Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 45(4): 1464-1483, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35501465

RESUMO

Pulmonary irritants, such as cigarette smoke (CS) and sodium hypochlorite (NaClO), are associated to pulmonary diseases in cleaning workers. We examined whether their association affects lung mechanics and inflammation in Wistar rats. Exposure to these irritants alone induced alterations in the lung mechanics, inflammation, and remodeling. The CS increased airway cell infiltration, acid mucus production, MMP-12 expression, and alveolar enlargement. NaClO increased the number of eosinophils and macrophages in the bronchoalveolar lavage fluid, with cells expressing IL-13, MMP-12, MMP-9, TIMP-1, and iNOS in addition to increased IL-1ß and TNF-α levels. Co-exposure to both irritants increased epithelial and smooth muscle cell area, acid mucus production, and IL-13 expression in the airways, while it reduced the lung inflammation. In conclusion, the co-exposure of CS with NaClO reduced the pulmonary inflammation, but increased the acidity of mucus, which may protect lungs from more injury. A cross-resistance in people exposed to multiple lung irritants should also be considered.


Assuntos
Fumar Cigarros , Lesão Pulmonar , Pneumonia , Animais , Líquido da Lavagem Broncoalveolar , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-13/metabolismo , Irritantes/metabolismo , Irritantes/farmacologia , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Pneumonia/metabolismo , Ratos , Ratos Wistar , Hipoclorito de Sódio/metabolismo , Hipoclorito de Sódio/farmacologia , Nicotiana
2.
Food Chem ; 194: 529-37, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26471589

RESUMO

Slightly acidic electrolysed water (SlAEW) and acidic electrolysed water (AEW) have been demonstrated to effectively inactivate food-borne pathogens. However, the underlying mechanism of inactivation remains unknown. Therefore, in this study, a differential proteomic platform was used to investigate the bactericidal mechanism of SlAEW, AEW, and sodium hypochlorite (NaOCl) solutions against Vibrio parahaemolyticus. The upregulated proteins after SlAEW, AEW, and NaOCl treatments were identified as outer membrane proteins K and U. The downregulated proteins after the SlAEW, AEW, and NaOCl treatments were identified as adenylate kinase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and enolase, all of which are responsible for energy metabolism. Protein synthesis-associated proteins were downregulated and identified as elongation factor Tu and GAPDH. The inhibitory effects of SlAEW and AEW solutions against V. parahaemolyticus may be attributed to the changes in cell membrane permeability, protein synthesis activity, and adenosine triphosphate (ATP) biosynthesis pathways such as glycolysis and ATP replenishment.


Assuntos
Proteômica/métodos , Hipoclorito de Sódio/metabolismo , Vibrio parahaemolyticus/química , Água/metabolismo , Eletrólise
3.
Antioxid Redox Signal ; 18(11): 1273-95, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22938038

RESUMO

AIMS: Protein S-bacillithiolations are mixed disulfides between protein thiols and the bacillithiol (BSH) redox buffer that occur in response to NaOCl in Bacillus subtilis. We used BSH-specific immunoblots, shotgun liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis and redox proteomics to characterize the S-bacillithiolomes of B. subtilis, B. megaterium, B. pumilus, B. amyloliquefaciens, and Staphylococcus carnosus and also measured the BSH/oxidized bacillithiol disulfide (BSSB) redox ratio after NaOCl stress. RESULTS: In total, 54 proteins with characteristic S-bacillithiolation (SSB) sites were identified, including 29 unique proteins and eight proteins conserved in two or more of these bacteria. The methionine synthase MetE is the most abundant S-bacillithiolated protein in Bacillus species after NaOCl exposure. Further, S-bacillithiolated proteins include the translation elongation factor EF-Tu and aminoacyl-tRNA synthetases (ThrS), the DnaK and GrpE chaperones, the two-Cys peroxiredoxin YkuU, the ferredoxin-NADP(+) oxidoreductase YumC, the inorganic pyrophosphatase PpaC, the inosine-5'-monophosphate dehydrogenase GuaB, proteins involved in thiamine biosynthesis (ThiG and ThiM), queuosine biosynthesis (QueF), biosynthesis of aromatic amino acids (AroA and AroE), serine (SerA), branched-chain amino acids (YwaA), and homocysteine (LuxS and MetI). The thioredoxin-like proteins, YphP and YtxJ, are S-bacillithiolated at their active sites, suggesting a function in the de-bacillithiolation process. S-bacillithiolation is accompanied by a two-fold increase in the BSSB level and a decrease in the BSH/BSSB redox ratio in B. subtilis. INNOVATION: Many essential and conserved proteins, including the dominant MetE, were identified in the S-bacillithiolome of different Bacillus species and S. carnosus using shotgun-LC-MS/MS analyses. CONCLUSION: S-bacillithiolation is a widespread redox control mechanism among Firmicutes bacteria that protects conserved metabolic enzymes and essential proteins against overoxidation.


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Ácido Hipocloroso/metabolismo , Estresse Fisiológico , Bacillus/efeitos dos fármacos , Vias Biossintéticas , Cisteína/metabolismo , Glucosamina/metabolismo , Metabolômica , Metiltransferases/metabolismo , Oxirredução , Estresse Oxidativo , Proteoma/metabolismo , Proteômica , Hipoclorito de Sódio/metabolismo , Hipoclorito de Sódio/farmacologia
4.
Toxicol Appl Pharmacol ; 264(1): 131-42, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22884993

RESUMO

Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H(2)O(2) system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes.


Assuntos
Ácido Hipocloroso/metabolismo , Nanotubos de Carbono/química , Ativação de Neutrófilo/efeitos dos fármacos , Peroxidase/metabolismo , Polietilenoglicóis/química , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Inflamação/etiologia , Inflamação/patologia , Injeções Intraperitoneais , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Oxidantes/metabolismo , Cavidade Peritoneal , Hipoclorito de Sódio/metabolismo
5.
J Bacteriol ; 194(20): 5495-503, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22797754

RESUMO

The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H(2)O(2), while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H(2)O(2) via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxidos/metabolismo , Fatores de Transcrição/metabolismo , Bactérias/efeitos dos fármacos , Cisteína/metabolismo , Histidina/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Hipoclorito de Sódio/metabolismo , Estresse Fisiológico
6.
Innate Immun ; 18(4): 661-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22278934

RESUMO

Reactive oxygen species (ROS) are part of the weapons used by the immune system to kill and degrade infecting microorganisms. Bacteria can produce macromolecules, such as polysaccharides, that are able to scavenge ROS. Species belonging to the Burkholderia cepacia complex are involved in serious lung infection in cystic fibrosis patients and produce a characteristic polysaccharide, cepacian. The interaction between ROS and bacterial polysaccharides was first investigated by killing experiments, where bacteria cells were incubated with sodium hypochlorite (NaClO) with and without prior incubation with cepacian. The results showed that the polysaccharide had a protective effect towards bacterial cells. Cepacian was then treated with different concentrations of NaClO and the course of reactions was followed by means of capillary viscometry. The degradation products were characterised by size-exclusion chromatography, NMR and mass spectrometry. The results showed that hypochlorite depolymerised cepacian, removed side chains and O-acetyl groups, but did not cleave the glycosidic bond between glucuronic acid and rhamnose. The structure of some oligomers produced by NaClO oxidation is reported.


Assuntos
Infecções por Burkholderia/imunologia , Burkholderia cepacia/imunologia , Fibrose Cística/imunologia , Polissacarídeos Bacterianos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bacteriólise/efeitos dos fármacos , Infecções por Burkholderia/complicações , Infecções por Burkholderia/microbiologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Evasão da Resposta Imune , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Viabilidade Microbiana/efeitos dos fármacos , Polissacarídeos Bacterianos/química , Espécies Reativas de Oxigênio/química , Hipoclorito de Sódio/química , Hipoclorito de Sódio/metabolismo
8.
J Gastroenterol ; 32(4): 435-41, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9250888

RESUMO

The effects of cytotoxic monochloramine on the development of gastric cancers induced by N-methyl-N'-nitro-N-nitrosoguanidine were investigated in Wistar rats. After oral administration of drinking water containing the carcinogen and regular chow pellets for 25 weeks, rats received regular chow pellets or chow pellets containing 20% ammonium acetate, and normal tap water or water containing 30 mM sodium hypochlorite, with or without s.c. injection of taurine, until the end of the experiment in week 52. Treatment with both ammonium acetate and sodium hypochlorite significantly increased the incidence of gastric cancers in week 52, while the concomitant use of taurine with ammonium acetate and sodium hypochlorite significantly attenuated the enhanced gastric carcinogenesis. Spectrophotometric examinations revealed that taurine scavenged monochloramine. These findings suggest that Helicobacter pylori-associated gastric carcinogenesis may be mediated by monochloramine.


Assuntos
Cloraminas/metabolismo , Metilnitronitrosoguanidina , Neoplasias Gástricas/etiologia , Animais , Peso Corporal/efeitos dos fármacos , Cocarcinogênese , Mucosa Gástrica/química , Infecções por Helicobacter , Helicobacter pylori , Masculino , Ratos , Ratos Wistar , Acetato de Sódio/metabolismo , Acetato de Sódio/farmacologia , Hipoclorito de Sódio/metabolismo , Hipoclorito de Sódio/farmacologia , Taurina/farmacologia
9.
Biochim Biophys Acta ; 1097(2): 145-51, 1991 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-1655046

RESUMO

Hypochlorous acid HOCl/OCl- and other oxidants derived from stimulated polymorphonuclear leukocytes are involved in tissue damage during a number of pathological processes. In order to obtain more detailed information on possible reactions of HOCl/OCl- the effects of both NaOCl and PMN-derived hypochlorous acid on functional groups of amino acid solutions and human plasma are studied. In valine and lysine solutions NaOCl diminishes the number of amino groups in a molar ratio of 1:1 between NaOCl and amino groups. In cysteine and methionine samples the decrease of amino groups starts only after all sulfhydryl or thioether groups are oxidized by NaOCl. If freshly prepared human plasma is treated with increasing amounts of NaOCl all plasma SH groups are oxidized first, then probably the thioether groups and only after this the amino groups are affected. Furthermore, it was found, that the reactivity of luminol against NaOCl is similar to that of amino groups. Increasing amounts of SH groups of components of human plasma are oxidized by incubation with PMA-stimulated polymorphonuclear leukocytes dependent on the incubation time. Plasma amino groups are not affected under the same experimental conditions. The addition of plasma to FMLP-stimulated PMN in the presence of luminol decreases that part of chemiluminescence caused by extracellularly generated hypochlorous acid. Plasma samples pretreated with NaOCl cause a lower inhibition of light generation in FMLP-stimulated PMN only when more than 4.10(-8) mol NaOCl per mg protein are used to pretreat plasma. It is assumed that in the development of tissue injuries caused by infiltrated PMN the following sequence of damage occurs in accessible tissue regions. First, the sulfhydryl groups are oxidized, then the thioether groups, and only after this amino and other target groups are affected.


Assuntos
Aminoácidos/metabolismo , Ácido Hipocloroso/metabolismo , Luminol/metabolismo , Neutrófilos/efeitos dos fármacos , Hipoclorito de Sódio/metabolismo , Aminoácidos/sangue , Humanos , Ácido Hipocloroso/sangue , Ácido Hipocloroso/farmacologia , Cinética , Medições Luminescentes , Luminol/química , Neutrófilos/metabolismo , Oxirredução , Plasma/metabolismo , Hipoclorito de Sódio/sangue , Hipoclorito de Sódio/farmacologia , Enxofre/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA