Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
1.
FASEB J ; 38(6): e23573, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38526846

RESUMO

Familial hypercholesterolemia (FH) is one of the most prevalent monogenetic disorders leading to cardiovascular disease (CVD) worldwide. Mutations in Ldlr, encoding a membrane-spanning protein, account for the majority of FH cases. No effective and safe clinical treatments are available for FH. Adenine base editor (ABE)-mediated molecular therapy is a promising therapeutic strategy to treat genetic diseases caused by point mutations, with evidence of successful treatment in mouse disease models. However, due to the differences in the genomes between mice and humans, ABE with specific sgRNA, a key gene correction component, cannot be directly used to treat FH patients. Thus, we generated a knock-in mouse model harboring the partial patient-specific fragment and including the Ldlr W490X mutation. LdlrW490X/W490X mice recapitulated cholesterol metabolic disorder and clinical manifestations of atherosclerosis associated with FH patients, including high plasma low-density lipoprotein cholesterol levels and lipid deposition in aortic vessels. Additionally, we showed that the mutant Ldlr gene could be repaired using ABE with the cellular model. Taken together, these results pave the way for ABE-mediated molecular therapy for FH.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Camundongos , Animais , RNA Guia de Sistemas CRISPR-Cas , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/terapia , Mutação , Hipercolesterolemia/genética , Colesterol , Receptores de LDL/genética , Receptores de LDL/metabolismo
2.
Genes (Basel) ; 15(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38254988

RESUMO

This clinical study examined the influence of SLCO1B1 c.521T>C (rs4149056) on plasma atorvastatin concentrations in pediatric hypercholesterolemia. The participants (8-21 years), including heterozygous (c.521T/C, n = 13), homozygous (c.521C/C, n = 2) and controls (c.521T/T, n = 13), completed a single-oral-dose pharmacokinetic study. Similar to in adults, the atorvastatin (AVA) area-under-concentration-time curve from 0 to 24 h (AUC0-24) was 1.7-fold and 2.8-fold higher in participants with c.521T/C and c.521C/C compared to the c.521T/T participants, respectively. The inter-individual variability in AVA exposure within these genotype groups ranged from 2.3 to 4.8-fold, indicating that additional factors contribute to the inter-individual variability in the AVA dose-exposure relationship. A multivariate model reinforced the SLCO1B1 c.521T>C variant as the central factor contributing to AVA systemic exposure in this pediatric cohort, accounting for ~65% of the variability in AVA AUC0-24. Furthermore, lower AVA lactone concentrations in participants with increased body mass index contributed to higher exposure within the c.521T/T and c.521T/C genotype groups. Collectively, these factors contributing to higher systemic exposure could increase the risk of toxicity and should be accounted for when individualizing the dosing of atorvastatin in eligible pediatric patients.


Assuntos
Hipercolesterolemia , Adulto , Humanos , Criança , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Atorvastatina/uso terapêutico , Genótipo , Heterozigoto , Variação Genética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética
3.
Ageing Res Rev ; 93: 102149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056504

RESUMO

Familial hypercholesterolemia (FH) is a metabolic condition caused mainly by a mutation in the low-density lipoprotein (LDL) receptor gene (LDLR), which is highly prevalent in the population. Besides being an important causative factor of cardiovascular diseases, FH has been considered an early risk factor for Alzheimer's disease. Cognitive and emotional behavioral impairments in LDL receptor knockout (LDLr-/-) mice are associated with neuroinflammation, blood-brain barrier dysfunction, impaired neurogenesis, brain oxidative stress, and mitochondrial dysfunction. Notably, today, LDLr-/- mice, a widely used animal model for studying cardiovascular diseases and atherosclerosis, are also considered an interesting tool for studying dementia. Here, we reviewed the main findings in LDLr-/- mice regarding the relationship between FH and brain dysfunctions and dementia development.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Animais , Camundongos , Hipercolesterolemia/epidemiologia , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Doenças Cardiovasculares/genética , Fatores de Risco , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/genética , Encéfalo/metabolismo , Cognição , Fatores de Risco de Doenças Cardíacas
4.
J Lipid Res ; 65(2): 100490, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38122934

RESUMO

Familial hypercholesterolemia (FH) is a common genetic disorder of lipid metabolism caused by pathogenic/likely pathogenic variants in LDLR, APOB, and PCSK9 genes. Variants in FH-phenocopy genes (LDLRAP1, APOE, LIPA, ABCG5, and ABCG8), polygenic hypercholesterolemia, and hyperlipoprotein (a) [Lp(a)] can also mimic a clinical FH phenotype. We aim to present a new diagnostic tool to unravel the genetic background of clinical FH phenotype. Biochemical and genetic study was performed in 1,005 individuals with clinical diagnosis of FH, referred to the Portuguese FH Study. A next-generation sequencing panel, covering eight genes and eight SNPs to determine LDL-C polygenic risk score and LPA genetic score, was validated, and used in this study. FH was genetically confirmed in 417 index cases: 408 heterozygotes and 9 homozygotes. Cascade screening increased the identification to 1,000 FH individuals, including 11 homozygotes. FH-negative individuals (phenotype positive and genotype negative) have Lp(a) >50 mg/dl (30%), high polygenic risk score (16%), other monogenic lipid metabolism disorders (1%), and heterozygous pathogenic variants in FH-phenocopy genes (2%). Heterozygous variants of uncertain significance were identified in primary genes (12%) and phenocopy genes (7%). Overall, 42% of our cohort was genetically confirmed with FH. In the remaining individuals, other causes for high LDL-C were identified in 68%. Hyper-Lp(a) or polygenic hypercholesterolemia may be the cause of the clinical FH phenotype in almost half of FH-negative individuals. A small part has pathogenic variants in ABCG5/ABCG8 in heterozygosity that can cause hypercholesterolemia and should be further investigated. This extended next-generation sequencing panel identifies individuals with FH and FH-phenocopies, allowing to personalize each person's treatment according to the affected pathway.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Pró-Proteína Convertase 9/genética , Hipercolesterolemia/genética , LDL-Colesterol/genética , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Fenótipo , Patrimônio Genético , Receptores de LDL/genética , Mutação
5.
Circulation ; 149(15): 1183-1201, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38099436

RESUMO

BACKGROUND: Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow, and stable flow (s-flow) protects against atherosclerosis by incompletely understood mechanisms. METHODS: Our single-cell RNA-sequencing data using the mouse partial carotid ligation model was reanalyzed, which identified Heart-of-glass 1 (HEG1) as an s-flow-induced gene. HEG1 expression was studied by immunostaining, quantitive polymerase chain reaction, hybridization chain reaction, and Western blot in mouse arteries, human aortic endothelial cells (HAECs), and human coronary arteries. A small interfering RNA-mediated knockdown of HEG1 was used to study its function and signaling mechanisms in HAECs under various flow conditions using a cone-and-plate shear device. We generated endothelial-targeted, tamoxifen-inducible HEG1 knockout (HEG1iECKO) mice. To determine the role of HEG1 in atherosclerosis, HEG1iECKO and littermate-control mice were injected with an adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9] and fed a Western diet to induce hypercholesterolemia either for 2 weeks with partial carotid ligation or 2 months without the surgery. RESULTS: S-flow induced HEG1 expression at the mRNA and protein levels in vivo and in vitro. S-flow stimulated HEG1 protein translocation to the downstream side of HAECs and release into the media, followed by increased messenger RNA and protein expression. HEG1 knockdown prevented s-flow-induced endothelial responses, including monocyte adhesion, permeability, and migration. Mechanistically, HEG1 knockdown prevented s-flow-induced KLF2/4 (Kruppel-like factor 2/4) expression by regulating its intracellular binding partner KRIT1 (Krev interaction trapped protein 1) and the MEKK3-MEK5-ERK5-MEF2 pathway in HAECs. Compared with littermate controls, HEG1iECKO mice exposed to hypercholesterolemia for 2 weeks and partial carotid ligation developed advanced atherosclerotic plaques, featuring increased necrotic core area, thin-capped fibroatheroma, inflammation, and intraplaque hemorrhage. In a conventional Western diet model for 2 months, HEG1iECKO mice also showed an exacerbated atherosclerosis development in the arterial tree in both sexes and the aortic sinus in males but not in females. Moreover, endothelial HEG1 expression was reduced in human coronary arteries with advanced atherosclerotic plaques. CONCLUSIONS: Our findings indicate that HEG1 is a novel mediator of atheroprotective endothelial responses to flow and a potential therapeutic target.


Assuntos
Aterosclerose , Hipercolesterolemia , Placa Aterosclerótica , Masculino , Feminino , Humanos , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Pró-Proteína Convertase 9/metabolismo , Células Endoteliais/metabolismo , Hipercolesterolemia/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Membrana/metabolismo
6.
Lancet ; 403(10421): 55-66, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38101429

RESUMO

BACKGROUND: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. METHODS: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. FINDINGS: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. INTERPRETATION: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. FUNDING: Pfizer, Amgen, Merck Sharp & Dohme, Sanofi-Aventis, Daiichi Sankyo, and Regeneron.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Adulto , Criança , Humanos , Masculino , Feminino , Adolescente , Pré-Escolar , LDL-Colesterol , Estudos Transversais , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/epidemiologia , Hipercolesterolemia/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Testes Genéticos
7.
Tohoku J Exp Med ; 262(3): 181-189, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123303

RESUMO

Some studies have investigated the role of cholesterol in the progression of colorectal cancer (CRC). However, the underlying mechanism of action is not clear. In this study, we used bioinformatics tools to elucidate the molecular mechanisms involved. We initially obtained CRC datasets from the Gene Expression Omnibus (GEO) database and hypercholesterolemia data from GeneCards and DisGeNE. Common differentially expressed genes (DEGs) were determined by using Venn diagram web tools. Next, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The hub gene was identified through common expression pattern analysis and survival analysis. Finally, we conducted an immune regulatory point analysis and predicted target drugs based on the hub gene. The results of our analysis revealed 13 common DEGs, with endothelin receptor type A (EDNRA) identified as the hub gene linking hypercholesterolemia and CRC. The results of the GO analysis showed that the common DEGs were primarily associated with the G-protein coupled receptor signaling pathway, extracellular space, and receptor binding. The results of the KEGG pathway enrichment analysis indicated enrichment in pathways related to cancer and the phospholipase D signaling pathway. Additionally, we identified potential target drugs, including Podocarpus montanus, Diospyros kaki, Herba Salviae japoniae, sitaxentan, and ambrisentan. We found that EDNRA might be an underlying biomarker for both hypercholesterolemia and CRC. The predicted target drugs provide new strategies for treating CRC.


Assuntos
Neoplasias Colorretais , Hipercolesterolemia , Humanos , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica/métodos , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Biologia Computacional/métodos
8.
Skin Res Technol ; 29(12): e13533, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38011000

RESUMO

BACKGROUND: Several studies have reported the association between pure hypercholesterolemia (PH) and psoriasis, but the causal effect remains unclear. METHODS: We explored the causal effect between PH and psoriasis using two-sample bidirectional Mendelian randomization (MR) analysis using data from genome-wide association studies. Single nucleotide polymorphisms related with exposures at the genome-wide significance level (p < 5×10-8 ) and less than the linkage disequilibrium level (r2  < 0.001) were chosen as instrumental variables. Subsequently, we used inverse variance weighting (IVW), MR-Egger and weighted median (WM) methods for causal inference. p < 0.05 was considered statistically significant. Heterogeneity was tested using Cochran's Q-test, and horizontal pleiotropy was examined using the MR-Egger intercept. Leave-one-out analyses were performed to assess the robustness and reliability of the results. RESULTS: MR results showed a positive causal effect of PH on psoriasis [IVW: odds ratios (OR): 1.139, p = 0.032; MR-Egger: OR: 1.434, p = 0.035; WM: OR: 1.170, p = 0.045] and psoriatic arthritis (PsA) (IVW: OR: 1.210, p = 0.049; MR-Egger regression: OR: 1.796, p = 0.033; WM: OR: 1.317, p = 0.028). However, there is no causal relationship between PH and psoriasis vulgaris as well as other unspecified psoriasis. Inverse MR results suggested a negative causal relationship between PsA and PH (IVW: OR: 0.950, p = 0.037). No heterogeneity and horizontal pleiotropy exist, and these results were confirmed to be robust. CONCLUSION: PH has a positive casual effect on psoriasis and PsA, and PsA may reduce the risk of having PH.


Assuntos
Artrite Psoriásica , Hipercolesterolemia , Psoríase , Humanos , Estudo de Associação Genômica Ampla , Hipercolesterolemia/epidemiologia , Hipercolesterolemia/genética , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Psoríase/epidemiologia , Psoríase/genética
9.
Atherosclerosis ; 386: 117327, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37848354

RESUMO

BACKGROUND AND AIMS: Severe hypercholesterolemia (LDL-cholesterol ≥ 5 mmol/l) is a major risk factor for coronary artery disease (CAD). The etiology incudes both genetic and nongenetic factors, but persons carrying mutations in known hypercholesterolemia-associated genes are at significantly higher CAD risk than non-carriers. Yet, a significant proportion of mutation carriers remains undetected while the assessment of genetic candidate variants in clinical practice is challenging. METHODS: To address these challenges, we set out to test the utility of a practical approach to leverage data from a large reference cohort, the FinnGen Study encompassing 356,082 persons with extensive longitudinal health record information, to aid the clinical evaluation of single genetic candidate genes variants detected by exome sequence analysis in a target population of 351 persons with severe hypercholesterolemia. RESULTS: We identified 23 rare missense mutations in known hypercholesterolemia genes, 3 of which were previously described mutations (LDLR Pro309Lysfs, LDLR Arg595Gln and APOB Arg3527Gln). Subsequent in silico and clinical assessment of the remaining 20 variants pinpointed two likely hypercholesterolemia-associated variants in LDLR (Arg574Leu and Glu626Lys) and one in LDLRAP1 (Arg151Trp). Heterozygous carriers of the novel LDLR and LDLRAP1 variants received statin treatment more often than non-carriers (OR 2.1, p = 1.8e-6 and OR 1.4, p = 0.001) and untreated carriers had higher risk for ischemic heart disease (OR 2.0, p = 0.03 and OR 1.8, p = 0.008). CONCLUSIONS: Our data elucidate the wide spectrum of genetic variants impacting hypercholesterolemia and demonstrate the utility of a large reference population to assess the heterogeneous impact of candidate gene variants on cardiovascular disease risk.


Assuntos
Doença da Artéria Coronariana , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/genética , Hipercolesterolemia/epidemiologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Finlândia/epidemiologia , Fenótipo , Receptores de LDL/genética , Mutação , Pró-Proteína Convertase 9/genética
10.
Arterioscler Thromb Vasc Biol ; 43(10): 2058-2067, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589137

RESUMO

BACKGROUND: Severe hypercholesterolemia, defined as LDL (low-density lipoprotein) cholesterol (LDL-C) measurement ≥190 mg/dL, is associated with increased risk for coronary artery disease (CAD). Causes of severe hypercholesterolemia include monogenic familial hypercholesterolemia, polygenic hypercholesterolemia, elevated lipoprotein(a) [Lp(a)] hypercholesteremia, polygenic hypercholesterolemia with elevated Lp(a) (two-hit), or nongenetic hypercholesterolemia. The added value of using a genetics approach to stratifying risk of incident CAD among those with severe hypercholesterolemia versus using LDL-C levels alone for risk stratification is not known. METHODS: To determine whether risk stratification by genetic cause provided better 10-year incident CAD risk stratification than LDL-C level, a retrospective cohort study comparing incident CAD risk among severe hypercholesterolemia subtypes (genetic and nongenetic causes) was performed among 130 091 UK Biobank participants. Analyses were limited to unrelated, White British or Irish participants with available exome sequencing data. Participants with cardiovascular disease at baseline were excluded from analyses of incident CAD. RESULTS: Of 130 091 individuals, 68 416 (52.6%) were women, and the mean (SD) age was 56.7 (8.0) years. Of the cohort, 9.0% met severe hypercholesterolemia criteria. Participants with LDL-C between 210 and 229 mg/dL and LDL-C ≥230 mg/dL showed modest increases in incident CAD risk relative to those with LDL-C between 190 and 209 mg/dL (210-229 mg/dL: hazard ratio [HR], 1.3 [95% CI, 1.1-1.7]; ≥230 mg/dL: HR, 1.3 [95% CI, 1.0-1.7]). In contrast, when risk was stratified by genetic subtype, monogenic familial hypercholesterolemia, elevated Lp(a), and two-hit hypercholesterolemia subtypes had increased rates of incident CAD relative to the nongenetic hypercholesterolemia subtype (monogenic familial hypercholesterolemia: HR, 2.3 [95% CI, 1.4-4.0]; elevated Lp(a): HR, 1.5 [95% CI, 1.2-2.0]; two-hit: HR, 1.9 [95% CI, 1.4-2.6]), while polygenic hypercholesterolemia did not. CONCLUSIONS: Genetics-based subtyping for monogenic familial hypercholesterolemia and Lp(a) in those with severe hypercholesterolemia provided better stratification of 10-year incident CAD risk than LDL-C-based stratification.


Assuntos
Doença da Artéria Coronariana , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/epidemiologia , Hipercolesterolemia/genética , LDL-Colesterol , Estudos Retrospectivos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Fatores de Risco
11.
J Clin Lipidol ; 17(5): 633-642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37482509

RESUMO

BACKGROUND: The prevalence of clinical familial hypercholesterolemia (FH) is very high in the Faroe Islands, but the possible causes are unknown. OBJECTIVES: We aimed to describe potential genetic causes of FH in the Faroe Islands and to investigate whether levels of lipoprotein(a) and measures of dietary habits were associated with clinical FH in the Faroe Islands. METHODS: In this case-control study, we identified potential clinical FH cases aged 18-75 years registered within a nationwide clinical laboratory database in the Faroe Islands and invited them for diagnostic evaluation according to clinical FH scoring systems. Controls were identified in the background population. Lipoprotein(a) was measured in plasma, while the fatty acid composition was determined in adipose tissue. The habitual diet of the participants was assessed using a food frequency questionnaire. Genetic testing for FH and polygenic variants was performed in a selection of clinical FH cases. RESULTS: A total of 121 clinical FH cases and 123 age- and sex-matched controls were recruited. We found a very low frequency of monogenic FH (2.5%), but a high level of polygenic FH (63%) in those genetically tested (67%). High levels of plasma lipoprotein(a) were associated with high odds of clinical FH. Clinical FH cases had a lower intake of saturated fatty acids (SFAs) measured by a high fat-score and a lower content of SFAs in adipose tissue compared with controls. CONCLUSION: The high prevalence of FH in the Faroe Islands may be due to polygenic causes of hypercholesterolemia and to a lesser extent other genetic factors and elevated plasma lipoprotein(a) levels.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , LDL-Colesterol , Estudos de Casos e Controles , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Hipercolesterolemia/genética , Fenótipo , Ácidos Graxos , Lipoproteína(a)/genética
12.
Clin Genet ; 104(3): 334-343, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37417318

RESUMO

Routine genetic testing in hypercholesterolemia patients reveals a causative monogenic variant in less than 50% of affected individuals. Incomplete genetic characterization is partly due to polygenic factors influencing low-density-lipoprotein-cholesterol (LDL-C). Additionally, functional variants in the LPA gene affect lipoprotein(a)-associated cholesterol concentrations but are difficult to determine due to the complex structure of the LPA gene. In this study we examined whether complementing standard sequencing with the analysis of genetic scores associated with LDL-C and Lp(a) concentrations improves the diagnostic output in hypercholesterolemia patients. 1.020 individuals including 252 clinically diagnosed hypercholesterolemia patients from the FH Register Austria were analyzed by massive-parallel-sequencing of candidate genes combined with array genotyping, identifying nine novel variants in LDLR. For each individual, validated genetic scores associated with elevated LDL-C and Lp(a) were calculated based on imputed genotypes. Integrating these scores especially the score for Lp(a) increased the proportion of individuals with a clearly defined disease etiology to 68.8% compared to 46.6% in standard genetic testing. The study highlights the major role of Lp(a) in disease etiology in clinically diagnosed hypercholesterolemia patients, of which parts are misclassified. Screening for monogenic causes of hypercholesterolemia and genetic scores for LDL-C and Lp(a) permits more precise diagnosis, allowing individualized treatment.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/genética , Hipercolesterolemia/complicações , LDL-Colesterol/genética , Hiperlipoproteinemia Tipo II/genética , Fatores de Risco , Colesterol , Medição de Risco , Receptores de LDL/genética
13.
Gene ; 879: 147596, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390873

RESUMO

Sitosterolemia is a rare autosomal recessive hereditary disease caused by loss-of-function genetic mutations in either ATP-binding cassette subfamily G member 5 or member 8 (ABCG5 or ABCG8). Here, we investigate novel variants in ABCG5 and ABCG8 that are associated with the sitosterolemia phenotype. We describe a 32-year-old woman with hypercholesterolemia, tendon and hip xanthomas, autoimmune hemolytic anemia and macrothrombocytopenia from early life, which make us highly suspicious of the possibility of sitosterolemia. A novel homozygous variant in ABCG5 (c.1769C>A, p.S590X) was identified by genomic sequencing. We also examined the lipid profile, especially plant sterols levels, using gas chromatography-mass spectrometry. Functional studies, including western blotting and immunofluorescence staining, showed that the nonsense mutation ABCG5 1769C>A hinders the formation of ABCG5 and ABCG8 heterodimers and the function of transporting sterols. Our study expands the knowledge of variants in sitosterolemia and provides diagnosis and treatment recommendations.


Assuntos
Hipercolesterolemia , Erros Inatos do Metabolismo Lipídico , Fitosteróis , Trombocitopenia , Feminino , Humanos , Adulto , Hipercolesterolemia/genética , Hipercolesterolemia/complicações , Lipoproteínas/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Fitosteróis/efeitos adversos , Fitosteróis/genética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/complicações , Erros Inatos do Metabolismo Lipídico/diagnóstico , Mutação , Trombocitopenia/genética
14.
Cells ; 12(12)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37371118

RESUMO

Since the discovery of the LDL receptor in 1973 by Brown and Goldstein as a causative protein in hypercholesterolemia, tremendous amounts of effort have gone into finding ways to manage high LDL cholesterol in familial hypercholesterolemic (HoFH and HeFH) individuals with loss-of-function mutations in the LDL receptor (LDLR) gene. Statins proved to be the first blockbuster drug, helping both HoFH and HeFH individuals by inhibiting the cholesterol synthesis pathway rate-limiting enzyme HMG-CoA reductase and inducing the LDL receptor. However, statins could not achieve the therapeutic goal of LDL. Other therapies targeting LDLR include PCSK9, which lowers LDLR by promoting LDLR degradation. Inducible degrader of LDLR (IDOL) also controls the LDLR protein, but an IDOL-based therapy is yet to be developed. Among the LDLR-independent pathways, such as angiopoietin-like 3 (ANGPTL3), apolipoprotein (apo) B, apoC-III and CETP, only ANGPTL3 offers the advantage of treating both HoFH and HeFH patients and showing relatively better preclinical and clinical efficacy in animal models and hypercholesterolemic individuals, respectively. While loss-of-LDLR-function mutations have been known for decades, gain-of-LDLR-function mutations have recently been identified in some individuals. The new information on gain of LDLR function, together with CRISPR-Cas9 genome/base editing technology to target LDLR and ANGPTL3, offers promise to HoFH and HeFH individuals who are at a higher risk of developing atherosclerotic cardiovascular disease (ASCVD).


Assuntos
Hipercolesterolemia Familiar Homozigota , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Receptores de LDL , Animais , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fatores de Risco , Humanos
16.
BMC Pediatr ; 23(1): 138, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991406

RESUMO

BACKGROUND: Dyslipidemia, especially hypercholesterolemia is of significant clinical interest. Precise diagnosis is not paid enough attention to about the management of pediatric patients with hypercholesterolemia, which is especially apparent in China. Given this, we designed this study to confirm the specific molecular defects associated with hypercholesterolemia using whole-exome sequencing (WES) to be helpful for precise diagnosis and treatment. METHODS: Pediatric patients were enrolled using specific criteria and their clinical information were recorded for later evaluation in conjunction with the WES completed for each of these patients. RESULTS: Our criteria allowed for the initial enrollment of 35 patients, 30 of whom (aged 1.02-12.99 years) underwent successful genetic sequencing and clinical investment. Positive results were obtained in 63.33% (19/30) of these patients. We identified 25 variants in 30 pediatric patients with persistent hypercholesterolemia, seven of them were novel and variants in LDLR and ABCG5/ABCG8 ranks first and second, respectively. Further analysis revealed that the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (ApoB) and lipoprotein (a) were higher in patients with positive genetic results. CONCLUSION: Our study enriched the genetic and phenotypic spectra for hypercholesterolemia in young patients. Genetic testing is important for the prognostics and treatment of pediatric patients. Heterozygous ABCG5/8 variants may be underestimated in pediatric patients with hypercholesterolemia.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Criança , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/genética , Hiperlipoproteinemia Tipo II/genética , Fenótipo , Genótipo , LDL-Colesterol , Mutação
17.
Hepatol Commun ; 7(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996002

RESUMO

BACKGROUND: Hyperlipidemia (hypercholesterolemia and/or hypertriglyceridemia) is a risk factor for atherosclerosis. Nogo-B receptor (NgBR) plays important roles in hepatic steatosis and cholesterol transport. However, the effect of NgBR overexpression on atherosclerosis remains unknown. MATERIALS AND METHODS: Apolipoprotein E deficient (ApoE-/-) mice infected with adeno-associated virus (AAV)-NgBR expression vector were fed a high-fat diet for 12 weeks, followed by determination of atherosclerosis and the involved mechanisms. RESULTS: We determined that high expression of NgBR by AAV injection mainly occurs in the liver and it can substantially inhibit en face and aortic root sinus lesions. NgBR overexpression also reduced levels of inflammatory factors in the aortic root and serum, and levels of cholesterol, triglyceride, and free fatty acids in the liver and serum. Mechanistically, NgBR overexpression increased the expression of scavenger receptor type BI and the genes for bile acid synthesis, and decreased the expression of cholesterol synthesis genes by reducing sterol regulatory element-binding protein 2 maturation in the liver, thereby reducing hypercholesterolemia. In addition, NgBR overexpression activated AMP-activated protein kinase α via the Ca2+ signaling pathway, which inhibited fat synthesis and improved hypertriglyceridemia. CONCLUSIONS: Taken together, our study demonstrates that overexpression of NgBR enhanced cholesterol metabolism and inhibited cholesterol/fatty acid synthesis to reduce hyperlipidemia, and reduced vascular inflammation, thereby inhibiting atherosclerosis in ApoE-/- mice. Our study indicates that NgBR might be a potential target for atherosclerosis treatment.


Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipidemias , Hipertrigliceridemia , Animais , Camundongos , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Colesterol , Dieta Hiperlipídica/efeitos adversos , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hiperlipidemias/complicações , Hipertrigliceridemia/complicações , Camundongos Knockout para ApoE
18.
Genes (Basel) ; 14(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980993

RESUMO

Hypercholesterolemia was prevalent in 44.9% of The Malaysian Cohort participants, of which 51% were Malay. This study aimed to identify the variants involved in hypercholesterolemia among Malays and to determine the association between genetic and non-genetic risk factors. This nested case-control study included 25 Malay participants with the highest low-density lipoprotein cholesterol (LDL-C, >4.9 mmol/L) and total cholesterol (TC, >7.5 mmol/L) and 25 participants with the lowest LDL-C/TC. Genomic DNA was extracted, and whole-exome sequencing was performed using the Ion ProtonTM system. All variants were annotated, filtered, and cross-referenced against publicly available databases. Forty-five selected variants were genotyped in 677 TMC Malay participants using the MassARRAY® System. The association between genetic and non-genetic risk factors was determined using logistic regression analysis. Age, fasting blood glucose, tobacco use, and family history of hyperlipidemia were significantly associated with hypercholesterolemia. Participants with the novel OSBPL7 (oxysterol-binding protein-like 7) c.651_652del variant had 17 times higher odds for hypercholesterolemia. Type 2 diabetes patients on medication and those with PCSK9 (proprotein convertase subtilisin/kexin type 9) rs151193009 had low odds for hypercholesterolemia. Genetic predisposition can interact with non-genetic factors to increase hypercholesterolemia risk in Malaysian Malays.


Assuntos
Diabetes Mellitus Tipo 2 , Hipercolesterolemia , Humanos , Pró-Proteína Convertase 9/genética , Hipercolesterolemia/epidemiologia , Hipercolesterolemia/genética , LDL-Colesterol/uso terapêutico , Estudos de Casos e Controles , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/uso terapêutico , Serina Endopeptidases/genética , Fatores de Risco
19.
Praxis (Bern 1994) ; 112(4): 245-249, 2023.
Artigo em Francês | MEDLINE | ID: mdl-36919320

RESUMO

A Family History of Hypercholesterolemia - the Role of Genetics Abstract. Genetic testing is rarely used in Switzerland to confirm the clinical diagnosis of familial hypercholesterolemia. However, cascade genetic testing from an index case is recommended by the guidelines. By describing a patient and his family with severe hypercholesterolemia, we discuss the benefits, risks and barriers regarding the implementation of genetics for familial hypercholesterolemia. Family screening with genetic testing could become a standard of care for severe hypercholesterolemia.


Résumé. La génétique est encore peu utilisée en Suisse pour confirmer le diagnostic clinique d'une hypercholestérolémie familiale. Pourtant le dépistage génétique familial en cascade à partir d'un cas index est recommandé par les experts. En décrivant un patient et sa famille avec une hypercholestérolémie sévère, nous discutons les bénéfices, les risques et les barrières à l'implémentation du test la génétique pour l'hypercholestérolémie familiale. Le dépistage familial à l'aide du test génétique pourrait devenir un standard de soin pour l'hypercholestérolémie sévère.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/genética , LDL-Colesterol , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Testes Genéticos , Suíça
20.
Sci Rep ; 13(1): 3053, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810603

RESUMO

Suppressor of mek1 (Dictyostelium) homolog 2 (Smek2), was identified as one of the responsible genes for diet-induced hypercholesterolemia (DIHC) of exogenously hypercholesterolemic (ExHC) rats. A deletion mutation in Smek2 leads to DIHC via impaired glycolysis in the livers of ExHC rats. The intracellular role of Smek2 remains obscure. We used microarrays to investigate Smek2 functions with ExHC and ExHC.BN-Dihc2BN congenic rats that harbor a non-pathological Smek2 allele from Brown-Norway rats on an ExHC background. Microarray analysis revealed that Smek2 dysfunction leads to extremely low sarcosine dehydrogenase (Sardh) expression in the liver of ExHC rats. Sarcosine dehydrogenase demethylates sarcosine, a byproduct of homocysteine metabolism. The ExHC rats with dysfunctional Sardh developed hypersarcosinemia and homocysteinemia, a risk factor for atherosclerosis, with or without dietary cholesterol. The mRNA expression of Bhmt, a homocysteine metabolic enzyme and the hepatic content of betaine (trimethylglycine), a methyl donor for homocysteine methylation were low in ExHC rats. Results suggest that homocysteine metabolism rendered fragile by a shortage of betaine results in homocysteinemia, and that Smek2 dysfunction causes abnormalities in sarcosine and homocysteine metabolism.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Hipercolesterolemia , Hiper-Homocisteinemia , Fosfoproteínas Fosfatases , Sarcosina Desidrogenase , Animais , Ratos , Betaína/metabolismo , Glucose/metabolismo , Homocisteína/metabolismo , Hipercolesterolemia/genética , Hiper-Homocisteinemia/complicações , Fígado/metabolismo , Mutação , Ratos Endogâmicos BN , Sarcosina/metabolismo , Sarcosina Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Fosfoproteínas Fosfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA