologic morbidity. Autophagy is involved in the pathogenesis of HIBD. This study aims to investigate the effect of long non-coding RNA colorectal neoplasia differentially expressed (CRNDE) on HIBD and to validate whether autophagy is involved in this process. A HIBD model in rat pups and a HI model in rat primary cerebrocortical neurons were established. Autophagy was evaluated by western blot. The HIBD in rats was evaluated by hematoxylin and eosin staining, TUNEL staining, triphenyl tetrazolium chloride staining, and morris water maze test. The HI injury in vitro was evaluated by determining cell viability and apoptosis. The results showed that CRNDE expression was time-dependently increased in the brain after HIBD. Administration with CRNDE shRNA-expressing lentiviruses alleviated pathological injury and apoptosis in rat hippocampus, decreased infarct volume, and improved behavior performance of rats subjected to HIBD. Furthermore, CRNDE silencing promoted cell viability and inhibited cell apoptosis in neurons exposed to HI. Moreover, CRNDE silencing promoted autophagy and the autophagy inhibitor 3-methyladenine counteracted the neuroprotective effect of CRNDE silencing on HI-induced neuronal injury both in vivo and in vitro. Collectively, CRNDE silencing alleviates HIBD, at least partially, through promoting autophagy.


Assuntos
Autofagia , Encéfalo/metabolismo , Hipóxia-Isquemia Encefálica/prevenção & controle , Neurônios/metabolismo , Fármacos Neuroprotetores , RNA Longo não Codificante/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Comportamento Animal , Encéfalo/patologia , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/patologia , Neurônios/patologia , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley
15.
Physiol Rep ; 8(12): e14472, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32596995

RESUMO

BACKGROUND: Infants with hypoxic-ischemic injury often require cardiopulmonary resuscitation. Mitochondrial failure to generate adenosine triphosphate (ATP) during hypoxic-ischemic reperfusion injury contributes to cellular damage. Current postnatal strategies to improve outcome in hypoxic-ischemic injury need sophisticated equipment to perform servo-controlled cooling. Administration of intravenous pyruvate, an antioxidant with favorable effects on mitochondrial bioenergetics, is a simple intervention that can have a global impact. We hypothesize that the administration of pyruvate following the return of spontaneous circulation (ROSC) would improve cardiac function, systemic hemodynamics, and oxygen utilization in the brain in newborn lambs with cardiac arrest (CA). METHODS: Term lambs were instrumented, delivered by C-section and asphyxia induced by umbilical cord occlusion along with clamping of the endotracheal tube until asystole; Lambs resuscitated following 5 min of CA; upon ROSC, lambs were randomized to receive pyruvate or saline infusion over 90 min and ventilated for 150 min postinfusion. Pulmonary and systemic hemodynamics and arterial gases monitored. We measured plasma pyruvate, tissue lactate, and ATP levels (heart and brain) in both groups. RESULTS: Time to ROSC was not different between the two groups. Systolic and diastolic blood pressures, stroke volume, arterial oxygen content, and cerebral oxygen delivery were similar between the two groups. The cerebral metabolic rate of oxygen was higher following pyruvate infusion; higher oxygen consumption in the brain was associated with lower plasma levels but higher brain ATP levels compared to the saline group. CONCLUSIONS: Pyruvate promotes energy generation accompanied by efficient oxygen utilization in the brain and may facilitate additional neuroprotection in the presence of hypoxic-ischemic injury.


Assuntos
Asfixia/complicações , Parada Cardíaca/tratamento farmacológico , Hipóxia-Isquemia Encefálica/prevenção & controle , Ácido Pirúvico/farmacologia , Ressuscitação/métodos , Animais , Animais Recém-Nascidos , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Parada Cardíaca/etiologia , Parada Cardíaca/patologia , Consumo de Oxigênio , Ovinos
16.
Apoptosis ; 25(3-4): 275-289, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32306124

RESUMO

Hypoxic-ischemic brain damage (HIBD) represents one of the leading causes of neonatal mortality and permanent neurological disability worldwide. Compelling studies have identified implication of microRNAs (miRNAs) in HIBD. However, the molecular mechanism of miR-21 underlying the disease pathogenesis is unknown. The present study aims to explore the role of miR-21 in neonatal rats with HIBD. HIBD rat models were developed by carotid artery ligation and hypoxia treatment, and in vitro cell models were induced by oxygen-glucose deprivation. Through RT-qPCR and western blot analysis, high expression of CCL3 and poor expression of miR-21 were detected in brain tissues of rats with HIBD. Results of dual-luciferase reporter gene assay demonstrated that miR-21 could target and downregulate CCL3. The effect of miR-21 on the neurobehavioral ability of rats, the pathological characteristics of brain tissues, neuron apoptosis and as well as its impact on the NF-κB signaling pathway-related factors was examined by gain- and loss-of-function experiments. The obtained data suggested that upregulation of miR-21 resulted in significantly reduced cerebral infarct volume and degree of brain tissue damage, and improved neurobehavioral ability and memory ability in rats with HIBD through downregulation of CCL3. Besides, overexpression of miR-21 downregulated CCL3 to repress IKKα/ß and p65 phosphorylation both in vivo and in vitro, hence disrupting the NF-κB signaling pathway. Taken together, the key findings of the current study underlie the cerebral protective effect of miR-21 against HIBD in neonatal rats through the inhibition of CCL3.


Assuntos
Quimiocina CCL3/genética , Hipóxia-Isquemia Encefálica/prevenção & controle , MicroRNAs/metabolismo , Fármacos Neuroprotetores/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Encéfalo/metabolismo , Encéfalo/patologia , Quimiocina CCL3/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , MicroRNAs/genética , Neurônios/metabolismo , Neurônios/patologia , Ratos , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
17.
Neurosci Lett ; 727: 134922, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32205185

RESUMO

Our previous experiments found that a suitable dose of vitamin A (VA) can affect neuronal apoptosis after hypoxic-ischemic brain damage (HIBD) by binding to RARα to activate the PI3K/AKT signaling pathway; however, the other neuroprotective effects of VA after HIBD, for example, whether it promotes neural stem cell (NSC) proliferation, remain unclear. In this study, in vivo and in vitro experiments revealed that VA regulates ß-catenin signaling through RARɑ to affect NSC proliferation after HIBD and to improve neurocognitive outcomes. Because of the accumulation and suspended growth characteristics of NSCs, we performed in vitro experiments with PC12 cells to mimic NSCs. Flow cytometry, CCK8, EdU staining, immunofluorescence and behavioral tests were performed to explore the effects of retinoic acid (RA) on NSC proliferation and post-HIBD function. The expression of RARα and ß-catenin pathway components were measured by real-time PCR and Western blotting. We found that the learning and memory of the VA-deficient (VAD) group was more seriously damaged than that of the VA normal (VAN) group. The proliferation of hippocampal NSCs was significantly decreased in the VAD group compared with the VAN group. The mRNA and protein expression of RARɑ, AKT, GSK-3ß, ß-catenin and Cyclin D1 were significantly lower in the VAD group than in the VAN group. In vitro, too high and too low of an RA intervention resulted in decreased proliferation, while an appropriate RA concentration (1-5 µmol/L) significantly promoted proliferation, S phase cells and high ß-catenin pathway expression. These results suggested that VA can exert a neuroprotective effect by promoting the proliferation of hippocampal NSCs after neonatal HIBD injury at the appropriate concentration. VA activates RARɑ, which regulates the ß-catenin signaling pathway, which in turn upregulates Cyclin D1 expression, promotes NSC proliferation, and finally plays a role in the neuroprotective effect.


Assuntos
Proliferação de Células/fisiologia , Hipóxia-Isquemia Encefálica/metabolismo , Células-Tronco Neurais/metabolismo , Transdução de Sinais/fisiologia , Vitamina A/farmacologia , beta Catenina/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Feminino , Hipóxia-Isquemia Encefálica/prevenção & controle , Células-Tronco Neurais/efeitos dos fármacos , Células PC12 , Ratos , Ratos Sprague-Dawley , Receptor alfa de Ácido Retinoico , Transdução de Sinais/efeitos dos fármacos , Vitamina A/uso terapêutico
18.
J Neuroinflammation ; 17(1): 46, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014002

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are suspected to exert neuroprotective effects in brain injury, in part through the secretion of extracellular vesicles like exosomes containing bioactive compounds. We now investigate the mechanism by which bone marrow MSCs (BMSCs)-derived exosomes harboring the small non-coding RNA miR-29b-3p protect against hypoxic-ischemic brain injury in rats. METHODS: We established a rat model of middle cerebral artery occlusion (MCAO) and primary cortical neuron or brain microvascular endothelial cell (BMEC) models of oxygen and glucose deprivation (OGD). Exosomes were isolated from the culture medium of BMSCs. We treated the MCAO rats with BMSC-derived exosomes in vivo, and likewise the OGD-treated neurons and BMECs in vitro. We then measured apoptosis- and angiogenesis-related features using TUNEL and CD31 immunohistochemical staining and in vitro Matrigel angiogenesis assays. RESULTS: The dual luciferase reporter gene assay showed that miR-29b-3p targeted the protein phosphatase and tensin homolog (PTEN). miR-29b-3p was downregulated and PTEN was upregulated in the brain of MCAO rats and in OGD-treated cultured neurons. MCAO rats and OGD-treated neurons showed promoted apoptosis and decreased angiogenesis, but overexpression of miR-29b-3p or silencing of PTEN could reverse these alterations. Furthermore, miR-29b-3p could negatively regulate PTEN and activate the Akt signaling pathway. BMSCs-derived exosomes also exerted protective effects against apoptosis of OGD neurons and cell apoptosis in the brain samples from MCAO rats, where we also observed promotion of angiogenesis. CONCLUSION: BMSC-derived exosomal miR-29b-3p ameliorates ischemic brain injury by promoting angiogenesis and suppressing neuronal apoptosis, a finding which may be of great significance in the treatment of hypoxic-ischemic brain injury.


Assuntos
Exossomos/transplante , Hipóxia-Isquemia Encefálica/prevenção & controle , Infarto da Artéria Cerebral Média/complicações , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Células Endoteliais/metabolismo , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
19.
Cell Mol Neurobiol ; 40(5): 737-750, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31916069

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of lifelong disabilities worldwide, without effective therapies and clear regulatory mechanisms. MicroRNAs (miRNAs) act as a significant regulator in neuroregeneration and neuronal apoptosis, thus holding great potential as therapeutic targets in HIE. In this study, we established the hypoxia-ischemia (HI) model in vivo and oxygen-glucose deprivation (OGD) model in vitro. Zea-longa score and magnetic resonance imaging were applied to verify HI-induced neuronal dysfunction and brain infarction. Subsequently, a miRNA microarray analysis was employed to profile miRNA transcriptomes. Down-regulated miR-124 was found 24 h after HIE, which corresponded to the change in PC12, SHSY5Y, and neurons after OGD. To determine the function of miR-124, mimics and lentivirus-mediated overexpression were used to regulate miR-124 in vivo and in vitro, respectively. Our results showed that miR-124 overexpression obviously promoted cell survival and suppressed neuronal apoptosis. Further, the memory and neurological function of rats was also obviously improved at 1 and 2 months after HI, indicated by the neurological severity score, Y-maze test, open field test, and rotating rod test. Our findings showed that overexpression of miR-124 can be a promising new strategy for HIE therapy in future clinical practice.


Assuntos
Hipóxia Fetal/complicações , Hipóxia Fetal/terapia , Hipóxia-Isquemia Encefálica/prevenção & controle , Hipóxia-Isquemia Encefálica/fisiopatologia , MicroRNAs/metabolismo , Animais , Técnicas de Diagnóstico Neurológico , Encefalite/etiologia , Hipóxia Fetal/patologia , Glucose/deficiência , Hipóxia-Isquemia Encefálica/complicações , MicroRNAs/genética , Células PC12 , Ratos , Ratos Sprague-Dawley
20.
Life Sci ; 254: 116444, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31102745

RESUMO

AIMS: In this study we aimed to explore the specific effect and mechanism of oxymatrine on neonatal rats hypoxic-ischemic brain damage. MATERIALS AND METHODS: Hypoxia-ischemia damage model was built by ligaturing the left common carotid artery in 7-day-old rat. Rat pups in OMT group received intraperitoneal injection with oxymatrine (120 mg/kg). Oxygen glucose deprivation/reperfusion model was created in hippocampal neurons. Neurological behavioral, histopathological alteration, cell viability, intracellular Ca2+ concentration, MMP and cell apoptosis were used in damage evaluation. KEY FINDINGS: The results shown that oxymatrine regulated brain damage and cell apoptosis by controlling NR2B-PI3K/Akt/GSK3ß signaling pathway. SIGNIFICANCE: Neonatal hypoxic-ischemic brain damage is a destructive injury that leading to death and detrimental neurological deficits. Oxymatrine is a natural alkaloid compound that can alleviate the ischemic cerebral infarction. In the study, 120 mg/kg oxymatrine decreased neuroethology damage and neuronal damage in the cerebral cortex and the hippocampus CA3. Moreover, 0.2, 1, 5 µg/ml oxymatrine improved cell survival, decreased cell apoptosis. The utilization of LY293004 (PI3K signaling pathway inhibitor) also supported that oxymatrine ameliorated neonatal hypoxic-ischemic brain damage and cell injury by controlling NR2B-PI3K/Akt/GSK3ß signaling pathway.


Assuntos
Alcaloides/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipóxia-Isquemia Encefálica/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolizinas/farmacologia , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA