Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 636
Filtrar
1.
J Am Heart Assoc ; 13(10): e028006, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726894

RESUMO

BACKGROUND: S100a8/9 (S100 calcium binding protein a8/9) belongs to the S100 family and has gained a lot of interest as a critical regulator of inflammatory response. Our previous study found that S100a8/9 homolog promoted aortic valve sclerosis in mice with chronic kidney disease. However, the role of S100a8/9 in pressure overload-induced cardiac hypertrophy remains unclear. The present study was to explore the role of S100a8/9 in cardiac hypertrophy. METHODS AND RESULTS: Cardiomyocyte-specific S100a9 loss or gain of function was achieved using an adeno-associated virus system, and the model of cardiac hypertrophy was established by aortic banding-induced pressure overload. The results indicate that S100a8/9 expression was increased in response to pressure overload. S100a9 deficiency alleviated pressure overload-induced hypertrophic response, whereas S100a9 overexpression accelerated cardiac hypertrophy. S100a9-overexpressed mice showed increased FGF23 (fibroblast growth factor 23) expression in the hearts after exposure to pressure overload, which activated calcineurin/NFAT (nuclear factor of activated T cells) signaling in cardiac myocytes and thus promoted hypertrophic response. A specific antibody that blocks FGFR4 (FGF receptor 4) largely abolished the prohypertrophic response of S100a9 in mice. CONCLUSIONS: In conclusion, S100a8/9 promoted the development of cardiac hypertrophy in mice. Targeting S100a8/9 may be a promising therapeutic approach to treat cardiac hypertrophy.


Assuntos
Calgranulina A , Calgranulina B , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Miócitos Cardíacos , Fatores de Transcrição NFATC , Regulação para Cima , Animais , Calgranulina A/metabolismo , Calgranulina A/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Calgranulina B/metabolismo , Calgranulina B/genética , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Fator de Crescimento de Fibroblastos 23/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Calcineurina/metabolismo , Camundongos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Remodelação Ventricular
2.
Cells ; 11(19)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230994

RESUMO

Disturbances in cardiac lipid metabolism are associated with the development of cardiac hypertrophy and heart failure. Spontaneously hypertensive rats (SHRs), a genetic model of primary hypertension and pathological left ventricular (LV) hypertrophy, have high levels of diacylglycerols in cardiomyocytes early in development. However, the exact effect of lipids and pathways that are involved in their metabolism on the development of cardiac dysfunction in SHRs is unknown. Therefore, we used SHRs and Wistar Kyoto (WKY) rats at 6 and 18 weeks of age to analyze the impact of perturbations of processes that are involved in lipid synthesis and degradation in the development of LV hypertrophy in SHRs with age. Triglyceride levels were higher, whereas free fatty acid (FA) content was lower in the LV in SHRs compared with WKY rats. The expression of de novo FA synthesis proteins was lower in cardiomyocytes in SHRs compared with corresponding WKY controls. The higher expression of genes that are involved in TG synthesis in 6-week-old SHRs may explain the higher TG content in these rats. Adenosine monophosphate-activated protein kinase phosphorylation and peroxisome proliferator-activated receptor α protein content were lower in cardiomyocytes in 18-week-old SHRs, suggesting a lower rate of ß-oxidation. The decreased protein content of α/ß-hydrolase domain-containing 5, adipose triglyceride lipase (ATGL) activator, and increased content of G0/G1 switch protein 2, ATGL inhibitor, indicating a lower rate of lipolysis in the heart in SHRs. In conclusion, the present study showed that the development of LV hypertrophy and myocardial dysfunction in SHRs is associated with triglyceride accumulation, attributable to a lower rate of lipolysis and ß-oxidation in cardiomyocytes.


Assuntos
Hipertrofia Ventricular Esquerda , Metabolismo dos Lipídeos , Monofosfato de Adenosina/farmacologia , Animais , Diglicerídeos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Lipase/metabolismo , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Proteínas Quinases/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Triglicerídeos/metabolismo
3.
PLoS One ; 17(6): e0269807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696411

RESUMO

BACKGROUND: While patients with cardiac transthyretin amyloidosis are easily diagnosed with bone scintigraphy, the detection of cardiac light chain (AL) amyloidosis is challenging. Cardiac magnetic resonance (CMR) analyses play an essential role in the differential diagnosis of cardiomyopathies; however, limited data are available from cardiac AL-Amyloidosis. Hence, the purpose of the present study was to analyze the potential role of CMR in the detection of cardiac AL-amyloidosis. METHODS: We included 35 patients with proved cardiac AL-amyloidosis and two control groups constituted by 330 patients with hypertrophic cardiomyopathy (HCM) and 70 patients with arterial hypertension (HT), who underwent CMR examination. The phenotype and degree of left ventricular (LV) hypertrophy and the amount and pattern of late gadolinium enhancement (LGE) were evaluated. In addition, global and regional LV strain parameters were also analyzed using feature-tracking techniques. Sensitivity and specificity of several CMR parameters were analyzed in diagnosing cardiac AL-amyloidosis. RESULTS: The sensitivity and specificity of diffuse septal subendocardial LGE in diagnosing cardiac AL-amyloidosis was 88% and 100%, respectively. Likewise, the sensitivity and specificity of septal myocardial nulling prior to blood pool was 71% and 100%, respectively. In addition, a LV end-diastolic septal wall thickness ≥ 15 mm had an optimal diagnostic performance to differentiate cardiac AL-amyloidosis from HT (sensitivity 91%, specificity 89%). On the other hand, a reduced global LV longitudinal strain (< 15%) plus apical sparing (apex-to-base longitudinal strain > 2) had a very low sensitivity (6%) in detecting AL-Amyloidosis, but with very high specificity (100%). CONCLUSIONS: The findings from this study suggest that CMR could have an optimal diagnostic performance in the diagnosis of cardiac AL-amyloidosis. Hence, further larger studies are warranted to validate the findings from this study.


Assuntos
Neuropatias Amiloides Familiares , Cardiomiopatias , Amiloidose de Cadeia Leve de Imunoglobulina , Neuropatias Amiloides Familiares/patologia , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/patologia , Meios de Contraste , Gadolínio , Humanos , Hipertrofia Ventricular Esquerda/patologia , Amiloidose de Cadeia Leve de Imunoglobulina/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Miocárdio/patologia , Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X
4.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682624

RESUMO

The transcription factor EB (TFEB) promotes protein degradation by the autophagy and lysosomal pathway (ALP) and overexpression of TFEB was suggested for the treatment of ALP-related diseases that often affect the heart. However, TFEB-mediated ALP induction may perturb cardiac stress response. We used adeno-associated viral vectors type 9 (AAV9) to overexpress TFEB (AAV9-Tfeb) or Luciferase-control (AAV9-Luc) in cardiomyocytes of 12-week-old male mice. Mice were subjected to transverse aortic constriction (TAC, 27G; AAV9-Luc: n = 9; AAV9-Tfeb: n = 14) or sham (AAV9-Luc: n = 9; AAV9-Tfeb: n = 9) surgery for 28 days. Heart morphology, echocardiography, gene expression, and protein levels were monitored. AAV9-Tfeb had no effect on cardiac structure and function in sham animals. TAC resulted in compensated left ventricular hypertrophy in AAV9-Luc mice. AAV9-Tfeb TAC mice showed a reduced LV ejection fraction and increased left ventricular diameters. Morphological, histological, and real-time PCR analyses showed increased heart weights, exaggerated fibrosis, and higher expression of stress markers and remodeling genes in AAV9-Tfeb TAC compared to AAV9-Luc TAC. RNA-sequencing, real-time PCR and Western Blot revealed a stronger ALP activation in the hearts of AAV9-Tfeb TAC mice. Cardiomyocyte-specific TFEB-overexpression promoted ALP gene expression during TAC, which was associated with heart failure. Treatment of ALP-related diseases by overexpression of TFEB warrants careful consideration.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Remodelação Ventricular
5.
J Am Heart Assoc ; 11(9): e025381, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35470693

RESUMO

Background Left ventricular hypertrophy (LVH) has often been supposed to be associated with abnormal myocardial blood flow and resistance. The aim of this study was to evaluate and quantify the physiological and pathological changes in myocardial blood flow and microcirculatory resistance in patients with and without LVH attributable to severe aortic stenosis. Methods and Results Absolute coronary blood flow and microvascular resistance were measured using a novel technique with continuous thermodilution and infusion of saline. In addition, myocardial mass was assessed with cardiac magnetic resonance imaging. Fifty-three patients with aortic valve stenosis were enrolled in the study. In 32 patients with LVH, hyperemic blood flow per gram of tissue was significantly decreased compared with 21 patients without LVH (1.26±0.48 versus 1.66±0.65 mL·min-1·g-1; P=0.018), whereas minimal resistance indexed for left ventricular mass was significantly increased in patients with LVH (63 [47-82] versus 43 [35-63] Wood Units·kg; P=0.014). Conclusions Patients with LVH attributable to severe aortic stenosis had lower hyperemic blood flow per gram of myocardium and higher minimal myocardial resistance compared with patients without LVH.


Assuntos
Estenose da Valva Aórtica , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/patologia , Hemodinâmica , Humanos , Hipertrofia Ventricular Esquerda/patologia , Microcirculação , Miocárdio/patologia
6.
Front Endocrinol (Lausanne) ; 13: 1079043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686418

RESUMO

Introduction: Sex hormones may play an important role in age-related cardiac remodeling. However, their impact on cardiac structure and function in females of advanced age still remains unclear. The aim of this study is to evaluate the relationship between sex hormones level and echocardiographic parameters in older women with concomitant cardiovascular diseases. Materials and Methods: The study group included 52 community-dwelling women with mean age 79.5 ± 2.8 years, consecutive patients of an outpatient geriatric clinic. In all the subjects, a transthoracic echocardiogram was performed and serum testosterone, estradiol, follicle-stimulating hormone, luteinising hormone, dehydroepiandrosterone sulphate, and cortisol levels were determined. Results: Testosterone level correlated positively with interventricular septum diastolic dimension (IVSd) (rS=0.293, p<0.05), left ventricular mass index (rS=0.285, p<0.05), E/E' ratio (rS=0.301, p<0.05), and negatively with E' (rS=-0.301, p<0.05). Estradiol level showed a positive correlation with the posterior wall dimension (rS=0.28, p<0.05). Besides, no significant correlations between clinical or echocardiographic parameters and other hormones were observed. Female subjects with diagnosed left ventricular hypertrophy (LVH) (n=34) were characterized by a significantly higher rate of hypertension (p=0.011), higher waist-to-height ratio (p=0.009), higher testosterone level (0.82 vs. 0.48 nmol/L, p=0.024), higher testosterone/estradiol ratio (16.4 vs. 9.9, p=0.021), and received more anti-hypertensive drugs (p=0.030). In a multiple stepwise logistic regression, the best determinants of LVH were the presence of hypertension (OR=6.51; 95% CI 1.62-26.1), and testosterone level (OR= 6.6; 95% CI 1.19-36.6). Conclusions: Higher serum testosterone levels may contribute to pathological cardiac remodeling, especially in hypertensive women. Estradiol, gonadotropins, DHEAS, and cortisol were not related to echocardiographic parameters.


Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Hipertrofia Ventricular Esquerda/patologia , Hidrocortisona , Remodelação Ventricular , Hormônios Esteroides Gonadais , Testosterona , Estradiol
7.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884782

RESUMO

Radiation-induced heart disease (RIHD) is a potential late side-effect of thoracic radiotherapy resulting in left ventricular hypertrophy (LVH) and fibrosis due to a complex pathomechanism leading to heart failure. Angiotensin-II receptor blockers (ARBs), including losartan, are frequently used to control heart failure of various etiologies. Preclinical evidence is lacking on the anti-remodeling effects of ARBs in RIHD, while the results of clinical studies are controversial. We aimed at investigating the effects of losartan in a rat model of RIHD. Male Sprague-Dawley rats were studied in three groups: (1) control, (2) radiotherapy (RT) only, (3) RT treated with losartan (per os 10 mg/kg/day), and were followed for 1, 3, or 15 weeks. At 15 weeks post-irradiation, losartan alleviated the echocardiographic and histological signs of LVH and fibrosis and reduced the overexpression of chymase, connective tissue growth factor, and transforming growth factor-beta in the myocardium measured by qPCR; likewise, the level of the SMAD2/3 protein determined by Western blot decreased. In both RT groups, the pro-survival phospho-AKT/AKT and the phospho-ERK1,2/ERK1,2 ratios were increased at week 15. The antiremodeling effects of losartan seem to be associated with the repression of chymase and several elements of the TGF-ß/SMAD signaling pathway in our RIHD model.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Insuficiência Cardíaca/prevenção & controle , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Losartan/uso terapêutico , Síndrome da Fibrose por Radiação/tratamento farmacológico , Animais , Quimases/metabolismo , Modelos Animais de Doenças , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Síndrome da Fibrose por Radiação/patologia , Síndrome da Fibrose por Radiação/prevenção & controle , Ratos , Ratos Sprague-Dawley , Proteína Smad2/análise , Proteína Smad3/análise , Fator de Crescimento Transformador beta1/análise
8.
Mediators Inflamm ; 2021: 1376859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776787

RESUMO

Transverse aortic constriction (TAC) is a model that mimics pressure overload-induced left ventricular (LV) hypertrophy in mice. Alterations in immune cell functionality can promote cardiac and vascular remodeling. In the present study, we characterized the time course in innate immune cell dynamics in response to TAC in the different tissues of mice. It was determined whether TAC induces a characteristic leukocyte-driven immune response in the myocardium, aorta ascendens and descendens, spleen, blood, and draining lymph nodes supported by cytokine-driven chemotaxis in mice at 3, 6, and 21 days following surgery. We used complex flow cytometry staining combinations to characterize the various innate immune cell subsets and a multiplex array to determine cytokine concentrations in the serum. The results of the current study indicated that leukocytes accumulate in the myocardium and aorta ascendens in response to TAC. The leukocyte dynamics in the myocardium were dominated by the Ly6Clow macrophages with an early accumulation, whereas the response in the aorta ascendens was characterized by a long-lasting proinflammatory phenotype driven by Ly6Chigh macrophages, neutrophils, and activated DCs. In contrast to the high-pressure environment of the aorta ascendens, the tissue of the aorta descendens did not react to TAC with any leukocyte increase. The levels of proinflammatory cytokines in the blood were elevated in response to TAC, indicating a systemic reaction. Moreover, our findings strongly suggest that cardiac macrophages could origin from splenic pools and reach the site of the inflammation via the blood. Based on the current findings, it can be concluded that the high-pressure conditions in the aorta ascendens cause a characteristic immune response, dominated by the accumulation of leukocytes and the activation of DCs that varies in comparison to the immune cell dynamics in the myocardium and the aorta descendens.


Assuntos
Miocárdio , Remodelação Ventricular , Animais , Aorta , Cardiomegalia , Constrição , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/patologia , Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia
9.
J Am Heart Assoc ; 10(22): e022077, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34743552

RESUMO

Background Cardiac hypertrophy and fibrosis are common adaptive responses to injury and stress, eventually leading to heart failure. Hypoxia signaling is important to the (patho)physiological process of cardiac remodeling. However, the role of endothelial PHD2 (prolyl-4 hydroxylase 2)/hypoxia inducible factor (HIF) signaling in the pathogenesis of cardiac hypertrophy and heart failure remains elusive. Methods and Results Mice with Egln1Tie2Cre (Tie2-Cre-mediated deletion of Egln1 [encoding PHD2]) exhibited left ventricular hypertrophy evident by increased thickness of anterior and posterior wall and left ventricular mass, as well as cardiac fibrosis. Tamoxifen-induced endothelial Egln1 deletion in adult mice also induced left ventricular hypertrophy and fibrosis. Additionally, we observed a marked decrease of PHD2 expression in heart tissues and cardiovascular endothelial cells from patients with cardiomyopathy. Moreover, genetic ablation of Hif2a but not Hif1a in Egln1Tie2Cre mice normalized cardiac size and function. RNA sequencing analysis also demonstrated HIF-2α as a critical mediator of signaling related to cardiac hypertrophy and fibrosis. Pharmacological inhibition of HIF-2α attenuated cardiac hypertrophy and fibrosis in Egln1Tie2Cre mice. Conclusions The present study defines for the first time an unexpected role of endothelial PHD2 deficiency in inducing cardiac hypertrophy and fibrosis in an HIF-2α-dependent manner. PHD2 was markedly decreased in cardiovascular endothelial cells in patients with cardiomyopathy. Thus, targeting PHD2/HIF-2α signaling may represent a novel therapeutic approach for the treatment of pathological cardiac hypertrophy and failure.


Assuntos
Fibrose , Hipertrofia Ventricular Esquerda , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Células Endoteliais/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Hipertrofia Ventricular Esquerda/patologia , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Camundongos , Prolil Hidroxilases
10.
Am J Physiol Heart Circ Physiol ; 321(5): H976-H984, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34559578

RESUMO

Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and accompanied by abnormal extracellular matrix (ECM) accumulation. The E3 ubiquitin ligase WWP1 is a fundamental determinant ECM turnover. We tested the hypothesis that genetic ablation of Wwp1 would alter the progression of LVPO-induced HFpEF. LV echocardiography in mice with global Wwp1 deletion (n = 23; Wwp1-/-) was performed at 12 wk of age (baseline) and then at 2 and 4 wk following LVPO (transverse aortic banding) or surgery without LVPO induction. Age-matched wild-type mice (Wwp1+/+; n = 23) underwent identical protocols. LV EF remained constant and unchanged with LVPO and LV mass increased in both groups but was lower in the Wwp1-/- mice. With LVPO, the E/A ratio, an index of LV filling, was 3.97 ± 0.46 in Wwp1+/+ but was 1.73 ± 0.19 in the Wwp1-/- group (P < 0.05). At the transcriptional level, mRNA for fibrillar collagens (types I and III) decreased by approximately 50% in Wwp1-/- compared with the Wwp1+/+ group at 4 wk post-LVPO (P < 0.05) and was paralleled by a similar difference in LV fibrillar collagen content as measured by histochemistry. Moreover, mRNA levels for determinants favoring ECM accumulation, such as transforming growth factor (TGF), increased with LVPO, but were lower in the Wwp1-/- group. The absence of Wwp1 reduced the development of left ventricular hypertrophy and subsequent progression to HFpEF. Modulating the WWP1 pathway could be a therapeutic target to alter the natural history of HFpEF.NEW & NOTEWORTHY Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and is accompanied by abnormal extracellular matrix (ECM) accumulation. It is now recognized that the ECM is a dynamic entity that is regulated at multiple post-transcriptional levels, including the E3 ubiquitin ligases, such as WWP1. In the present study, WWP1 deletion in the context of an LVPO stimulus reduced functional indices of HFpEF progression and determinants of ECM remodeling.


Assuntos
Insuficiência Cardíaca/enzimologia , Ventrículos do Coração/enzimologia , Hipertrofia Ventricular Esquerda/enzimologia , Ubiquitina-Proteína Ligases/deficiência , Disfunção Ventricular Esquerda/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Aorta/fisiopatologia , Aorta/cirurgia , Diástole , Modelos Animais de Doenças , Progressão da Doença , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Colágenos Fibrilares/genética , Colágenos Fibrilares/metabolismo , Deleção de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
11.
Am J Physiol Heart Circ Physiol ; 321(4): H615-H632, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415186

RESUMO

Cardiac dysfunction in heart failure (HF) and diabetic cardiomyopathy (DCM) is associated with aberrant intracellular Ca2+ handling and impaired mitochondrial function accompanied with reduced mitochondrial calcium concentration (mito-[Ca2+]). Pharmacological or genetic facilitation of mito-Ca2+ uptake was shown to restore Ca2+ transient amplitude in DCM and HF, improving contractility. However, recent reports suggest that pharmacological enhancement of mito-Ca2+ uptake can exacerbate ryanodine receptor-mediated spontaneous sarcoplasmic reticulum (SR) Ca2+ release in ventricular myocytes (VMs) from diseased animals, increasing propensity to stress-induced ventricular tachyarrhythmia. To test whether chronic recovery of mito-[Ca2+] restores systolic Ca2+ release without adverse effects in diastole, we overexpressed mitochondrial Ca2+ uniporter (MCU) in VMs from male rat hearts with hypertrophy induced by thoracic aortic banding (TAB). Measurement of mito-[Ca2+] using genetic probe mtRCamp1h revealed that mito-[Ca2+] in TAB VMs paced at 2 Hz under ß-adrenergic stimulation is lower compared with shams. Adenoviral 2.5-fold MCU overexpression in TAB VMs fully restored mito-[Ca2+]. However, it failed to improve cytosolic Ca2+ handling and reduce proarrhythmic spontaneous Ca2+ waves. Furthermore, mitochondrial-targeted genetic probes MLS-HyPer7 and OMM-HyPer revealed a significant increase in emission of reactive oxygen species (ROS) in TAB VMs with 2.5-fold MCU overexpression. Conversely, 1.5-fold MCU overexpression in TABs, that led to partial restoration of mito-[Ca2+], reduced mitochondria-derived reactive oxygen species (mito-ROS) and spontaneous Ca2+ waves. Our findings emphasize the key role of elevated mito-ROS in disease-related proarrhythmic Ca2+ mishandling. These data establish nonlinear mito-[Ca2+]/mito-ROS relationship, whereby partial restoration of mito-[Ca2+] in diseased VMs is protective, whereas further enhancement of MCU-mediated Ca2+ uptake exacerbates damaging mito-ROS emission.NEW & NOTEWORTHY Defective intracellular Ca2+ homeostasis and aberrant mitochondrial function are common features in cardiac disease. Here, we directly compared potential benefits of mito-ROS scavenging and restoration of mito-Ca2+ uptake by overexpressing MCU in ventricular myocytes from hypertrophic rat hearts. Experiments using novel mito-ROS and Ca2+ biosensors demonstrated that mito-ROS scavenging rescued both cytosolic and mito-Ca2+ homeostasis, whereas moderate and high MCU overexpression demonstrated disparate effects on mito-ROS emission, with only a moderate increase in MCU being beneficial.


Assuntos
Arritmias Cardíacas/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Técnicas Biossensoriais , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Frequência Cardíaca , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Microscopia Confocal , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Regulação para Cima , Função Ventricular Esquerda , Remodelação Ventricular
12.
BMC Cardiovasc Disord ; 21(1): 403, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418957

RESUMO

BACKGROUND: Cardiomyocyte metabolism changes before cardiac remodeling, but its role in early cardiac hypertrophy detection remains unclear. This study investigated early changes in plasma metabolomics in a pressure-overload cardiac hypertrophy model induced by transverse aortic constriction (TAC). METHODS: The TAC model was constructed by partly ligating the aortic arch. Twelve Sprague-Dawley rats were randomly divided into the TAC group (n = 6) and sham group (n = 6). Three weeks after surgery, cardiac echocardiography was performed to assess cardiac remodeling and function. Hematoxylin/eosin (HE), Masson, and wheat germ agglutinin (WGA) stains were used to observe pathological changes. Plasma metabolites were detected by UPLC-QTOFMS and Q-TOFMS. Specific metabolites were screened by orthogonal partial least squares discriminant analysis (OPLS-DA). Metabolic pathways were characterized by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and the predictive value of the screened metabolites was analyzed by receiver operating characteristic (ROC) curve analysis. RESULTS: Three weeks after surgery, the TAC and sham groups had similar left heart function and interventricular septum and diastolic left ventricular posterior wall thicknesses. However, on pathological examination, the cross-sectional area of cardiomyocytes and myocardial fibrosis severity were significantly elevated in TAC rats. OPLS-DA showed different metabolic patterns between the TAC and sham groups. Based on the criteria VIP > 1 and P < 0.05, 13 metabolites were screened out. KEGG analysis identified disrupted lysine degradation through the related metabolites 5-aminopentanoic acid, N6-acetyl-L-lysine, and L-lysine, with areas under the ROC curve (AUCs) of 0.917, 0.889, and 0.806, respectively, for predicting compensated cardiomyocyte hypertrophy. CONCLUSION: Disruption of lysine degradation might be involved in early cardiac hypertrophy development, and related metabolites might be potential predictive and interventional targets for subclinical cardiomyocyte hypertrophy.


Assuntos
Metabolismo Energético , Hipertrofia Ventricular Esquerda/metabolismo , Lisina/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Aorta Torácica/fisiopatologia , Aorta Torácica/cirurgia , Pressão Arterial , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Ligadura , Masculino , Metaboloma , Metabolômica , Miocárdio/patologia , Proteólise , Ratos Sprague-Dawley , Fatores de Tempo
13.
J Clin Endocrinol Metab ; 106(11): e4327-e4339, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34223895

RESUMO

CONTEXT: Lipodystrophy syndromes are rare disorders of deficient adipose tissue, low leptin, and severe metabolic disease, affecting all adipose depots (generalized lipodystrophy, GLD) or only some (partial lipodystrophy, PLD). Left ventricular (LV) hypertrophy is common (especially in GLD); mechanisms may include hyperglycemia, dyslipidemia, or hyperinsulinemia. OBJECTIVE: Determine effects of recombinant leptin (metreleptin) on cardiac structure and function in lipodystrophy. METHODS: Open-label treatment study of 38 subjects (18 GLD, 20 PLD) at the National Institutes of Health before and after 1 (N = 27), and 3 to 5 years (N = 23) of metreleptin. Outcomes were echocardiograms, blood pressure (BP), triglycerides, A1c, and homeostasis model assessment of insulin resistance. RESULTS: In GLD, metreleptin lowered triglycerides (median [interquartile range] 740 [403-1239], 138 [88-196], 211 [136-558] mg/dL at baseline, 1 year, 3-5 years, P < .0001), A1c (9.5 ±â€…3.0, 6.5 ±â€…1.6, 6.5 ±â€…1.9%, P < .001), and HOMA-IR (34.1 [15.2-43.5], 8.7 [2.4-16.0], 8.9 [2.1-16.4], P < .001). Only HOMA-IR improved in PLD (P < .01). Systolic BP decreased in GLD but not PLD. Metreleptin improved cardiac parameters in patients with GLD, including reduced posterior wall thickness (9.8 ±â€…1.7, 9.1 ±â€…1.3, 8.3 ±â€…1.7 mm, P < .01), and LV mass (140.7 ±â€…45.9, 128.7 ±â€…37.9, 110.9 ±â€…29.1 g, P < .01), and increased septal e' velocity (8.6 ±â€…1.7, 10.0 ±â€…2.1, 10.7 ±â€…2.4 cm/s, P < .01). Changes remained significant after adjustment for BP. In GLD, multivariate models suggested that reduced posterior wall thickness and LV mass index correlated with reduced triglycerides and increased septal e' velocity correlated with reduced A1c. No changes in echocardiographic parameters were seen in PLD. CONCLUSION: Metreleptin attenuated cardiac hypertrophy and improved septal e' velocity in GLD, which may be mediated by reduced lipotoxicity and glucose toxicity. The applicability of these findings to leptin-sufficient populations remains to be determined.


Assuntos
Cardiomegalia/prevenção & controle , Hipertrofia Ventricular Esquerda/prevenção & controle , Leptina/análogos & derivados , Lipodistrofia/complicações , Lipodistrofia/tratamento farmacológico , Adolescente , Adulto , Pressão Sanguínea , Cardiomegalia/etiologia , Ecocardiografia , Feminino , Hemoglobinas Glicadas/análise , Humanos , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Resistência à Insulina , Leptina/uso terapêutico , Lipodistrofia/patologia , Lipodistrofia Generalizada Congênita/complicações , Lipodistrofia Generalizada Congênita/dietoterapia , Masculino , Pessoa de Meia-Idade , National Institutes of Health (U.S.) , Estudos Prospectivos , Triglicerídeos/sangue , Estados Unidos , Septo Interventricular/patologia , Septo Interventricular/fisiopatologia , Adulto Jovem
14.
J Cardiovasc Pharmacol ; 78(1): e55-e64, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232225

RESUMO

ABSTRACT: Left ventricular hypertrophy (LVH) makes the heart vulnerable to ischemia/reperfusion (IR) injury. Angiotensin (Ang) (1-7) is recognized as a cardioprotective peptide. We investigated the effect of polyphenol resveratrol on myocardial IR injury after hypertrophy and examined cardiac content of Ang (1-7) and transcription of its receptor (MasR). Rats were divided into sham-operated, LVH, IR, LVH + IR, and resveratrol + LVH + IR groups. Myocardial hypertrophy and IR models were created by abdominal aortic banding and left coronary artery occlusion, respectively. To evaluate the electrocardiogram parameters and incidence of arrhythmias, electrocardiogram was recorded by subcutaneous leads (lead II). Blood pressure was measured through the left carotid artery. Infarct size was determined by the triphenyl tetrazolium chloride staining. The Ang (1-7) level was evaluated by immunohistochemistry. The Mas receptor mRNA level was assessed by the real-time real time reverse transcription polymerase chain reaction technique. QT-interval duration, infarct size, and incidence of ischemia-induced arrhythmia were significantly higher in the LVH + IR group. However, in the resveratrol-treated group, these parameters were decreased significantly. The cardiac level of Ang (1-7) was decreased in untreated hypertrophied hearts (LVH and LVH + IR groups). Pretreatment with resveratrol normalized the cardiac level of Ang (1-7). The mRNA level of Mas receptor was increased in all of hypertrophied hearts in the presence or absence of resveratrol. Resveratrol can decrease IR injury in rats with LVH. The anti-ischemic effect of resveratrol may be related to the enhancement of Ang (1-7)/MasR axis.


Assuntos
Angiotensina I/metabolismo , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Fragmentos de Peptídeos/metabolismo , Proto-Oncogene Mas/metabolismo , Resveratrol/farmacologia , Animais , Modelos Animais de Doenças , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Proto-Oncogene Mas/genética , Ratos Wistar , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/prevenção & controle , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/prevenção & controle
15.
J Cardiovasc Pharmacol ; 78(3): 422-436, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132689

RESUMO

ABSTRACT: This study investigated the protective effect of acylated ghrelin (AG) against l-thyroxin (l-Thy)-induced cardiac damage in rats and examined possible mechanisms. Male rats were divided into five intervention groups of 12 rats/group: control, control + AG, l-Thy, l-Thy + AG, and l-Thy + AG + [D-Lys3]-GHRP-6 (AG antagonist). l-Thy significantly reduced the levels of AG and des-acyl ghrelin and the AG to des-acyl ghrelin ratio. Administration of AG to l-Thy-treated rats reduced cardiac weights and levels of reactive oxygen species and preserved the function and structure of the left ventricle. In addition, AG also reduced the protein levels of cleaved caspase-3 and cytochrome c and prevented mitochondrial permeability transition pore opening. In the left ventricle of both control + AG-treated and l-Thy + AG-treated rats, AG significantly increased left ventricular levels of manganese superoxide dismutase (SOD2), total glutathione (GSH), and Bcl2. It also reduced the levels of malondialdehyde, tumor necrosis factor-α (TNF-α), interleukin-6, and Bax and the nuclear activity of nuclear factor-kappa B. Concomitantly, in both treated groups, AG reduced the mRNA and protein levels of NADPH oxidase 1, angiotensin (Ang) II type 1 receptor, and Ang-converting enzyme 2. All the beneficial effects of AG in l-Thy-treated rats were prevented by the coadministration of [D-Lys3]-GHRP-6, a selective growth hormone secretagogue receptor subtype 1a antagonist. In conclusion, AG protects against hyperthyroidism-induced cardiac hypertrophy and damage, which is mainly due to its antioxidant and anti-inflammatory potentials and requires the activation of GHS-R1a.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Grelina/análogos & derivados , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Acilação , Animais , Modelos Animais de Doenças , Grelina/metabolismo , Grelina/farmacologia , Hipertireoidismo/induzido quimicamente , Hipertireoidismo/metabolismo , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Mediadores da Inflamação/metabolismo , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Nitrogênio/metabolismo , Tiroxina , Função Ventricular Esquerda/efeitos dos fármacos
16.
Cardiovasc Toxicol ; 21(8): 619-629, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33929718

RESUMO

Fatty acid-binding protein 5 (FABP5) is an important member of the FABP family and plays a vital role in the metabolism of fatty acids. However, few studies have examined the role of FABP5 in pathological cardiac remodeling and heart failure. The aim of this study was to explore the role of FABP5 in transverse aortic constriction (TAC)-induced pathological cardiac remodeling and dysfunction in mice. Quantitative RT-PCR (qRT-PCR) and western blotting (WB) analysis showed that the levels of FABP5 mRNA and protein, respectively, were upregulated in hearts of the TAC model. Ten weeks after TAC in FABP5 knockout and wild type control mice, echocardiography, histopathology, qRT-PCR, and WB demonstrated that FABP5 deficiency aggravated cardiac injury (both cardiac hypertrophy and fibrosis) and dysfunction. In addition, transmission electron microscopy, ATP detection, and WB revealed that TAC caused severe impairment to mitochondria in the hearts of FABP5-deficient mice compared with that in control mice. When FABP5 was downregulated by siRNA in primary mouse cardiac fibroblasts, FABP5 silencing increased oxidative stress, reduced mitochondrial respiration, and increased the expression of myofibroblast activation marker genes in response to treatment with transforming growth factor-ß. Our findings demonstrate that FABP5 deficiency aggravates cardiac pathological remodeling and dysfunction by damaging cardiac mitochondrial function.


Assuntos
Proteínas de Ligação a Ácido Graxo/deficiência , Fibroblastos/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias/deficiência , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/genética , Fibroblastos/ultraestrutura , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Proteínas de Neoplasias/genética , Estresse Oxidativo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
17.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808720

RESUMO

Using a murine model of chronic ischemic cardiomyopathy caused by an old myocardial infarction (MI), we have previously found that three doses of 1 × 106 c-kit positive cardiac cells (CPCs) are more effective than a single dose of 1 × 106 cells. The goal of this study was to determine whether the beneficial effects of three doses of CPCs (1 × 106 cells each) can be fully replicated by a single combined dose of 3 × 106 CPCs. Mice underwent a 60-min coronary occlusion; after 90 days of reperfusion, they received three echo-guided intraventricular infusions at 5-week intervals: (1) vehicle × 3; (2) one combined dose of CPCs (3 × 106) and vehicle × 2; or (3) three doses of CPCs (1 × 106 each). In the combined-dose group, left ventricular ejection fraction (LVEF) improved after the 1st CPC infusion, but not after the 2nd and 3rd (vehicle) infusions. In contrast, in the multiple-dose group, LVEF increased after each CPC infusion; at the final echo, LVEF averaged 35.2 ± 0.6% (p < 0.001 vs. the vehicle group, 27.3 ± 0.2%). At the end of the study, the total cumulative change in EF from pretreatment values was numerically greater in the multiple-dose group (6.6 ± 0.6%) than in the combined-dose group (4.8 ± 0.8%), although the difference was not statistically significant (p = 0.08). Hemodynamic studies showed that several parameters of LV function in the multiple-dose group were numerically greater than in the combined-dose group (p = 0.08 for the difference in LVEF). Compared with vehicle, cardiomyocyte cross-sectional area was reduced only in the multiple-dose group (-32.7%, 182.6 ± 15.1 µm2 vs. 271.5 ± 27.2 µm2, p < 0.05, in the risk region and -28.5%, 148.5 ± 12.1 µm2 vs. 207.6 ± 20.5 µm2, p < 0.05, in the noninfarcted region). LV weight/body weight ratio and LV weight/tibia length ratios were significantly reduced in both cell treated groups vs. the vehicle group, indicating the attenuation of LV hypertrophy; however, the lung weight/body weight ratio was significantly reduced only in the multiple-dose group, suggesting decreased pulmonary congestion. Taken together, these results indicate that in mice with chronic ischemic cardiomyopathy, the beneficial effects of three doses of CPCs on LV function and hypertrophy cannot be fully replicated with a single dose, notwithstanding the fact that the total number of cells delivered with one or three doses is the same. Thus, it is the multiplicity of doses, and not the total number of cells, that accounts for the superiority of the repeated-dose paradigm. This study supports the idea that the efficacy of cell therapy in heart failure can be augmented by repeated administrations.


Assuntos
Cardiomiopatias/etiologia , Dosagem de Genes , Isquemia Miocárdica/complicações , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Biomarcadores , Biópsia , Pesos e Medidas Corporais , Cardiomiopatias/diagnóstico , Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Células Cultivadas , Modelos Animais de Doenças , Ecocardiografia , Fibrose , Testes de Função Cardíaca , Hemodinâmica , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Camundongos , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Isquemia Miocárdica/etiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 320(4): H1634-H1645, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33635162

RESUMO

Wnt/ß-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/ß-catenin interaction factor may provide a tissue-specific clinical targeting strategy. Drosophila Pygo encodes the core interaction factor of Wnt/ß-catenin. Two Pygo homologs (Pygo1 and Pygo2) have been identified in mammals. Different from the ubiquitous expression profile of Pygo2, Pygo1 is enriched in cardiac tissue. However, the role of Pygo1 in mammalian cardiac disease is yet to be elucidated. In this study, we found that Pygo1 was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of Pygo1 in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical ß-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in Pygo1-overexpressing transgenic (Pygo1-TG) cardiac tissue, and the downstream genes of Wnt signaling, that is, Axin2, Ephb3, and c-Myc, were upregulated. A tail vein injection of ß-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in Pygo1-TG mice. Furthermore, in vivo downregulated pygo1 during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that Pygo1 regulates pathological cardiac hypertrophy in a canonical Wnt/ß-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway.NEW & NOTEWORTHY In this study, we found that Pygo1 is associated with human pathological hypertrophy. Cardiac-specific overexpression of Pygo1 in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of Pygo1 was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that Pygo1 regulates pathological cardiac hypertrophy in a canonical Wnt/ß-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Via de Sinalização Wnt , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/prevenção & controle , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/patologia , Isoproterenol , Masculino , Camundongos Transgênicos , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Receptor EphB3/genética , Receptor EphB3/metabolismo , Tiazolidinas/farmacologia , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores
20.
Biomed Pharmacother ; 135: 111184, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33418305

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Many studies have shown the beneficial effects of aconite water-soluble alkaloid extract (AWA) in experimental models of heart disease, which have been ascribed to the presence of aconine, hypaconine, talatisamine, fuziline, neoline, and songorine. This study evaluated the effects of a chemically characterized AWA by chemical content, evaluated its effects in suprarenal abdominal aortic coarctation surgery (AAC)-induced chronic heart failure (CHF) in rats, and revealed the underlying mechanisms of action by proteomics. METHODS: Rats were distributed into different groups: sham, model, and AWA-treated groups (10, 20, and 40 mg/kg/day). Sham rats received surgery without AAC, whereas model rats an AWA-treated groups underwent AAC surgery. after 8 weeks, the treatment group was fed AWA for 4 weeks, and body weight was assessed weekly. At the end of the treatment, heart function was tested by echocardiography. AAC-induced chronic heart failure, including myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, was evaluated in heart tissue and plasma by RT-qPCR, ELISA, hematoxylin and eosin (H&E) staining, Masson's trichrome staining, TUNEL staining, and immunofluorescence staining of α-SMA, Col Ⅰ, and Col Ⅲ. Then, a proteomics approach was used to explore the underlying mechanisms of action of AWA in chronic heart failure. RESULTS: AWA administration reduced body weight gain, myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, and rats showed improvement in cardiac function compared to model group. The extract significantly ameliorated the AAC-induced altered expression of heart failure markers such as ANP, NT-proBNP, and ß-MHC, as well as fibrosis, hypertrophy markers MMP-2 and MMP-9, and other heart failure-related factors including plasma levels of TNF-α and IL-6. Furthermore, the extract reduced the protein expression of α-SMA, Col Ⅰ, and Col Ⅲ in the left ventricular (LV), thus inhibiting the LV remodeling associated with CHF. In addition, proteomics characterization of differentially expressed proteins showed that AWA administration inhibited left ventricular remodeling in CHF rats via a calcium signaling pathway, and reversed the expression of RyR2 and SERCA2a. CONCLUSIONS: AWA extract exerts beneficial effects in an AAC-induced CHF model in rats, which was associated with an improvement in LV function, hypertrophy, fibrosis, and apoptotic status. These effects may be related to the regulation of calcium signaling by the altered expression of RyR2 and SERCA2a.


Assuntos
Aconitum , Sinalização do Cálcio/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Aconitum/química , Animais , Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/isolamento & purificação , Doença Crônica , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Extratos Vegetais/isolamento & purificação , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Solubilidade , Solventes/química , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA