Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 483
Filtrar
1.
Arch Toxicol ; 98(3): 849-863, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38180513

RESUMO

Trophoblast cell syncytialization is essential for placental and fetal development. Abnormal trophoblast cell fusion leads to pregnancy pathologies, such as preeclampsia (PE), intrauterine growth restriction (IUGR), and miscarriage. 27-hydroxycholesterol (27-OHC) is the most abundant oxysterol in human peripheral blood synthesized by sterol 27-hydroxylase (CYP27A1) and is considered a critical mediator between hypercholesterolemia and a variety of related disorders. Gestational hypercholesterolemia was associated with spontaneous preterm delivery and low birth weight (LBW) in term infants, yet the mechanism is unclear. In this study, two trophoblast cell models and CD-1 mice were used to evaluate the effects of 27-OHC on trophoblast fusion during placenta development. Two different kinds of trophoblast cells received a dosage of 2.5, 5, or 10 uM 27-OHC. Three groups of pregnant mice were randomly assigned: control, full treatment (E0.5-E17.5), or late treatment (E13.5-E17.5). All mice received daily intraperitoneal injections of saline (control group) and 27-OHC (treatment group; 5.5 mg/kg). In vitro experiments, we found that 27-OHC inhibited trophoblast cell fusion in primary human trophoblasts (PHT) and forskolin (FSK)-induced BeWo cells. 27-OHC up-regulated the expression of the PI3K/AKT/mTOR signaling pathway-related proteins. Moreover, the PI3K inhibitor LY294002 rescued the inhibitory effect of 27-OHC. Inhibition of trophoblast cell fusion by 27-OHC was also observed in CD-1 mice. Furthermore, fetal weight and placental efficiency decreased and fetal blood vessel development was inhibited in pregnant mice treated with 27-OHC. This study was the first to prove that 27-OHC inhibits trophoblast cell fusion by Activating PI3K/AKT/mTOR signaling pathway. This study reveals a novel mechanism by which dyslipidemia during pregnancy results in adverse pregnancy outcomes.


Assuntos
Hidroxicolesteróis , Hipercolesterolemia , Placenta , Gravidez , Feminino , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Trofoblastos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
2.
Hormones (Athens) ; 22(4): 685-694, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596375

RESUMO

PURPOSE: Hypercholesterolemia due to a high-cholesterol diet is linked to numerous diseases and may lead to male infertility. However, the underlying mechanism remains unknown. The maintenance of male fertility requires intact testicular structures (including seminiferous tubules and mesenchyme) and functioning cells (Leydig cells, Sertoli cells and germ cells, etc.), production of appropriate concentrations of sex hormones, and cooperation among testicular cells. Thus, we considered whether male fertility declined as the structure and function of testicular cells were altered in rats on a high-cholesterol diet. METHODS: Male Sprague Dawley rats were fed either a standard or a high-cholesterol diet for 16 weeks. Serum sex hormones, lipid components, semen quality, and fertility rate were assayed in the rats. The 3ß-hydroxysteroid dehydrogenase (3ß-HSD), Wilms tumor 1 (WT-1), and deleted in azoospermia-like (DAZL) were regarded as specific markers of Leydig, Sertoli, and germ cells in rats. In addition, the ultrastructure of the testis and expression levels of particular marker molecules of testicular cells were further investigated. RESULTS: Compared to rats fed on a regular diet, the serum testosterone levels and sperm progressive motility decreased in rats fed high cholesterol. Moreover, we observed a deformed nucleus, dilated smooth endoplasmic reticulum, and swollen mitochondria of Leydig cells and a schizolytic nucleus of Sertoli cells in rats on a high-cholesterol diet. The 3ß-HSD, WT-1, and DAZL protein expression levels were significantly reduced in rats on a high-cholesterol diet. CONCLUSIONS: Our results showed that a high-cholesterol diet adversely affected testosterone production and sperm progressive motility, possibly due to Leydig, Sertoli, and germ cell abnormalities.


Assuntos
Hipercolesterolemia , Doenças Testiculares , Humanos , Masculino , Ratos , Animais , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Análise do Sêmen , Ratos Sprague-Dawley , Sêmen , Testículo/fisiologia , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Testosterona , Doenças Testiculares/etiologia , Dieta , Colesterol
3.
BMC Musculoskelet Disord ; 24(1): 282, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046262

RESUMO

BACKGROUND: Hypercholesterolemia is associated with tendon pathology, but the reasons underpinning this relationship are not well understood. Cholesterol can accumulate in the tendon non-collagenous matrix which may affect both global and local tissue mechanics. Changes to the local strain environment within tendon may have significant implications for mechanosensitive tenocytes. Here, we investigated the association between elevated blood cholesterol and presence of tendon lipids in the Achilles tendon. We expected lipids to be localised in the proteoglycan-rich inter-sub-tendon matrix (ISTM), therefore we also sought to examine the impact of this on the biomechanical and viscoelastic properties of the ISTM. METHODS: The Achilles tendons of 32 young wild-type (SD) and 32 apolipoprotein E knock-out rats (ApoE-/-) were harvested at 15.6 ± 2.3 weeks of age. 32 specimens underwent histological examination to assess the distribution of lipids throughout sub-tendons and ISTM. The remaining specimens were prepared for biomechanical testing, where the ISTM between the gastrocnemius and soleus sub-tendons was subjected to shear load mechanical testing. A sub-set of tests were video recorded to enable a strain analysis. RESULTS: ApoE-/- serum cholesterol was double that of SD rats (mean 2.25 vs. 1.10 mg/ml, p < 0.001) indicating a relatively mild hypercholesterolemia phenotype. Nonetheless, we found histological evidence of esterified lipids in the ISTM and unesterified lipids in the sub-tendons, although the location or intensity of staining was not appreciably different between rat strains. Despite a lack of observable histological differences in lipid content between groups, there were significant differences in the mechanical and viscoelastic behaviour of the Achilles sub-tendon matrix. CONCLUSION: Even slightly elevated cholesterol may result in subtle changes to tendon biomechanical properties and hence injury risk. The young age of our cohort and the mild phenotype of our ApoE-/- rats are likely to have limited our findings and so we also conclude that the ApoE-/- rat model is not well suited for investigating the biomechanical impact of tendon xanthomas on Achilles sub-tendon function.


Assuntos
Tendão do Calcâneo , Hipercolesterolemia , Ratos , Animais , Tendão do Calcâneo/lesões , Ratos Sprague-Dawley , Hipercolesterolemia/etiologia , Hipercolesterolemia/patologia , Fenômenos Biomecânicos , Colesterol
4.
Eur J Pharmacol ; 945: 175605, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822456

RESUMO

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are a growing epidemic and the most common liver diseases. Consumption of a western diet with high fats alters redox status, induces inflammation, and impairs the physiological function of hepatocytes. However, the pharmacological market lacks anti-NAFLD/NASH drugs. Long pepper (Piper longum L) is used in traditional Mongolian medicine for treating hyperlipidemia. Piperlongumine (PL) is a bioactive compound of Piper longum L, which usually possesses anticancer activities due to its ROS elevation property. However, when PL was demethylated they behave as an antioxidant. Previously, we found dihydroxy piperlongumine (DHPL) possesses high antioxidant activity among the hydroxy piperlongumines, which makes us curious to reveal the anti-NAFLD effect. A high-cholesterol diet (HCD) was chosen to induce NAFLD zebrafish model, and the antioxidant and lipid-lowering effects of DHPL were evaluated. Histological alterations of NAFLD were also scored along with gene expression to explore the molecular mechanism. DHPL reduced lipid accumulation in both short-term and long-term feeding trials. DHPL increases antioxidant activity and lipid-lowering gene expression and decreases hepatic triglyceride, oxidative stress, and lipogenic genes. In conclusion, DHPL halted the progression of HCD-induced NAFLD in the zebrafish model.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Antioxidantes/uso terapêutico , Peixe-Zebra , Fígado/metabolismo , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Triglicerídeos/metabolismo , Hiperlipidemias/tratamento farmacológico , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos
5.
Brain ; 146(1): 337-348, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36374264

RESUMO

Higher vascular disease burden increases the likelihood of developing dementia, including Alzheimer's disease. Better understanding the association between vascular risk factors and Alzheimer's disease pathology at the predementia stage is critical for developing effective strategies to delay cognitive decline. In this work, we estimated the impact of six vascular risk factors on the presence and severity of in vivo measured brain amyloid-beta (Aß) plaques in participants from the population-based Rotterdam Study. Vascular risk factors (hypertension, hypercholesterolaemia, diabetes, obesity, physical inactivity and smoking) were assessed 13 (2004-2008) and 7 years (2009-2014) prior to 18F-florbetaben PET (2018-2021) in 635 dementia-free participants. Vascular risk factors were associated with binary amyloid PET status or continuous PET readouts (standard uptake value ratios, SUVrs) using logistic and linear regression models, respectively, adjusted for age, sex, education, APOE4 risk allele count and time between vascular risk and PET assessment. Participants' mean age at time of amyloid PET was 69 years (range: 60-90), 325 (51.2%) were women and 190 (29.9%) carried at least one APOE4 risk allele. The adjusted prevalence estimates of an amyloid-positive PET status markedly increased with age [12.8% (95% CI 11.6; 14) in 60-69 years versus 35% (36; 40.8) in 80-89 years age groups] and APOE4 allele count [9.7% (8.8; 10.6) in non-carriers versus 38.4% (36; 40.8) to 60.4% (54; 66.8) in carriers of one or two risk allele(s)]. Diabetes 7 years prior to PET assessment was associated with a higher risk of a positive amyloid status [odds ratio (95% CI) = 3.68 (1.76; 7.61), P < 0.001] and higher standard uptake value ratios, indicating more severe Aß pathology [standardized beta = 0.40 (0.17; 0.64), P = 0.001]. Hypertension was associated with higher SUVr values in APOE4 carriers (mean SUVr difference of 0.09), but not in non-carriers (mean SUVr difference 0.02; P = 0.005). In contrast, hypercholesterolaemia was related to lower SUVr values in APOE4 carriers (mean SUVr difference -0.06), but not in non-carriers (mean SUVr difference 0.02). Obesity, physical inactivity and smoking were not related to amyloid PET measures. The current findings suggest a contribution of diabetes, hypertension and hypercholesterolaemia to the pathophysiology of Alzheimer's disease in a general population of older non-demented adults. As these conditions respond well to lifestyle modification and drug treatment, further research should focus on the preventative effect of early risk management on the development of Alzheimer's disease neuropathology.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus , Hipercolesterolemia , Hipertensão , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Hipercolesterolemia/patologia , Tomografia por Emissão de Pósitrons , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/patologia , Encéfalo/patologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/patologia , Hipertensão/epidemiologia , Hipertensão/patologia , Obesidade/patologia
6.
Cells ; 11(9)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563730

RESUMO

Atherosclerosis is a chronic inflammatory arterial disease characterized by build-up of atheromatous plaque, which narrows the lumen of arteries. Hypercholesterolemia and excessive oxidative stress in arterial walls are among the main causative factors of atherosclerosis. Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable cation channel activated by oxidative stress. However, the role of TRPM2 in atherosclerosis in animal models is not well studied. In the present study, with the use of adeno-associated virus (AAV)-PCSK9 and TRPM2 knockout (TRPM2-/-) mice, we determined the role of TRPM2 in hypercholesterolemia-induced atherosclerosis. Our results demonstrated that TRPM2 knockout reduced atherosclerotic plaque area in analysis of En face Oil Red O staining of both whole aortas and aortic-root thin sections. Furthermore, TRPM2 knockout reduced the expression of CD68, α-SMA, and PCNA in the plaque region, suggesting a role of TRPM2 in promoting macrophage infiltration and smooth-muscle cell migration into the lesion area. Moreover, TRPM2 knockout reduced the expression of ICAM-1, MCP-1, and TNFα and decreased the ROS level in the plaque region, suggesting a role of TRPM2 in enhancing monocyte adhesion and promoting vascular inflammation. In bone-marrow-derived macrophages and primary cultured arterial endothelial cells, TRPM2 knockout reduced the production of inflammatory cytokines/factors and decreased ROS production. In addition, a TRPM2 antagonist N-(p-amylcinnamoyl) anthranilic acid (ACA) was able to inhibit atherosclerotic development in an ApoE-/- mouse model of atherosclerosis. Taken together, the findings of our study demonstrated that TRPM2 contributes to the progression of hypercholesterolemia-induced atherosclerosis. Mechanistically, TRPM2 channels may provide an essential link that can connect ROS to Ca2+ and inflammation, consequently promoting atherosclerotic progression.


Assuntos
Aterosclerose , Hipercolesterolemia , Placa Aterosclerótica , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Animais , Aterosclerose/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Inflamação/patologia , Camundongos , Placa Aterosclerótica/patologia , Pró-Proteína Convertase 9/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
7.
Lipids Health Dis ; 21(1): 11, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042526

RESUMO

BACKGROUND: Sitosterolemia is a lipid disorder characterized by the accumulation of phytosterols in plasma and organs, caused by mutations in the ABCG5 and/or ABCG8 genes. The disease is frequently misdiagnosed and mistreated as familial hypercholesterolemia (FH). To gain a better understanding of the disease, the current status of diagnosis and treatment of Chinese patients with sitosterolemia was reviewed and summarized. METHOD: Literature search was performed. The clinical features and molecular characteristics of Chinese patients with sitosterolemia were analysed. Four children with sitosterolemia and the treatment experience were described. RESULTS: Fifty-five patients with sitosterolemia have been reported in China. These patients were aged from 3 months to 67 years at diagnosis, and the median was 8 years of age. Several complications, such as xanthomas in 47 patients (85%), thrombocytopenia in 17 patients (31%), anemia in 14 patients (25%), and cardiovascular damage in 12 patients (22%), were observed. Thirty-nine patients (71%) exhibited mutations in the ABCG5 gene, 15 patients (27%) showed mutations in ABCG8, and variations in both genes occurred in one patient (2%). A patient with two clinically rare diseases, namely, sitosterolemia and glycogen storage disease type VI (GSD VI)), is reported here for the first time. The four reported patients were treated with low cholesterol and phytosterol-limited diet alone or combined with cholestyramine. Even though decreases were observed for total plasma cholesterol (TC) and low-density-lipoprotein cholesterol (LDL-C), and these levels were as low as normal in some patients, the levels of plant sterols remained above the normal range. However, TC, LDL-C and plant sterol levels remained at high levels in patients treated with a control diet control only. CONCLUSIONS: The analysis reveals that different from Caucasians carrying mainly variations in ABCG8, most Chinese patients have mutations in the ABCG5 gene, and Arg446Ter, Gln251Ter, anArg389His might be hot-spot mutations in Chinese patients. The current survey provides clinical data to enable the development of a standardized protocol for the diagnosis and treatment of sitosterolemia in China.


Assuntos
Hipercolesterolemia/diagnóstico , Enteropatias/diagnóstico , Erros Inatos do Metabolismo Lipídico/diagnóstico , Fitosteróis/efeitos adversos , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , China , Feminino , Humanos , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Lactente , Enteropatias/complicações , Enteropatias/genética , Enteropatias/patologia , Erros Inatos do Metabolismo Lipídico/complicações , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Lipoproteínas/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fitosteróis/genética , Adulto Jovem
8.
Cancer Res ; 81(22): 5720-5732, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34479964

RESUMO

Hypercholesterolemia is a prevalent metabolic disorder that has been implicated in the development of steroid-targeted cancers. However, the link between hypercholesterolemia and urinary bladder cancer (UBC), a non-steroid-targeted cancer, remains unresolved. Here we show that diet-induced and Ldlr deficiency-induced hypercholesterolemia enhances both UBC stemness and progression. Inhibition of intestinal cholesterol absorption by ezetimibe reversed diet-induced hypercholesterolemia and cancer stemness. As a key component in hypercholesterolemic sera, oxidized low-density lipoprotein (ox-LDL), but not native low-density lipoprotein-cholesterol or metabolite 27-hydroxycholesterol, increased cancer stemness through its receptor CD36. Depletion of CD36, ectopic expression of an ox-LDL binding-disabled mutant form of CD36(K164A), and the neutralization of ox-LDL and CD36 via neutralizing antibodies all reversed ox-LDL-induced cancer stemness. Mechanistically, ox-LDL enhanced the interaction of CD36 and JAK2, inducing phosphorylation of JAK2 and subsequently activating STAT3 signaling, which was not mediated by JAK1 or Src in UBC cells. Finally, ox-LDL levels in serum predicted poor prognosis, and the ox-LDLhigh signature predicted worse survival in patients with UBC. These findings indicate that ox-LDL links hypercholesterolemia with UBC progression by enhancing cancer stemness. Lowering serum ox-LDL or targeting the CD36/JAK2/STAT3 axis might serve as a potential therapeutic strategy for UBCs with hypercholesterolemia. Moreover, elevated ox-LDL may serve as a biomarker for UBC. SIGNIFICANCE: This study demonstrates how hypercholesterolemia-induced oxidized LDL promotes urinary bladder cancer stemness via a CD36/STAT3 signaling axis, highlighting these factors as biomarkers and potential therapeutic targets of aggressive disease.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Hipercolesterolemia/complicações , Lipoproteínas LDL/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Bexiga Urinária/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proliferação de Células , Humanos , Hipercolesterolemia/patologia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Lipoproteínas LDL/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Receptores de LDL/fisiologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/etiologia , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Curr Issues Mol Biol ; 43(2): 818-830, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34449561

RESUMO

BACKGROUND: A high-cholesterol diet (HCD) induces vascular atherosclerosis through vascular inflammatory and immunological processes via TLRs. The aim of this study is to investigate the mRNA expression of TLRs and other noxious biomarkers expressing inflammation, fibrosis, apoptosis, and cardiac dysfunction in the rabbit myocardium during (a) high-cholesterol diet (HCD), (b) normal diet resumption and (c) fluvastatin or rosuvastatin treatment. METHODS: Forty-eight male rabbits were randomly divided into eight groups (n = 6/group). In the first experiment, three groups were fed with HCD for 1, 2 and 3 months. In the second experiment, three groups were fed with HCD for 3 months, followed by normal chow for 1 month and administration of fluvastatin or rosuvastatin for 1 month. Control groups were fed with normal chow for 90 and 120 days. The whole myocardium was removed; total RNA was isolated from acquired samples, and polymerase chain reaction, reverse transcription PCR and quantitative real-time PCR were performed. RESULTS: mRNA of TLRs 2, 3, 4 and 8; interleukin-6; TNF-a; metalloproteinase-2; tissue inhibitor of metalloproteinase-1; tumor protein 53; cysteinyl aspartate specific proteinase-3; and brain natriuretic peptide (BNP) increased in HCD. Statins but not resumption of a normal diet decreased levels of these biomarkers and increased levels of antifibrotic factors. CONCLUSIONS: HCD increases the levels of TLRs; inflammatory, fibrotic and apoptotic factors; and BNP in the rabbit myocardium. Atherogenic diets adversely affect the myocardium at a molecular level and are reversed by statins.


Assuntos
Colesterol na Dieta/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/tratamento farmacológico , Miocárdio/metabolismo , Receptores Toll-Like/metabolismo , Animais , Modelos Animais de Doenças , Fluvastatina/farmacologia , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Masculino , Miocárdio/patologia , Coelhos , Rosuvastatina Cálcica/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Nat Commun ; 12(1): 2770, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986266

RESUMO

CRISPR-based transcriptional activation is a powerful tool for functional gene interrogation; however, delivery difficulties have limited its applications in vivo. Here, we created a mouse model expressing all components of the CRISPR-Cas9 guide RNA-directed Synergistic Activation Mediator (SAM) from a single transcript that is capable of activating target genes in a tissue-specific manner. We optimized Lipid Nanoparticles and Adeno-Associated Virus guide RNA delivery approaches to achieve expression modulation of one or more genes in vivo. We utilized the SAM mouse model to generate a hypercholesteremia disease state that we could bidirectionally modulate with various guide RNAs. Additionally, we applied SAM to optimize gene expression in a humanized Transthyretin mouse model to recapitulate human expression levels. These results demonstrate that the SAM gene activation platform can facilitate in vivo research and drug discovery.


Assuntos
Sistemas CRISPR-Cas/genética , Hipercolesterolemia/genética , Lipossomos/farmacologia , Pré-Albumina/metabolismo , Ativação Transcricional/genética , Animais , Linhagem Celular , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Engenharia Genética/métodos , Células HEK293 , Humanos , Hipercolesterolemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nanopartículas , Pré-Albumina/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
11.
Nat Commun ; 12(1): 2368, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888696

RESUMO

Endothelial cells play a key role in the regulation of disease. Defective regulation of endothelial cell homeostasis may cause mesenchymal activation of other endothelial cells or neighboring cell types, and in both cases contributes to organ fibrosis. Regulatory control of endothelial cell homeostasis is not well studied. Diabetes accelerates renal fibrosis in mice lacking the endothelial glucocorticoid receptor (GR), compared to control mice. Hypercholesterolemia further enhances severe renal fibrosis. The fibrogenic phenotype in the kidneys of diabetic mice lacking endothelial GR is associated with aberrant cytokine and chemokine reprogramming, augmented Wnt signaling and suppression of fatty acid oxidation. Both neutralization of IL-6 and Wnt inhibition improve kidney fibrosis by mitigating mesenchymal transition. Conditioned media from endothelial cells from diabetic mice lacking endothelial GR stimulate Wnt signaling-dependent epithelial-to-mesenchymal transition in tubular epithelial cells from diabetic controls. These data demonstrate that endothelial GR is an essential antifibrotic molecule in diabetes.


Assuntos
Nefropatias Diabéticas/patologia , Endotélio/patologia , Hipercolesterolemia/complicações , Túbulos Renais/patologia , Receptores de Glucocorticoides/deficiência , Adrenalectomia , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/etiologia , Células Endoteliais/patologia , Endotélio/citologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Ácidos Graxos/metabolismo , Fibrose , Glucocorticoides/metabolismo , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/etiologia , Hipercolesterolemia/patologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Túbulos Renais/citologia , Masculino , Camundongos , Camundongos Knockout para ApoE , Oxirredução , Receptores de Glucocorticoides/genética , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
12.
Eur J Med Chem ; 216: 113358, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33725656

RESUMO

Pancreatic triglyceride lipase (PTL) and Niemann-Pick C1-like 1 (NPC1L1) have been identified as attractive therapeutic targets for obesity and hypercholesteremia, respectively. Obesity and hypercholesteremia usually co-exist, however no dual-inhibitors against PTL and NPC1L1 were reported for the treatment of obesity patients with hypercholesteremia so far. In this work, molecular hybridization-based one-step modification screening identified a potent dual-inhibitor against PTL and NPC1L1. Compound P1-11 has IC50 values of 2.1 µM against PTL through covalent binding, as well as significantly reduces cholesterol absorption in a non-competitive inhibitory manner. Molecule docking and molecular dynamics studies revealed the reason of its activity to both PTL and NPC1L1. Moreover, the gene and protein expression levels of PTL and NPC1L1 were also determined respectively after the treatment of P1-11. Development of dual-inhibitors against PTL and NPC1L1 could provide novel treatment options for obesity patients with hypercholesteremia. The results of current research would great support the development of dual-inhibitors against PTL and NPC1L1.


Assuntos
Anticolesterolemiantes/química , Lipase/antagonistas & inibidores , Proteínas de Membrana Transportadoras/metabolismo , Pâncreas/enzimologia , Anticolesterolemiantes/metabolismo , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Desenho de Fármacos , Ezetimiba/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/patologia , Lipase/metabolismo , Proteínas de Membrana Transportadoras/sangue , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Orlistate/química
13.
EBioMedicine ; 65: 103250, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33647772

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) levels by facilitating the degradation of the LDL receptor (LDLR) and is an attractive therapeutic target for hypercholesterolemia intervention. Herein, we generated a novel fully human antibody with favourable druggability by utilizing phage display-based strategy. METHODS: A potent single-chain variable fragment (scFv) named AP2M21 was obtained by screening a fully human scFv phage display library with hPCSK9, and performing two in vitro affinity maturation processes including CDR-targeted tailored mutagenesis and cross-cloning. Thereafter, it was transformed to a full-length Fc-silenced anti-PCSK9 antibody FAP2M21 by fusing to a modified human IgG1 Fc fragment with L234A/L235A/N297G mutations and C-terminal lysine deletion, thus eliminating its immune effector functions and mitigating mAb heterogeneity. FINDINGS: Our data showed that the generated full-length anti-PCSK9 antibody FAP2M21 binds to hPCSK9 with a KD as low as 1.42 nM, and a dramatically slow dissociation rate (koff, 4.68 × 10-6 s-1), which could be attributed to its lower binding energy (-47.51 kcal/mol) than its parent counterpart FAP2 (-30.39 kcal/mol). We verified that FAP2M21 potently inhibited PCSK9-induced reduction of LDL-C uptake in HepG2 cells, with an EC50 of 43.56 nM. Further, in hPCSK9 overexpressed C57BL/6 mice, a single tail i.v. injection of FAP2M21 at 1, 3 and 10 mg/kg, dose-dependently up-regulated hepatic LDLR levels, and concomitantly reduced serum LDL-C by 3.3% (P = 0.658, unpaired Student's t-test), 30.2% (P = 0.002, Mann-Whitney U-test) and 37.2% (P = 0.002, Mann-Whitney U-test), respectively. INTERPRETATION: FAP2M21 with potent inhibitory effect on PCSK9 may serve as a promising therapeutic agent for treating hypercholesterolemia and associated cardiovascular diseases.


Assuntos
Anticorpos/imunologia , Peptídeos/metabolismo , Pró-Proteína Convertase 9/metabolismo , Animais , Anticorpos/uso terapêutico , Reações Antígeno-Anticorpo , LDL-Colesterol/sangue , Células Hep G2 , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/patologia , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Biblioteca de Peptídeos , Peptídeos/genética , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/imunologia , Ligação Proteica , Receptores de LDL/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Sci Rep ; 11(1): 3014, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542347

RESUMO

In calcific aortic valve disease (CAVD) progressive valvular calcification causes aortic valve dysfunction. CAVD has several risk factors such as age and dyslipidemia. Vitamin K was shown to inhibit vascular calcification in mice and valvular calcification in patients with CAVD. We studied the effect of menaquinone 4 (MK4/vitamin K2) on valvular calcification in the hypercholesterolemic mouse model of CAVD. LDLr-/-ApoB100/100 male mice were fed with a Western diet for 5 months, with (n = 10) or without (n = 10) added 0.2 mg/g MK4. Body weight gain was followed weekly. Morphology of aortic valves and liver was assessed with immunohistochemistry. Plasma cholesterol levels and cytokines from hepatic tissue were assessed in the end of the study. Hepatic gene expression of lipid metabolism regulating genes were assessed after 18 h diet. MK4 exacerbated the lipoprotein lipid profile without affecting aortic valve morphology in hypercholesterolemic LDLr-/- ApoB100/100 mice. The MK4-containing WD diet increased plasma levels of LDL and triglycerides, hepatic steatosis, and mRNA expression of genes required for triglyceride and cholesterol synthesis. MK4 diminished levels of several cytokines and chemokines in liver, including IL-6, TNFα and MCP1, as measured by hepatic cytokine array. Consequently, MK4 may exert non-beneficial effects on circulating lipid levels, especially in hypercholesterolemic individuals.


Assuntos
Estenose da Valva Aórtica/tratamento farmacológico , Valva Aórtica/patologia , Apolipoproteínas B/genética , Calcinose/tratamento farmacológico , Hipercolesterolemia/tratamento farmacológico , Receptores de LDL/genética , Vitamina K 2/farmacologia , Animais , Estenose da Valva Aórtica/sangue , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Calcinose/sangue , Calcinose/genética , Calcinose/patologia , Modelos Animais de Doenças , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Lipídeos/sangue , Lipoproteínas LDL/sangue , Camundongos , Camundongos Knockout , Fatores de Risco , Triglicerídeos/sangue
15.
J Nutr Biochem ; 90: 108575, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33387610

RESUMO

Maternal hypercholesterolemia induces early onset of cardiovascular diseases in offspring; however, its underlying mechanism remains poorly understood. We hypothesized that maternal hypercholesterolemia increases offspring susceptibility to atherosclerosis in adulthood through developmental modifications of macrophages. Female apolipoprotein E (ApoE)-deficient mice were fed a Western-type diet (WD) or a control diet (CD) prior to and throughout gestation and lactation. The offspring were all fed a WD after weaning. Sixteen-week-old female offspring of WD-fed dams showed a significant increase in atherosclerotic lesions of the aorta and aortic root compared with those of CD-fed dams. This effect was associated with increased macrophage accumulation within lesions, macrophage inflammation and an increase in circulating Ly6Chigh monocyte and F4/80 macrophage counts. We further evidenced that in utero WD exposure promoted macrophage polarization toward the M1 phenotype by elevating M1 markers (Cd86, Inos/Nos2) without affecting M2 markers (Cd206, Arg1). Proinflammatory cytokine synthesis was also enhanced in response to LPS. Finally, maternal WD intake strongly inhibited the macrophage expression of Pparg and Lxra, which was associated with aberrant DNA methylation of Lxra promoter. Our findings demonstrate that maternal hypercholesterolemia exacerbates atherosclerosis, in part by altering the epigenetic state of the macrophage genome of the offspring, imprinting gene expression, and changing macrophage polarization, which ultimately contributes to plaque macrophage burden.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Macrófagos/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Aorta/metabolismo , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Dieta Ocidental , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Fenótipo , Gravidez
16.
PLoS Genet ; 17(1): e1009285, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513160

RESUMO

Hypercholesterolemia is a causal and modifiable risk factor for atherosclerotic cardiovascular disease. A critical pathway regulating cholesterol homeostasis involves the receptor-mediated endocytosis of low-density lipoproteins into hepatocytes, mediated by the LDL receptor. We applied genome-scale CRISPR screening to query the genetic determinants of cellular LDL uptake in HuH7 cells cultured under either lipoprotein-rich or lipoprotein-starved conditions. Candidate LDL uptake regulators were validated through the synthesis and secondary screening of a customized library of gRNA at greater depth of coverage. This secondary screen yielded significantly improved performance relative to the primary genome-wide screen, with better discrimination of internal positive controls, no identification of negative controls, and improved concordance between screen hits at both the gene and gRNA level. We then applied our customized gRNA library to orthogonal screens that tested for the specificity of each candidate regulator for LDL versus transferrin endocytosis, the presence or absence of genetic epistasis with LDLR deletion, the impact of each perturbation on LDLR expression and trafficking, and the generalizability of LDL uptake modifiers across multiple cell types. These findings identified several previously unrecognized genes with putative roles in LDL uptake and suggest mechanisms for their functional interaction with LDLR.


Assuntos
Aterosclerose/genética , Colesterol/genética , Lipoproteínas LDL/genética , Receptores de LDL/genética , Aterosclerose/patologia , Sistemas CRISPR-Cas/genética , Colesterol/metabolismo , Endocitose/genética , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Lipoproteínas LDL/metabolismo , RNA Guia de Cinetoplastídeos/genética
17.
Int J Biol Macromol ; 173: 66-78, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482208

RESUMO

Lactobacilli probiotics have been suggested to reduce cholesterol with low side effects to host. Bacteriocins and exopolysaccharides (EPSs) production are two meaningful examples of functional applications of lactobacilli in the food industry. Eight Lactobacillus strains were isolated from some Egyptian fermented food and tested for their probiotic properties. Analysis of the monosaccharide composition by thin layer chromatography showed the presence of glucose, galactose and unknown sugar. The main functional groups of EPSs were elucidated by Fourier-Transform Infrared Spectroscopy. Their fermentation cultures displayed powerful antioxidant activities extending from 97.5 to 99%, 40-75% for their EPSs and free cells, respectively, and exhibited in vitro cholesterol downgrading from 48 to 82% and 72 to 91% after 48 and 120 h, respectively. Their EPSs showed good anticancer activities against carcinoma cells with low IC50 values for HCT-116, PC-3 and HepG-2 cells. To the best of our knowledge, there have been no previous reports on the potential of Lactobacillus EPSs activity against PC-3. The selected strains, L. plantarum KU985433 and L. rhamnosus KU985436 produced two different bacteriocins as detected by gel permeation chromatography with good antimicrobial activities. In vivo study demonstrated that feeding Westar rats with fermented milk exhibited greater cholesterol, LDL and blood triglyceride reduction for both strains. Whereas, HDL was increased by about 43 and 38%, respectively, and the atherogenic indices decreased.


Assuntos
Anticolesterolemiantes/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Hipercolesterolemia/terapia , Polissacarídeos Bacterianos/farmacologia , Probióticos/farmacologia , Animais , Anticolesterolemiantes/isolamento & purificação , Antineoplásicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Bacteriocinas , Sobrevivência Celular/efeitos dos fármacos , HDL-Colesterol/agonistas , HDL-Colesterol/metabolismo , LDL-Colesterol/antagonistas & inibidores , LDL-Colesterol/metabolismo , Modelos Animais de Doenças , Egito , Alimentos Fermentados/microbiologia , Células HCT116 , Células Hep G2 , Humanos , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Lacticaseibacillus rhamnosus/química , Lacticaseibacillus rhamnosus/metabolismo , Masculino , Células PC-3 , Polissacarídeos Bacterianos/isolamento & purificação , Probióticos/isolamento & purificação , Ratos , Ratos Wistar , Triglicerídeos/antagonistas & inibidores , Triglicerídeos/metabolismo
18.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008765

RESUMO

(1) Background: Monocytes and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome orchestrate lipid-driven amplification of vascular inflammation promoting the disruption of the fibrous cap. The components of the NLRP3 inflammasome are expressed in macrophages and foam cells within human carotid atherosclerotic plaques and VSMCs in hypertension. Whether monocytes and NLRP3 inflammasome activation are direct triggers of VSMC phenotypic switch and plaque disruption need to be investigated. (2) Methods: The direct effect of oxLDL-activated monocytes in VSMCs co-cultured system was demonstrated via flow cytometry, qPCR, ELISA, caspase 1, and pyroptosis assay. Aortic roots of VSMCs lineage tracing mice fed normal or high cholesterol diet and human atherosclerotic plaques were used for immunofluorescence quantification of NLRP3 inflammasome activation/VSMCs phenotypic switch. (3) Results: OxLDL-activated monocytes reduced α-SMA, SM22α, Oct-4, and upregulation of KLF-4 and macrophage markers MAC2, F4/80 and CD68 expression as well as caspase 1 activation, IL-1ß secretion, and pyroptosis in VSMCs. Increased caspase 1 and IL-1ß in phenotypically modified VSMCs was detected in the aortic roots of VSMCs lineage tracing mice fed high cholesterol diet and in human atherosclerotic plaques from carotid artery disease patients who experienced a stroke. (4) Conclusions: Taken together, these results provide evidence that monocyte promote VSMC phenotypic switch through VSMC NLRP3 inflammasome activation with a likely detrimental role in atherosclerotic plaque stability in human atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Inflamassomos/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aterosclerose/complicações , Aterosclerose/genética , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Transdiferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipercolesterolemia/complicações , Hipercolesterolemia/patologia , Interleucina-1beta/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
PLoS One ; 15(11): e0238407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33237915

RESUMO

Calcific aortic valve disease (CAVD) is a deadly disease that is rising in prevalence due to population aging. While the disease is complex and poorly understood, one well-documented driver of valvulopathy is serotonin agonism. Both serotonin overexpression, as seen with carcinoid tumors and drug-related agonism, such as with Fenfluramine use, are linked with various diseases of the valves. Thus, the objective of this study was to determine if genetic ablation or pharmacological antagonism of the 5-HT2B serotonin receptor (gene: Htr2b) could improve the hemodynamic and histological progression of calcific aortic valve disease. Htr2b mutant mice were crossed with Notch1+/- mice, an established small animal model of CAVD, to determine if genetic ablation affects CAVD progression. To assess the effect of pharmacological inhibition on CAVD progression, Notch1+/- mice were treated with the 5-HT2B receptor antagonist SB204741. Mice were analyzed using echocardiography, histology, immunofluorescence, and real-time quantitative polymerase chain reaction. Htr2b mutant mice showed lower aortic valve peak velocity and mean pressure gradient-classical hemodynamic indicators of aortic valve stenosis-without concurrent left ventricle change. 5-HT2B receptor antagonism, however, did not affect hemodynamic progression. Leaflet thickness, collagen density, and CAVD-associated transcriptional markers were not significantly different in any group. This study reveals that genetic ablation of Htr2b attenuates hemodynamic development of CAVD in the Notch1+/- mice, but pharmacological antagonism may require high doses or long-term treatment to slow progression.


Assuntos
Valva Aórtica/patologia , Colesterol/metabolismo , Hemodinâmica/genética , Receptor Notch1/genética , Receptor 5-HT2B de Serotonina/genética , Animais , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Calcinose/genética , Calcinose/patologia , Dieta , Modelos Animais de Doenças , Progressão da Doença , Ecocardiografia/métodos , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Hemodinâmica/fisiologia , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Hiperlipidemias/genética , Hiperlipidemias/patologia , Camundongos
20.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228147

RESUMO

The heterodimeric ATP-binding cassette (ABC) sterol transporter, ABCG5/G8, is responsible for the biliary and transintestinal secretion of cholesterol and dietary plant sterols. Missense mutations of ABCG5/G8 can cause sitosterolemia, a loss-of-function disorder characterized by plant sterol accumulation and premature atherosclerosis. A new molecular framework was recently established by a crystal structure of human ABCG5/G8 and reveals a network of polar and charged amino acids in the core of the transmembrane domains, namely, a polar relay. In this study, we utilize genetic variants to dissect the mechanistic role of this transmembrane polar relay in controlling ABCG5/G8 function. We demonstrated a sterol-coupled ATPase activity of ABCG5/G8 by cholesteryl hemisuccinate (CHS), a relatively water-soluble cholesterol memetic, and characterized CHS-coupled ATPase activity of three loss-of-function missense variants, R543S, E146Q, and A540F, which are respectively within, in contact with, and distant from the polar relay. The results established an in vitro phenotype of the loss-of-function and missense mutations of ABCG5/G8, showing significantly impaired ATPase activity and loss of energy sufficient to weaken the signal transmission from the transmembrane domains. Our data provide a biochemical evidence underlying the importance of the polar relay and its network in regulating the catalytic activity of ABCG5/G8 sterol transporter.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Ésteres do Colesterol/metabolismo , Colesterol/metabolismo , Ácido Cólico/metabolismo , Lipoproteínas/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Transporte Biológico , Colesterol/química , Ésteres do Colesterol/química , Ácido Cólico/química , Expressão Gênica , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Enteropatias/genética , Enteropatias/metabolismo , Enteropatias/patologia , Cinética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/patologia , Lipoproteínas/química , Lipoproteínas/genética , Modelos Moleculares , Mutação , Fitosteróis/efeitos adversos , Fitosteróis/genética , Fitosteróis/metabolismo , Pichia/química , Pichia/genética , Pichia/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA