Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 632
Filtrar
1.
Clin Transl Sci ; 17(3): e13751, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38450983

RESUMO

Inflammation contributes to development of idiopathic pulmonary arterial hypertension (IPAH), and tumor biomarkers can reflect inflammatory and immune status. We aimed to determine the value of tumor biomarkers in IPAH comprehensively. We enrolled 315 patients with IPAH retrospectively. Tumor biomarkers were correlated with established indicators of pulmonary hypertension severity. Multivariable Cox regression found that AFP (hazard ratio [HR]: 1.587, 95% confidence interval [CI]: 1.014-2.482, p = 0.043) and CA125 (HR: 2.018, 95% CI: 1.163-3.504, p = 0.013) could independently predict prognosis of IPAH. The changes of AFP over time were associated with prognosis of patients, each 1 ng/mL increase in AFP was associated with 5.4% increased risk of clinical worsening (HR: 1.054, 95% CI: 1.001-1.110, p = 0.046), enabling detection of disease progression. Moreover, beyond well-validated PH biomarkers, CA125 was still of prognostic value in the low-risk patients (HR: 1.014, 95% CI: 1.004-1.024, p = 0.004), allowing for more accurate risk stratification and prediction of disease outcomes. AFP and CA125 can serve for prognosis prediction, risk stratification, and dynamic monitor in patients with IPAH.


Assuntos
Biomarcadores Tumorais , alfa-Fetoproteínas , Humanos , Hipertensão Pulmonar Primária Familiar , Estudos Retrospectivos , Prognóstico
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542257

RESUMO

While essential hypertension (HTN) is very prevalent, pulmonary arterial hypertension (PAH) is very rare in the general population. However, due to progressive heart failure, prognoses and survival rates are much worse in PAH. Patients with PAH are at a higher risk of developing supraventricular arrhythmias and malignant ventricular arrhythmias. The latter underlie sudden cardiac death regardless of the mechanical cardiac dysfunction. Systemic chronic inflammation and oxidative stress are causal factors that increase the risk of the occurrence of cardiac arrhythmias in hypertension. These stressful factors contribute to endothelial dysfunction and arterial pressure overload, resulting in the development of cardiac pro-arrhythmic conditions, including myocardial structural, ion channel and connexin43 (Cx43) channel remodeling and their dysfunction. Myocardial fibrosis appears to be a crucial proarrhythmic substrate linked with myocardial electrical instability due to the downregulation and abnormal topology of electrical coupling protein Cx43. Furthermore, these conditions promote ventricular mechanical dysfunction and heart failure. The treatment algorithm in HTN is superior to PAH, likely due to the paucity of comprehensive pathomechanisms and causal factors for a multitargeted approach in PAH. The intention of this review is to provide information regarding the role of Cx43 in the development of cardiac arrhythmias in hypertensive heart disease. Furthermore, information on the progress of therapy in terms of its cardioprotective and potentially antiarrhythmic effects is included. Specifically, the benefits of sodium glucose co-transporter inhibitors (SGLT2i), as well as sotatercept, pirfenidone, ranolazine, nintedanib, mirabegron and melatonin are discussed. Discovering novel therapeutic and antiarrhythmic strategies may be challenging for further research. Undoubtedly, such research should include protection of the heart from inflammation and oxidative stress, as these are primary pro-arrhythmic factors that jeopardize cardiac Cx43 homeostasis, the integrity of intercalated disk and extracellular matrix, and, thereby, heart function.


Assuntos
Insuficiência Cardíaca , Hipertensão , Hipertensão Arterial Pulmonar , Humanos , Conexina 43/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Doença do Sistema de Condução Cardíaco , Hipertensão Pulmonar Primária Familiar/complicações , Hipertensão/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Inflamação/tratamento farmacológico
3.
Eur J Pharmacol ; 970: 176483, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479721

RESUMO

Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.


Assuntos
Hipertensão Arterial Pulmonar , Ratos , Animais , Hipertensão Arterial Pulmonar/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Remodelação Vascular/fisiologia , Proliferação de Células , Artéria Pulmonar/patologia , Hipertensão Pulmonar Primária Familiar/patologia , Miócitos de Músculo Liso , Monocrotalina/efeitos adversos , Modelos Animais de Doenças , Histona Desacetilases/metabolismo
5.
Eur J Cardiothorac Surg ; 65(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38539035

RESUMO

OBJECTIVES: Preoperative intravenous epoprostenol therapy can cause thrombocytopaenia, which may increase the risk of perioperative bleeding during lung transplantation. This study aimed to determine whether lung transplantation can be safely performed in patients with epoprostenol-induced thrombocytopaenia. METHODS: From June 2008 to July 2022, we performed 37 lung transplants in patients with pulmonary arterial hypertension (PAH), including idiopathic PAH (n = 26), congenital heart disease-associated PAH (n = 7), pulmonary veno-occlusive disease (n = 3) and peripheral pulmonary artery stenosis (n = 1) at our institution. Of these, 26 patients received intravenous epoprostenol therapy (EPO group), whereas 11 patients were treated with no epoprostenol (no-EPO group). We retrospectively analysed the preoperative and postoperative platelet counts and post-transplant outcomes in each group. RESULTS: Preoperative platelet counts were relatively lower in the EPO group than in the no-EPO group (median EPO: 127 000 vs no-EPO: 176 000/µl). However, blood loss during surgery was similar between the 2 groups (EPO: 2473 ml vs no-EPO: 2615 ml). The platelet counts significantly increased over 1 month after surgery, and both groups showed similar platelet counts (EPO: 298 000 vs no-EPO: 284 000/µl). In-hospital mortality (EPO: 3.9% vs no-EPO: 18.2%) and the 3-year survival rate (EPO: 91.4% vs no-EPO: 80.8%) were similar between the 2 groups. CONCLUSIONS: Patients with PAH treated with intravenous epoprostenol showed relatively lower platelet counts, which improved after lung transplantation with good post-transplant outcomes.


Assuntos
Hipertensão Pulmonar , Transplante de Pulmão , Hipertensão Arterial Pulmonar , Trombocitopenia , Humanos , Epoprostenol/uso terapêutico , Epoprostenol/efeitos adversos , Anti-Hipertensivos/efeitos adversos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/cirurgia , Estudos Retrospectivos , Hipertensão Pulmonar Primária Familiar , Trombocitopenia/induzido quimicamente , Trombocitopenia/tratamento farmacológico
6.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473983

RESUMO

Asians have a higher carrier rate of pulmonary arterial hypertension (PAH)-related genetic variants than Caucasians do. This study aimed to identify PAH-related genetic variants using whole exome sequencing (WES) in Asian idiopathic and heritable PAH cohorts. A WES library was constructed, and candidate variants were further validated by polymerase chain reaction and Sanger sequencing in the PAH cohort. In a total of 69 patients, the highest incidence of variants was found in the BMPR2, ATP13A3, and GDF2 genes. Regarding the BMPR2 gene variants, there were two nonsense variants (c.994C>T, p. Arg332*; c.1750C>T, p. Arg584*), one missense variant (c.1478C>T, p. Thr493Ile), and one novel in-frame deletion variant (c.877_888del, p. Leu293_Ser296del). Regarding the GDF2 variants, there was one likely pathogenic nonsense variant (c.259C>T, p. Gln87*) and two missense variants (c.1207G>A, p. Val403Ile; c.38T>C, p. Leu13Pro). The BMPR2 and GDF2 variant subgroups had worse hemodynamics. Moreover, the GDF2 variant patients were younger and had a significantly lower GDF2 value (135.6 ± 36.2 pg/mL, p = 0.002) in comparison to the value in the non-BMPR2/non-GDF2 mutant group (267.8 ± 185.8 pg/mL). The BMPR2 variant carriers had worse hemodynamics compared to the patients with the non-BMPR2/non-GDF2 mutant group. Moreover, there was a significantly lower GDF2 value in the GDF2 variant carriers compared to the control group. GDF2 may be a protective or corrected modifier in certain genetic backgrounds.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Hipertensão Pulmonar Primária Familiar/genética , Mutação de Sentido Incorreto , Hemodinâmica , Deleção de Sequência , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Mutação , Adenosina Trifosfatases/genética , Proteínas de Membrana Transportadoras/genética , Fator 2 de Diferenciação de Crescimento/genética
7.
Aging (Albany NY) ; 16(6): 5027-5037, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38517365

RESUMO

Pulmonary arterial hypertension (PAH) is a severe pathophysiological syndrome resulting in heart failure, which is found to be induced by pulmonary vascular remodeling mediated by oxidative stress (OS) and inflammation. Phoenixin-20 (PNX-20) is a reproductive peptide first discovered in mice with potential suppressive properties against OS and inflammatory response. Our study will explore the possible therapeutic functions of PHN-20 against PAH for future clinical application. Rats were treated with normal saline, PHN-20 (100 ng/g body weight daily), hypoxia, hypoxia+PHN-20 (100 ng/g body weight daily), respectively. A signally elevated RVSP, mPAP, RV/LV + S, and W%, increased secretion of cytokines, enhanced malondialdehyde (MDA) level, repressed superoxide dismutase (SOD) activity, and activated NLRP3 signaling were observed in hypoxia-stimulated rats, which were notably reversed by PHN-20 administration. Pulmonary microvascular endothelial cells (PMECs) were treated with hypoxia with or without PHN-20 (10 and 20 nM). Marked elevation of inflammatory cytokine secretion, increased MDA level, repressed SOD activity, and activated NLRP3 signaling were observed in hypoxia-stimulated PMECs, accompanied by a downregulation of SIRT1. Furthermore, the repressive effect of PHN-20 on the domains-containing protein 3 (NLRP3) pathway in hypoxia-stimulated PMECs was abrogated by sirtuin1 (SIRT1) knockdown. Collectively, PHN-20 alleviated PAH via inhibiting OS and inflammation by mediating the transcriptional function of SIRT1.


Assuntos
Hipertensão Pulmonar , Hormônios Peptídicos , Hipertensão Arterial Pulmonar , Ratos , Camundongos , Animais , Hipertensão Arterial Pulmonar/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Sirtuína 1/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar , Estresse Oxidativo , Inflamação , Hipóxia , Superóxido Dismutase/metabolismo , Peso Corporal
8.
Heart Lung Circ ; 33(2): 251-259, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307791

RESUMO

AIM: Hyperkinetic pulmonary arterial hypertension (PAH) is a complication of congenital heart disease. Gene therapy is a new experimental treatment for PAH, and ultrasound-mediated gene-carrying microbubble targeted delivery is a promising development for gene transfer. METHODS: This study successfully established a hyperkinetic PAH rabbit model by a common carotid artery and jugular vein shunt using the cuff style method. Liposome microbubbles carrying the hepatocyte growth factor (HGF) gene were successfully constructed. An in vitro experiment evaluated the appropriate intensity of ultrasonic radiation by Western blots and 3H-TdR incorporation assays. In an in vivo experiment, after transfection of ultrasound-mediated HGF gene microbubbles, catheterisation was applied to collect haemodynamic data. Hypertrophy of the right ventricle was evaluated by measuring the right ventricle hypertrophy index. Western blot and immunohistochemistry analyses were used to detect the expression of human (h)HGF and angiogenic effects, respectively. RESULTS: The most appropriate ultrasonic radiation intensity was 1.0 W/cm2 for 5 minutes. Two weeks after transfection, both systolic pulmonary arterial pressure and mean pulmonary arterial pressure were attenuated. Hypertrophy of the right ventricle was reversed. hHGF was transplanted into the rabbits, resulting in a high expression of hHGF protein and an increase in the number of small pulmonary arteries. Ultrasound-mediated HGF gene microbubble therapy was more effective at attenuating PAH and increasing the density of small pulmonary arteries than single HGF plasmid transfection. CONCLUSIONS: Ultrasound-mediated HGF gene microbubbles significantly improved the target of gene therapy in a rabbit PAH model and enhanced the tropism and transfection rates. Thus, the technique can effectively promote small pulmonary angiogenesis and play a role in the treatment of PAH without adverse reactions.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Coelhos , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/diagnóstico , Microbolhas , Fator de Crescimento de Hepatócito/genética , Hipertensão Pulmonar Primária Familiar , Hipertrofia
9.
Pediatr Radiol ; 54(2): 199-207, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38191808

RESUMO

BACKGROUND: Mutations in the T-Box 4 (TBX4) gene are a lesser-known cause of heritable pulmonary arterial hypertension (PAH). Patients with heritable PAH typically have worse outcomes when compared with patients with idiopathic PAH, yet little is known about the phenotypical presentation of this mutation. OBJECTIVE: This article reviews the pattern of chest CT findings in pediatric patients with PAH and TBX4 mutations and compares their radiographic presentation with those of age-matched patients with PAH but without TBX4 mutations. MATERIALS AND METHODS: A retrospective chart review of the pulmonary arterial hypertension database was performed. Pediatric patients with PAH-confirmed TBX4 mutations and an available high CT were included. Fifteen (9 females) patients met the inclusion criteria. Fourteen (8 females) age-matched controls with diagnosed PAH but without TBX4 mutations were also evaluated. The median age at diagnosis was 7.4 years (range: 0.1-16.4 years). Demographic information and clinical outcomes were collected. CTs of the chest were reviewed for multiple airway, parenchymal, and structural abnormalities (16 imaging findings in total). Chi-square tests were used to compare the prevalence of each imaging finding in the TBX4 cohort compared to the control group. RESULTS: Patients with TBX-4 mutations had increased presence of peripheral or subpleural irregularity (73% vs 0%, P < 0.01), cystic lucencies (67% vs 7%, P < 0.01), and linear or reticular opacity (53% vs 0%, P < 0.01) compared to the control group. Ground glass opacities, bronchiectasis, and centrilobular nodules were not significantly different between the two patient groups (P > 0.05). CONCLUSION: TBX4 mutations have distinct imaging phenotypes in pediatric patients with PAH. Compared to patients without this mutation, patients with TBX-4 genes typically present with peripheral or subpleural irregularity, cystic lucencies, and linear or reticular opacity.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Feminino , Humanos , Criança , Lactente , Pré-Escolar , Adolescente , Estudos Retrospectivos , Artéria Pulmonar , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/genética , Hipertensão Pulmonar Primária Familiar/genética , Mutação , Tomografia Computadorizada por Raios X , Proteínas com Domínio T/genética
10.
Cardiovasc Res ; 120(2): 203-214, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38252891

RESUMO

AIMS: Pulmonary arterial hypertension (PAH) is characterized by extensive pulmonary arterial remodelling. Although mesenchymal stem cell (MSC)-derived exosomes provide protective effects in PAH, MSCs exhibit limited senescence during in vitro expansion compared with the induced pluripotent stem cells (iPSCs). Moreover, the exact mechanism is not known. METHODS AND RESULTS: In this study, we used murine iPSCs generated from mouse embryonic fibroblasts with triple factor (Oct4, Klf4, and Sox2) transduction to determine the efficacy and action mechanism of iPSC-derived exosomes (iPSC-Exo) in attenuating PAH in rats with monocrotaline (MCT)-induced pulmonary hypertension. Both early and late iPSC-Exo treatment effectively prevented the wall thickening and muscularization of pulmonary arterioles, improved the right ventricular systolic pressure, and alleviated the right ventricular hypertrophy in MCT-induced PAH rats. Pulmonary artery smooth muscle cells (PASMC) derived from MCT-treated rats (MCT-PASMC) developed more proliferative and pro-migratory phenotypes, which were attenuated by the iPSC-Exo treatment. Moreover, the proliferation and migration of MCT-PASMC were reduced by iPSC-Exo with suppression of PCNA, cyclin D1, MMP-1, and MMP-10, which are mediated via the HIF-1α and P21-activated kinase 1/AKT/Runx2 pathways. CONCLUSION: IPSC-Exo are effective at reversing pulmonary hypertension by reducing pulmonary vascular remodelling and may provide an iPSC-free therapy for the treatment of PAH.


Assuntos
Exossomos , Hipertensão Pulmonar , Células-Tronco Pluripotentes Induzidas , Hipertensão Arterial Pulmonar , Ratos , Animais , Camundongos , Hipertensão Arterial Pulmonar/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Remodelação Vascular , Exossomos/metabolismo , Fibroblastos/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar , Monocrotalina/efeitos adversos , Monocrotalina/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo
11.
Aging (Albany NY) ; 16(1): 466-492, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194707

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) with Pulmonary arterial hypertension (PAH) shows a poor prognosis. Detecting related genes is imperative for prognosis prediction. METHODS: The gene expression profiles of LUAD and PAH were acquired from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, respectively. The co-expression modules associated with LUAD and PAH were evaluated using the Weighted Gene Co-Expression Network Analysis (WGCNA). The relationship between key gene expression with immune-cell infiltration and the tumor immune microenvironment (TIME) was evaluated. We confirmed the mRNA and protein levels in vivo and vitro. G6PD knockdown was used to conduct the colony formation assay, transwell invasion assay, and scratch wound assay of A549 cells. EDU staining and CCK8 assay were performed on G6PD knockdown HPASMCs. We identified therapeutic drug molecules and performed molecular docking between the key gene and small drug molecules. RESULTS: Three major modules and 52 overlapped genes were recognized in LUAD and PAH. We identified the key gene G6PD, which was significantly upregulated in LUAD and PAH. In addition, we discovered a significant difference in infiltration for most immune cells between high- and low-G6PD expression groups. The mRNA and protein expressions of G6PD were significantly upregulated in LUAD and PAH. G6PD knockdown decreased proliferation, cloning, and migration of A549 cells and cell proliferation in HPASMCs. We screened five potential drug molecules against G6PD and targeted glutaraldehyde by molecular docking. CONCLUSIONS: This study reveals that G6PD is an immune-related biomarker and a possible therapeutic target for LUAD and PAH patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Hipertensão Arterial Pulmonar , Humanos , Adenocarcinoma de Pulmão/genética , Hipertensão Pulmonar Primária Familiar , Neoplasias Pulmonares/genética , Simulação de Acoplamento Molecular , Prognóstico , Hipertensão Arterial Pulmonar/genética , RNA Mensageiro , Microambiente Tumoral/genética
12.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L252-L265, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226418

RESUMO

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was ß-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.


Assuntos
Antineoplásicos , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Ratos , Cálcio/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Ácidos Graxos/metabolismo , Lipídeos , Pulmão/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPV/metabolismo
13.
Am J Cardiovasc Drugs ; 24(1): 39-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945977

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a progressive, cureless disease, characterized by increased pulmonary vascular resistance and remodeling, with subsequent ventricular dilatation and failure. New therapeutic targets are being investigated for their potential roles in improving PAH patients' symptoms and reversing pulmonary vascular pathology. METHOD: We aimed to address the available knowledge from the published randomized controlled trials (RCTs) regarding the role of Rho-kinase (ROCK) inhibitors, bone morphogenetic protein 2 (BMP2) inhibitors, estrogen inhibitors, and AMP-activated protein kinase (AMPK) activators on the PAH evaluation parameters. This systematic review (SR) was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CDR42022340658) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: Overall, 5092 records were screened from different database and registries; 8 RCTs that met our inclusion criteria were included. The marked difference in the study designs and the variability of the selected outcome measurement tools among the studies made performing a meta-analysis impossible. However, the main findings of this SR relate to the powerful potential of the AMPK activator and the imminent antidiabetic drug metformin, and the BMP2 inhibitor sotatercept as promising PAH-modifying therapies. There is a need for long-term studies to evaluate the effect of the ROCK inhibitor fasudil and the estrogen aromatase inhibitor anastrozole in PAH patients. The role of tacrolimus in PAH is questionable. The discrepancy in the hemodynamic and clinical parameters necessitates defining cut values to predict improvement. The differences in the PAH etiologies render the judgment of the therapeutic potential of the tested drugs challenging. CONCLUSION: Metformin and sotatercept appear as promising therapeutic drugs for PAH. CLINICAL TRIALS REGISTRATION: This work was registered in PROSPERO (CDR42022340658).


Assuntos
Hipertensão Pulmonar , Metformina , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/uso terapêutico , Hipertensão Pulmonar Primária Familiar , Estrogênios/uso terapêutico , Metformina/uso terapêutico
14.
Clin Genet ; 105(2): 190-195, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37821225

RESUMO

Congenital alveolar dysplasia (CAD) belongs to rare lethal lung developmental disorders (LLDDs) in neonates, manifesting with acute respiratory failure and pulmonary arterial hypertension refractory to treatment. The majority of CAD cases have been associated with copy-number variant (CNV) deletions at 17q23.1q23.2 or 5p12. Most CNV deletions at 17q23.1q23.2 were recurrent and encompassed two closely located genes, TBX4 and TBX2. In a few CAD cases, intragenic frameshifting deletions or single-nucleotide variants (SNVs) involved TBX4 but not TBX2. Here, we describe a male neonate who died at 27 days of life from acute respiratory failure caused by lung growth arrest along the spectrum of CAD confirmed by histopathological assessment. Trio-based genome sequencing revealed in the proband a novel non-recurrent ~1.07 Mb heterozygous CNV deletion at 17q23.2, encompassing TBX4 that arose de novo on the paternal chromosome. This is the first report of a larger-sized CNV deletion in a CAD patient involving TBX4 and leaving TBX2 intact. Our results, together with previous reports, indicate that perturbations of TBX4, rather than TBX2, cause severe lung phenotypes in humans.


Assuntos
Síndrome do Desconforto Respiratório do Recém-Nascido , Insuficiência Respiratória , Humanos , Recém-Nascido , Masculino , Hipertensão Pulmonar Primária Familiar , Pulmão , Fenótipo , Proteínas com Domínio T/genética
15.
Sci Rep ; 13(1): 22534, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110438

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by endothelial cell (EC) dysfunction. There are no data from living patients to inform whether differential gene expression of pulmonary artery ECs (PAECs) can discern disease subtypes, progression and pathogenesis. We aimed to further validate our previously described method to propagate ECs from right heart catheter (RHC) balloon tips and to perform additional PAEC phenotyping. We performed bulk RNA sequencing of PAECs from RHC balloons. Using unsupervised dimensionality reduction and clustering we compared transcriptional signatures from PAH to controls and other forms of pulmonary hypertension. Select PAEC samples underwent single cell and population growth characterization and anoikis quantification. Fifty-four specimens were analyzed from 49 subjects. The transcriptome appeared stable over limited passages. Six genes involved in sex steroid signaling, metabolism, and oncogenesis were significantly upregulated in PAH subjects as compared to controls. Genes regulating BMP and Wnt signaling, oxidative stress and cellular metabolism were differentially expressed in PAH subjects. Changes in gene expression tracked with clinical events in PAH subjects with serial samples over time. Functional assays demonstrated enhanced replication competency and anoikis resistance. Our findings recapitulate fundamental biological processes of PAH and provide new evidence of a cancer-like phenotype in ECs from the central vasculature of PAH patients. This "cell biopsy" method may provide insight into patient and lung EC heterogeneity to advance precision medicine approaches in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Doenças Vasculares , Humanos , Hipertensão Pulmonar/patologia , Artéria Pulmonar/patologia , Células Endoteliais/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Pulmonar Primária Familiar/metabolismo , Doenças Vasculares/patologia , Via de Sinalização Wnt/genética
16.
J Patient Rep Outcomes ; 7(1): 134, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108945

RESUMO

BACKGROUND: Understanding patients' perspectives regarding drug tolerability, in addition to effectiveness, provides a complete picture of the patient experience and supports more informed therapeutic decision-making. The item library of the National Cancer Institute's Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) was developed to measure patient-reported frequency, severity, and interference of adverse events (AEs) associated with cancer therapies. This qualitative interview study assessed the suitability of items selected from the PRO-CTCAE library for assessing tolerability of selexipag, a medication targeting the prostacyclin pathway for patients with pulmonary arterial hypertension (PAH). METHODS: Two rounds of 10 qualitative, web-assisted telephone interviews following a semi-structured guide were conducted in individuals with recent experience taking oral selexipag for PAH. Each interview included concept elicitation to gather participants' perspectives on symptomatic AEs (type, frequency, severity, and interference) and cognitive debriefing of PRO-CTCAE items addressing the most frequently reported AEs of oral selexipag. RESULTS: Interviews were conducted with 20 participants with PAH (mean [range] age 50 [24-68] years; 75% female; 85% in World Health Organization Functional Class II-III), comprising different races/ethnicities, levels of education, and employment status. Fifteen participants were currently treated with selexipag; five had taken selexipag for ≥ 6 months before discontinuing. The most frequently reported AEs included headache, jaw pain, and nausea (n = 15, 12, and 10 participants, respectively). Diarrhea and headache were identified as the most bothersome AEs by 5 and 4 participants, respectively. Some AEs were transitory (e.g., jaw pain); others were long-lasting (e.g., muscle pain). Based on findings from Round 1 interviews, a flushing item was added and the PRO-CTCAE general pain item was modified to be specific to jaw pain for testing in Round 2. Interview findings identified the following AEs as relevant to assess in a PAH clinical trial: nausea, vomiting, diarrhea, flushing, jaw pain, headache, aching muscles, and aching joints. CONCLUSIONS: The PRO-CTCAE items selected in this study and the additional symptomatic AEs identified as patient-relevant have the potential to be included in assessments capturing the patient perspective on tolerability in future studies of selexipag and possibly other PAH therapies.


Assuntos
Neoplasias , Hipertensão Arterial Pulmonar , Estados Unidos , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , National Cancer Institute (U.S.) , Hipertensão Pulmonar Primária Familiar , Dor , Diarreia , Cefaleia/induzido quimicamente , Náusea
17.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139269

RESUMO

Pulmonary arterial hypertension (PAH) is a debilitating progressive disease characterized by excessive pulmonary vasoconstriction and abnormal vascular remodeling processes that lead to right-ventricular heart failure and, ultimately, death. Although our understanding of its pathophysiology has advanced and several treatment modalities are currently available for the management of PAH patients, none are curative and the prognosis remains poor. Therefore, further research is required to decipher the molecular mechanisms associated with PAH. Angiotensin-converting enzyme 2 (ACE2) plays an important role through its vasoprotective functions in cardiopulmonary homeostasis, and accumulating preclinical and clinical evidence shows that the upregulation of the ACE2/Angiotensin-(1-7)/MAS1 proto-oncogene, G protein-coupled receptor (Mas 1 receptor) signaling axis is implicated in the pathophysiology of PAH. Herein, we highlight the molecular mechanisms of ACE2 signaling in PAH and discuss its potential as a therapeutic target.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Enzima de Conversão de Angiotensina 2/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Peptidil Dipeptidase A/metabolismo , Hipertensão Pulmonar Primária Familiar , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina I/metabolismo , Fragmentos de Peptídeos/metabolismo , Sistema Renina-Angiotensina
18.
Medicine (Baltimore) ; 102(50): e36563, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38115264

RESUMO

BACKGROUND: Cutaneous polyarteritis nodosa (cPAN) is a form of medium-sized vessel necrotizing vasculitis. It is a rare, skin-limited variant of polyarteritis nodosa, characterized by dermal and subcutaneous tissue involvement. The most common findings in cPAN include digital gangrene, livedo reticularis, and tender subcutaneous nodules. However, while limited to the skin, cPAN results in significant morbidity and mortality due to the accompanying skin ischemia and necrosis, such that patients are vulnerable to superinfection. Here, we describe a unique presentation of cPAN associated with pulmonary arterial hypertension (PAH). METHODS: A 78-year-old female presented with digital ischemia and leg ulcers associated with PAH. Skin biopsy showed necrotizing fibrinoid necrosis of the small- and middle-sized vessels of the dermis. A diagnosis of cPAN and PAH was made. The patient was treated with glucocorticoids, vasodilators, and cyclophosphamide. RESULTS: She died due to severe sepsis complications. CONCLUSION: To date, this is the first case report describing the association between cPAN and PAH. In this case, PAH is a complication of the cutaneous vasculitides suggesting that vasculopathy could play a role in the pathophysiology of PAH. However, the underlying pathophysiological mechanisms still have to be firmly established.


Assuntos
Poliarterite Nodosa , Hipertensão Arterial Pulmonar , Dermatopatias Vasculares , Vasculite , Feminino , Humanos , Idoso , Poliarterite Nodosa/complicações , Poliarterite Nodosa/diagnóstico , Hipertensão Arterial Pulmonar/complicações , Vasculite/complicações , Necrose/complicações , Hipertensão Pulmonar Primária Familiar/complicações , Isquemia/complicações
19.
Nat Commun ; 14(1): 7578, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989727

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease in which pulmonary arterial (PA) endothelial cell (EC) dysfunction is associated with unrepaired DNA damage. BMPR2 is the most common genetic cause of PAH. We report that human PAEC with reduced BMPR2 have persistent DNA damage in room air after hypoxia (reoxygenation), as do mice with EC-specific deletion of Bmpr2 (EC-Bmpr2-/-) and persistent pulmonary hypertension. Similar findings are observed in PAEC with loss of the DNA damage sensor ATM, and in mice with Atm deleted in EC (EC-Atm-/-). Gene expression analysis of EC-Atm-/- and EC-Bmpr2-/- lung EC reveals reduced Foxf1, a transcription factor with selectivity for lung EC. Reducing FOXF1 in control PAEC induces DNA damage and impaired angiogenesis whereas transfection of FOXF1 in PAH PAEC repairs DNA damage and restores angiogenesis. Lung EC targeted delivery of Foxf1 to reoxygenated EC-Bmpr2-/- mice repairs DNA damage, induces angiogenesis and reverses pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Arterial Pulmonar/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar/metabolismo , Dano ao DNA , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
20.
Respir Res ; 24(1): 289, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978368

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary vascular remodeling which is associated with the malignant phenotypes of pulmonary vascular cells. Recently, the effects of heat shock protein 110 (Hsp110) in human arterial smooth muscle cells were reported. However, the underlying roles and mechanisms of Hsp110 in human pulmonary arterial endothelial cells (HPAECs) that was disordered firstly at the early stage of PAH remain unknown. METHODS: In this research, the expression of Hsp110 in PAH human patients and rat models was investigated, and the Hsp110 localization was determined both in vivo and in vitro. The roles and mechanism of elevated Hsp110 in excessive cell proliferation and migration of HPAECs were assessed respectively exposed to hypoxia. Small molecule inhibitors targeting Hsp110-STAT3 interaction were screened via fluorescence polarization, anti-aggregation and western blot assays. Moreover, the effects of compound 6 on HPAECs abnormal phenotypes in vitro and pulmonary vascular remodeling of hypoxia-indued PAH rats in vivo by interrupting Hsp110-STAT3 interaction were evaluated. RESULTS: Our studies demonstrated that Hsp110 expression was increased in the serum of patients with PAH, as well as in the lungs and pulmonary arteries of PAH rats, when compared to their respective healthy subjects. Moreover, Hsp110 levels were significantly elevated in HPAECs under hypoxia and mediated its aberrant phenotypes. Furthermore, boosted Hsp110-STAT3 interaction resulted in abnormal proliferation and migration via elevating p-STAT3 and c-Myc in HPAECs. Notably, we successfully identified compound 6 as potent Hsp110-STAT3 interaction inhibitor, which effectively inhibited HPAECs proliferation and migration, and significantly ameliorated right heart hypertrophy and vascular remodeling of rats with PAH. CONCLUSIONS: Our studies suggest that elevated Hsp110 plays a vital role in HPAECs and inhibition of the Hsp110-STAT3 interaction is a novel strategy for improving vascular remodeling. In addition, compound 6 could serve as a promising lead compound for developing first-in-class drugs against PAH.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Ratos , Animais , Hipertensão Arterial Pulmonar/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Remodelação Vascular , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar , Artéria Pulmonar/patologia , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA