Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Virol ; 96(11): e0044222, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35546119

RESUMO

Interferons (IFNs) are cytokines that induce a global change in the cell to establish antiviral immunity. We previously demonstrated that human adenovirus (HAdV) exploits IFN-induced viral repression to persist in infected cells. Although this in vitro persistence model has been described, the mechanism behind how persistent HAdV infection is established is not well understood. In this study, we demonstrate that IFN signaling is essential for viral repression and promoting persistent infection. Cyclin-dependent kinase 4 (CDK4), an antagonist of retinoblastoma (Rb) family proteins, was shown to disrupt the viral repression induced by IFNs. Consistent with this result, knockout of the Rb family proteins pRb, p107, and/or p130 drastically reduced the effect of IFNs on viral replication. The pRb protein specifically contributed the greatest effect to IFN inhibition of viral replication. Interestingly, IFNs did not impact pRb through direct changes in protein or phosphorylation levels. Cells treated with IFNs continued to cycle normally, consistent with observations that persistently infected cells remain for long periods of time in the host and in our in vitro persistent infection model. Finally, we observed that histone deacetylase (HDAC) inhibitors activated productive viral replication in persistently infected cells in the presence of IFN. Thus, HDACs, specifically class I HDACs, which are commonly associated with Rb family proteins, play a major role in the maintenance of persistent HAdV infection in vitro. This study uncovers the critical role of pRb and class I HDACs in the IFN-induced formation of a repressor complex that promotes persistent HAdV infections. IMPORTANCE Adenoviruses are ubiquitous viruses infecting more than 90% of the human population. HAdVs cause persistent infections that may lead to serious complications in immunocompromised patients. Therefore, exploring how HAdVs establish persistent infections is critical for understanding viral reactivation in immunosuppressed individuals. The mechanism underlying HAdV persistence has not been fully explored. Here, we provide insight into the contributions of the host cell to IFN-mediated persistent HAdV infection. We found that HAdV-C5 productive infection is inhibited by an Rb-E2F-HDAC repressor complex. Treatment with HDAC inhibitors converted a persistent infection to a lytic infection. Our results suggest that this process involves the noncanonical regulation of Rb-E2F signaling. This study provides insight into a highly prevalent human pathogen, bringing a new level of complexity and understanding to the replicative cycle.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Interferons , Infecção Persistente , Infecções por Adenovirus Humanos/imunologia , Adenovírus Humanos/fisiologia , Fatores de Transcrição E2F/imunologia , Histona Desacetilases/imunologia , Humanos , Interferons/imunologia , Infecção Persistente/imunologia , Infecção Persistente/virologia , Proteína do Retinoblastoma/imunologia
2.
Cell Rep ; 38(4): 110302, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35081346

RESUMO

It is well known that interferon (IFN)-α/-ß activates the JAK/STAT signaling pathway and suppresses viral replication through the induction of IFN stimulated genes (ISGs). Here, we report that knockout of HDAC3 from macrophages results in the decreased expression of STAT1 and STAT2, leading to defective antiviral immunity in cells and mice. Further studies show that HDAC3 interacts with a conserved transcription factor Forkhead Box K1 (FOXK1), co-localizes with FOXK1 at the promoter of STAT1 and STAT2, and is required for protecting FOXK1 from lysosomal system-mediated degradation. FOXK1-deficient macrophages also show low STAT1 and STAT2 expression with defective responses to viruses. Thus, our studies uncover the biological importance of HDAC3 in regulating the antiviral immunity of macrophages through interacting with FOXK1 to regulate the expression of STAT1 and STAT2.


Assuntos
Regulação da Expressão Gênica/imunologia , Histona Desacetilases/imunologia , Imunidade Inata/imunologia , Macrófagos/imunologia , Viroses/imunologia , Animais , Fatores de Transcrição Forkhead/imunologia , Camundongos , Fator de Transcrição STAT1/biossíntese , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT2/biossíntese , Fator de Transcrição STAT2/imunologia , Transcrição Gênica
3.
Front Immunol ; 12: 703632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290714

RESUMO

The Mads/Mef2 (Mef2a/b/c/d) family of transcription factors (TFs) regulates differentiation of muscle cells, neurons and hematopoietic cells. By functioning in physiological feedback loops, Mef2 TFs promote the transcription of their repressor, Hdac9, thereby providing temporal control of Mef2-driven differentiation. Disruption of this feedback is associated with the development of various pathologic states, including cancer. Beside their direct involvement in oncogenesis, Mef2 TFs indirectly control tumor progression by regulating antitumor immunity. We recently reported that in CD4+CD25+Foxp3+ T-regulatory (Treg) cells, Mef2d is required for the acquisition of an effector Treg (eTreg) phenotype and for the activation of an epigenetic program that suppresses the anti-tumor immune responses of conventional T and B cells. We now report that as with Mef2d, the deletion of Mef2c in Tregs switches off the expression of Il10 and Icos and leads to enhanced antitumor immunity in syngeneic models of lung cancer. Mechanistically, Mef2c does not directly bind the regulatory elements of Icos and Il10, but its loss-of-function in Tregs induces the expression of the transcriptional repressor, Hdac9. As a consequence, Mef2d, the more abundant member of the Mef2 family, is converted by Hdac9 into a transcriptional repressor on these loci. This leads to the impairment of Treg suppressive properties in vivo and to enhanced anti-cancer immunity. These data further highlight the central role played by the Mef2/Hdac9 axis in the regulation of CD4+Foxp3+ Treg function and adds a new level of complexity to the analysis and study of Treg biology.


Assuntos
Histona Desacetilases/imunologia , Tolerância Imunológica , Neoplasias Pulmonares/imunologia , Neoplasias Experimentais/imunologia , Proteínas Repressoras/imunologia , Linfócitos T Reguladores/imunologia , Animais , Histona Desacetilases/genética , Imunidade Celular , Neoplasias Pulmonares/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias Experimentais/genética , Proteínas Repressoras/genética
4.
Glia ; 69(11): 2682-2698, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34310727

RESUMO

Many epigenetic modifications occur in glioma, in particular the histone-deacetylase class proteins play a pivotal role in glioma development, driving the proliferation rate and the invasiveness of tumor cells, and modulating the tumor microenvironment. In this study, we evaluated the role of the histone deacetylase HDAC8 in the regulation of the immune response in glioma and tumor growth. We found that inhibition of HDAC8 by the specific inhibitor PCI-34051 reduces tumor volume in glioma mouse models. We reported that HDAC8 modulates the viability and the migration of human and murine glioma cells. Interestingly, HDAC8 inhibition increases the acetylation of alpha-tubulin, suggesting this epigenetic modification controls glioma migration. Furthermore, we identify HDAC8 as a key molecule that supports a poorly immunogenic tumor microenvironment, modulating microglial phenotype and regulating the gene transcription of NKG2D ligands that trigger the Natural Killer cell-mediated cytotoxicity of tumor cells. Altogether, these results identify HDAC8 as a key actor in glioma growth and tumor microenvironment, and pave the way to a better knowledge of the molecular mechanisms of immune escape in glioma.


Assuntos
Glioma , Histona Desacetilases , Intervenção Coronária Percutânea , Animais , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/imunologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Imunidade , Camundongos , Microambiente Tumoral
5.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619107

RESUMO

Reactivation of human cytomegalovirus (HCMV) from latency is a major health consideration for recipients of stem-cell and solid organ transplantations. With over 200,000 transplants taking place globally per annum, virus reactivation can occur in more than 50% of cases leading to loss of grafts as well as serious morbidity and even mortality. Here, we present the most extensive screening to date of epigenetic inhibitors on HCMV latently infected cells and find that histone deacetylase inhibitors (HDACis) and bromodomain inhibitors are broadly effective at inducing virus immediate early gene expression. However, while HDACis, such as myeloid-selective CHR-4487, lead to production of infectious virions, inhibitors of bromodomain (BRD) and extraterminal proteins (I-BETs), including GSK726, restrict full reactivation. Mechanistically, we show that BET proteins (BRDs) are pivotally connected to regulation of HCMV latency and reactivation. Through BRD4 interaction, the transcriptional activator complex P-TEFb (CDK9/CycT1) is sequestered by repressive complexes during HCMV latency. Consequently, I-BETs allow release of P-TEFb and subsequent recruitment to promoters via the superelongation complex (SEC), inducing transcription of HCMV lytic genes encoding immunogenic antigens from otherwise latently infected cells. Surprisingly, this occurs without inducing many viral immunoevasins and, importantly, while also restricting viral DNA replication and full HCMV reactivation. Therefore, this pattern of HCMV transcriptional dysregulation allows effective cytotoxic immune targeting and killing of latently infected cells, thus reducing the latent virus genome load. This approach could be safely used to pre-emptively purge the virus latent reservoir prior to transplantation, thereby reducing HCMV reactivation-related morbidity and mortality.


Assuntos
Proteínas de Ciclo Celular/genética , Citomegalovirus/imunologia , DNA Viral/genética , Epigênese Genética , Histona Desacetilases/genética , Fator B de Elongação Transcricional Positiva/genética , Fatores de Transcrição/genética , Azepinas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzodiazepinas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/imunologia , Ciclina T/genética , Ciclina T/imunologia , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/imunologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Replicação do DNA/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , DNA Viral/imunologia , Genes Precoces , Genes Reporter , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/imunologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Fator B de Elongação Transcricional Positiva/imunologia , Cultura Primária de Células , Regiões Promotoras Genéticas , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Células THP-1 , Talidomida/análogos & derivados , Talidomida/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/imunologia , Transcrição Gênica , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
6.
Rheumatology (Oxford) ; 60(7): 3420-3431, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33230538

RESUMO

OBJECTIVE: RA encompasses a complex, heterogeneous and dynamic group of diseases arising from molecular and cellular perturbations of synovial tissues. The aim of this study was to decipher this complexity using an integrative systems approach and provide novel insights for designing stratified treatments. METHODS: An RNA sequencing dataset of synovial tissues from 152 RA patients and 28 normal controls was imported and subjected to filtration of differentially expressed genes, functional enrichment and network analysis, non-negative matrix factorization, and key driver analysis. A naïve Bayes classifier was applied to the independent datasets to investigate the factors associated with treatment outcome. RESULTS: A matrix of 1241 upregulated differentially expressed genes from RA samples was classified into three subtypes (C1-C3) with distinct molecular and cellular signatures. C3 with prominent immune cells and proinflammatory signatures had a stronger association with the presence of ACPA and showed a better therapeutic response than C1 and C2, which were enriched with neutrophil and fibroblast signatures, respectively. C2 was more occupied by synovial fibroblasts of destructive phenotype and carried highly expressed key effector molecules of invasion and osteoclastogenesis. CXCR2, JAK3, FYN and LYN were identified as key driver genes in C1 and C3. HDAC, JUN, NFKB1, TNF and TP53 were key regulators modulating fibroblast aggressiveness in C2. CONCLUSIONS: Deep phenotyping of synovial heterogeneity captured comprehensive and discrete pathophysiological attributes of RA regarding clinical features and treatment response. This result could serve as a template for future studies to design stratified approaches for RA patients.


Assuntos
Artrite Reumatoide/genética , Fibroblastos/metabolismo , Neutrófilos/metabolismo , Membrana Sinovial/metabolismo , Anticorpos Antiproteína Citrulinada/imunologia , Artrite Reumatoide/imunologia , Teorema de Bayes , Bases de Dados Genéticas , Fibroblastos/imunologia , Perfilação da Expressão Gênica , Histona Desacetilases/genética , Histona Desacetilases/imunologia , Humanos , Janus Quinase 3/genética , Janus Quinase 3/imunologia , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/imunologia , Neutrófilos/imunologia , Osteogênese/genética , Osteogênese/imunologia , Fenótipo , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/imunologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/imunologia , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/imunologia , Membrana Sinovial/imunologia , Análise de Sistemas , Transcriptoma , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia , Quinases da Família src/genética , Quinases da Família src/imunologia
7.
Cell Death Dis ; 11(9): 753, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934224

RESUMO

HDAC inhibitors are efficacious for treating lymphoma, but display limited efficacy in treating solid tumors. Here, we investigated the relationship between HDAC inhibitor resistance and the tumor immune environment in colorectal cancer. Our data indicated that among the investigated immune factors, B7x expression was enhanced in HDAC inhibitor-resistant colorectal cancer models in vitro and in vivo. In addition, gene manipulation results demonstrated that xenograft mice with tumors derived from a B7x-overexpressing CT-26 colorectal cancer cell line were resistant to HDAC inhibitor treatment. Notably, we found that there is a negative relationship between HDAC and B7x expression in both colorectal cancer cell lines and patients' tumors. Furthermore, our data indicated that elevated expression of B7x was related to a poor prognosis in colorectal tumor patients. Interestingly, treatment with a specific inhibitor or siRNA of HDAC3, but not HDAC2, 6, and 8, resulted in obvious upregulation of B7x expression in colorectal cancer cells. In addition, our data showed that a cell line with high HDAC3 expression and low B7x expression had decreased enrichment of acetylated histone H3 in the promoter region of the gene encoding B7x. This pattern was reversed by addition of HDAC3 inhibitors. Mechanistically, we found that HDAC3 regulated B7x transcription by promoting the binding of the transcription activator C/EBP-α with the B7x promoter region. Importantly, our data indicated that an antibody neutralizing B7x augmented the response to HDAC inhibitor in the colorectal cancer xenograft model and the lung metastasis model by increasing the ratios of both CD4-positive and CD8-positive T cells. In summary, we demonstrated a role of B7x in HDAC inhibitor resistance and identified the mechanism that dysregulates B7x in colorectal cancer. Our work provides a novel strategy to overcome HDAC inhibitor resistance.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/imunologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Reprogramação Celular/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Células HCT116 , Histona Desacetilases/genética , Humanos , Camundongos , Transfecção , Microambiente Tumoral/imunologia
8.
J Immunol ; 202(8): 2287-2295, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30804042

RESUMO

NKAP is a multifunctional nuclear protein that associates with the histone deacetylase HDAC3. Although both NKAP and HDAC3 are critical for hematopoietic stem cell (HSC) maintenance and survival, it was not known whether these two proteins work together. To assess the importance of their association in vivo, serial truncation and alanine scanning was performed on NKAP to identify the minimal binding site for HDAC3. Mutation of either Y352 or F347 to alanine abrogated the association of NKAP with HDAC3, but did not alter NKAP localization or expression. Using a linked conditional deletion/re-expression system in vivo, we demonstrated that re-expression of the Y352A NKAP mutant failed to restore HSC maintenance and survival in mice when endogenous NKAP expression was eliminated using Mx1-cre and poly-IC, whereas re-expression of wild type NKAP maintained the HSC pool. However, Y352A NKAP did restore proliferation in murine embryonic fibroblasts when endogenous NKAP expression was eliminated using ER-cre and tamoxifen. Therefore, Y352 in NKAP is critical for association with HDAC3 and for HSC maintenance and survival but is not important for proliferation of murine embryonic fibroblasts, demonstrating that NKAP functions in different complexes in different cell types.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Histona Desacetilases/imunologia , Proteínas Repressoras/imunologia , Substituição de Aminoácidos , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/imunologia , Fibroblastos/citologia , Fibroblastos/imunologia , Células HEK293 , Células-Tronco Hematopoéticas/citologia , Histona Desacetilases/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteínas Repressoras/genética
9.
Sci Rep ; 8(1): 14430, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258117

RESUMO

The gut microbiota produces metabolites such as short-chain fatty acids (SCFAs) that regulate the energy homeostasis and impact on immune cell function of the host. Recently, innovative approaches based on the oral administration of SCFAs have been discussed for therapeutic modification of inflammatory immune responses in autoimmune diseases. So far, most studies have investigated the SCFA-mediated effects on CD4+ T cells and antigen presenting cells. Here we show that butyrate and, to a lesser degree, propionate directly modulate the gene expression of CD8+ cytotoxic T lymphocytes (CTLs) and Tc17 cells. Increased IFN-γ and granzyme B expression by CTLs as well as the molecular switch of Tc17 cells towards the CTL phenotype was mediated by butyrate independently of its interaction with specific SCFA-receptors GPR41 and GPR43. Our results indicate that butyrate strongly inhibited histone-deacetylases (HDACs) in CD8+ T cells thereby affecting the gene expression of effector molecules. Accordingly, the pan-HDAC inhibitors trichostatin A (TSA) and sodium valproate exerted similar influence on CD8+ T cells. Furthermore, higher acetate concentrations were also able to increase IFN-γ production in CD8+ T lymphocytes by modulating cellular metabolism and mTOR activity. These findings might have significant implications in adoptive immunotherapy of cancers and in anti-viral immunity.


Assuntos
Butiratos/imunologia , Linfócitos T CD8-Positivos/imunologia , Microbioma Gastrointestinal , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Histona Desacetilases/imunologia , Interferon gama/genética , Interferon gama/imunologia , Camundongos Endogâmicos C57BL , Propionatos/imunologia , Regulação para Cima
10.
Nat Commun ; 9(1): 2741, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013077

RESUMO

Enhancement of hematopoietic stem cell (HSC) homing and engraftment is clinically critical, especially for cord blood (CB) hematopoietic cell transplantation. Here we report that specific HDAC5 inhibition highly upregulates CXCR4 surface expression in human CB HSCs and progenitor cells (HPCs). This results in enhanced SDF-1/CXCR4-mediated chemotaxis and increased homing to the bone marrow environment, with elevated SCID-repopulating cell (SRC) frequency and enhanced long-term and secondary engraftment in NSG mice. HDAC5 inhibition increases acetylated p65 levels in the nucleus, which is important for CXCR4 transcription. Inhibition of nuclear factor-κB (NF-κB) signaling suppresses HDAC5-mediated CXCR4 upregulation, enhanced HSC homing, and engraftment. Furthermore, activation of the NF-κB signaling pathway via TNFα also results in significantly increased CXCR4 surface expression, enhanced HSC homing, and engraftment. These results demonstrate a previously unknown negative epigenetic regulation of HSC homing and engraftment by HDAC5, and allow for a new and simple translational strategy to enhance HSC transplantation.


Assuntos
Quimiocina CXCL12/genética , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Epigênese Genética , Sangue Fetal/imunologia , Sobrevivência de Enxerto , Histona Desacetilases/genética , Animais , Quimiocina CXCL12/imunologia , Quimiotaxia , Sangue Fetal/citologia , Sangue Fetal/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Histona Desacetilases/imunologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Transplante Heterólogo , Fator de Necrose Tumoral alfa/farmacologia
11.
Int Forum Allergy Rhinol ; 8(11): 1274-1283, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30007011

RESUMO

BACKGROUND: The interleukin (IL)-10 expression in B cells plays an important role in immune tolerance. The regulation of IL-10 expression in B cells is not fully understood yet. Tumor necrosis factor (TNF) is increased in allergic rhinitis (AR) patients. This study tests a hypothesis that TNF enhances histone deacetylase (HDAC)11 expression to inhibit the expression of IL-10 in B cells of AR patients. METHODS: Peripheral B cells were collected from healthy persons and patients with AR. The B cells were analyzed by immune assay and molecular biological approaches for the expression of IL-10. RESULTS: The expression of HDAC11 was higher in B cells of patients with AR than that in healthy persons. The expression of IL-10 in B cells was lower in AR patients than that in healthy subjects. The levels of HDAC11 in B cells were negatively correlated with the levels of IL-10. Exposure of B cells to TNF in the culture inhibited the expression of IL-10, in which HDAC11 played a critical role in the interference with the Il10 gene transcription. Inhibition of HDAC11 restored the IL-10 expression in B cells from AR patients and attenuated the experimental AR. CONCLUSION: TNF can suppress the expression of IL-10 in B cells via enhancing the expression of HDAC11. Inhibition of HDAC11 restores the IL-10 expression in B cells of AR subjects. HDAC11 may be a novel target for the treatment of AR.


Assuntos
Linfócitos B/imunologia , Citocinas/sangue , Histona Desacetilases/imunologia , Rinite Alérgica/imunologia , Adulto , Animais , Células Cultivadas , Feminino , Humanos , Imunoglobulina E/sangue , Masculino , Camundongos Endogâmicos BALB C , Baço/imunologia , Adulto Jovem
12.
J Immunol Res ; 2018: 2942679, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596107

RESUMO

Overexpression of metastasis-associated protein 1 (MTA1) has been observed in many human malignancies and is significantly related to tumor invasion and metastasis, therapeutic resistance to radiation and chemotherapy, making MTA1 an ideal candidate tumor antigen. We identified several human leukocyte antigen- (HLA-) A2-restricted epitopes in MTA1 and evaluated their binding ability to HLA-A∗0201 molecules. Subsequently, a recombinant fragment encompassing the dominant epitopes, MTA1(1-283), was expressed, and the abilities of the selected epitopes of MTA1 and the MTA1(1-283) fragment to induce cytotoxic T lymphocytes (CTLs) were examined. Our results indicated that the epitopes and MTA1(1-283) fragment elicited HLA-A2-restricted and antigen-specific CTL responses both in vitro and in vivo. The new epitopes identified here may help promote the development of new therapeutic vaccines for HLA-A2+ patients expressing MTA1.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Neoplasias Colorretais/imunologia , Epitopos de Linfócito T/imunologia , Histona Desacetilases/imunologia , Proteínas Repressoras/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Mapeamento de Epitopos , Antígenos H-2/genética , Antígeno HLA-A2/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Ligação Proteica , Especificidade do Receptor de Antígeno de Linfócitos T , Transativadores
13.
Biochim Biophys Acta Gene Regul Mech ; 1861(1): 54-59, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29222071

RESUMO

Histone deacetylases deacetylate histone and non-histone protein targets. Aberrant HDAC expression and function have been observed in several diseases, which make these enzymes attractive treatment targets. Here, we summarize recent literature that addresses the roles of HDAC11 on the regulation of different immune cells including neutrophils, myeloid derived suppressor cells and T-cells. HDAC11 was initially identified as a negative regulator of the well-known anti-inflammatory cytokine IL-10. Hence, antagonizing HDAC11 activity may have anti-tumor potential, whereas activating HDAC11 may be useful to treat chronic inflammation or autoimmunity. However, to anticipate biological side-effects of HDAC11 modulators, more molecular insights will be required.


Assuntos
Histona Desacetilases/genética , Inflamação/imunologia , Interleucina-10/genética , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Interleucina-10/imunologia , Células Supressoras Mieloides/imunologia , Neutrófilos/imunologia , Linfócitos T/imunologia
14.
Oncol Rep ; 38(2): 693-702, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28677817

RESUMO

Immunotherapy is expected to be promising as a next generation cancer therapy. Immunoreceptors are often activated constitutively in cancer cells, however, such levels of ligand expression are not effectively recognized by the native immune system due to tumor microenvironmental adaptation. Studies have demonstrated that natural-killer group 2, member D (NKG2D), a major activating immunoreceptor, responds to DNA damage. The upregulation of major histocompatibility complex class I-related chain A and B (MICA/B) (members of NKG2D ligands) expression after DNA damage is associated with NK cell-mediated killing of cancer cells. However, the regulation of DNA damage-induced MICA/B expression has not been fully elucidated in the context of the types of cancer cell lines. In the present study, we found that MICA/B expression varied between cancer cell lines after DNA damage. Screening in terms of chromatin remodeling identified that inhibitors related to chromatin relaxation via post-translational modification on histone H3K9, i.e. HDAC, Suv39 or G9a inhibition, restored DNA damage-dependent MICA/B expression in insensitive cells. In addition, we revealed that the restored MICA/B expression was dependent on ATR as well as E2F1, a transcription factor. We further revealed that low­dose treatment of an HDAC inhibitor was sufficient to restore MICA/B expression in insensitive cells. Finally, we demonstrated that HDAC inhibition restored DNA damage­dependent cytotoxic NK activity against insensitive cells. Thus, the present study revealed that DNA damage­dependent MICA/B expression in insensitive cancer cells can be restored by chromatin relaxation via the HDAC/Suv39/G9a pathway. Collectively, manipulation of chromatin status by therapeutic cancer drugs may potentiate the antitumor effect by enhancing immune activation following radiotherapy and DNA damage-associated chemotherapy.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Histona Desacetilases/genética , Neoplasias/imunologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Montagem e Desmontagem da Cromatina/genética , Citotoxicidade Imunológica/genética , Dano ao DNA/genética , Fator de Transcrição E2F1/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Histona Desacetilases/imunologia , Histona-Lisina N-Metiltransferase/genética , Humanos , Células Matadoras Naturais/imunologia , Metiltransferases/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Repressoras/genética , Microambiente Tumoral/imunologia
15.
J Med Food ; 20(8): 782-789, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28650731

RESUMO

Hyperglycemia leads to diabetes and its diabetic complications. In this study, we investigated the synergistic effects of luteolin and fisetin on proinflammatory cytokine secretion and its underlying epigenetic regulation in human monocytes exposed to hyperglycemic (HG) concentrations. Human monocytic cells (THP-1) were cultured under controlled (14.5 mM mannitol), normoglycemic (5.5 mM glucose), or HG (20 mM glucose) conditions in the absence or presence of the two phytochemicals for 48 h. Whereas HG conditions significantly induced histone acetylation, nuclear factor-kappa B (NF-κB) activation, interleukin 6, and tumor necrosis factor-α release from THP-1 cells; combination treatments with the two phytochemicals (500 nM fisetin, and l µM and 500 nM luteolin) suppressed NF-κB activity and inflammatory cytokine release. Fisetin, luteolin, and their combination treatments also significantly decreased the activity of histone acetyltransferase, a known NF-κB coactivator; inhibited reactive oxygen species production; and activated sirtuin (SIRT)1 and forkhead box O3a (FOXO3a) expressions (P < .05). Thus, combination treatments with the two phytochemicals inhibited HG condition-induced cytokine production in monocytes, through epigenetic changes involving NF-κB activation. We, therefore, suggest that combination treatments with luteolin and fisetin may be a potential candidate for the treatment and prevention of diabetes and its complications.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Glucose/efeitos adversos , Histona Acetiltransferases/imunologia , Histona Desacetilases/imunologia , Hiperglicemia/enzimologia , Luteolina/farmacologia , Monócitos/efeitos dos fármacos , Sinergismo Farmacológico , Flavonóis , Glucose/imunologia , Histona Acetiltransferases/genética , Histona Desacetilases/genética , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/genética , Interleucina-6/genética , Interleucina-6/imunologia , Monócitos/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Células THP-1
16.
J Leukoc Biol ; 102(2): 475-486, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28550123

RESUMO

Epigenetic changes in chromatin structure have been recently associated with the deregulated expression of critical genes in normal and malignant processes. HDAC11, the newest member of the HDAC family of enzymes, functions as a negative regulator of IL-10 expression in APCs, as previously described by our lab. However, at the present time, its role in other hematopoietic cells, specifically in neutrophils, has not been fully explored. In this report, for the first time, we present a novel physiologic role for HDAC11 as a multifaceted regulator of neutrophils. Thus far, we have been able to demonstrate a lineage-restricted overexpression of HDAC11 in neutrophils and committed neutrophil precursors (promyelocytes). Additionally, we show that HDAC11 appears to associate with the transcription machinery, possibly regulating the expression of inflammatory and migratory genes in neutrophils. Given the prevalence of neutrophils in the peripheral circulation and their central role in the first line of defense, our results highlight a unique and novel role for HDAC11. With the consideration of the emergence of new, selective HDAC11 inhibitors, we believe that our findings will have significant implications in a wide range of diseases spanning malignancies, autoimmunity, and inflammation.


Assuntos
Regulação da Expressão Gênica/imunologia , Hematopoese/imunologia , Histona Desacetilases/imunologia , Neutrófilos/enzimologia , Animais , Imunoprecipitação da Cromatina , Epigênese Genética , Citometria de Fluxo , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Reação em Cadeia da Polimerase
17.
Cancer Discov ; 7(8): 852-867, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28408401

RESUMO

Effective therapies for non-small cell lung cancer (NSCLC) remain challenging despite an increasingly comprehensive understanding of somatically altered oncogenic pathways. It is now clear that therapeutic agents with potential to impact the tumor immune microenvironment potentiate immune-orchestrated therapeutic benefit. Herein, we evaluated the immunoregulatory properties of histone deacetylase (HDAC) and bromodomain inhibitors, two classes of drugs that modulate the epigenome, with a focus on key cell subsets that are engaged in an immune response. By evaluating human peripheral blood and NSCLC tumors, we show that the selective HDAC6 inhibitor ricolinostat promotes phenotypic changes that support enhanced T-cell activation and improved function of antigen-presenting cells. The bromodomain inhibitor JQ1 attenuated CD4+FOXP3+ T regulatory cell suppressive function and synergized with ricolinostat to facilitate immune-mediated tumor growth arrest, leading to prolonged survival of mice with lung adenocarcinomas. Collectively, our findings highlight the immunomodulatory effects of two epigenetic modifiers that, together, promote T cell-mediated antitumor immunity and demonstrate their therapeutic potential for treatment of NSCLC.Significance: Selective inhibition of HDACs and bromodomain proteins modulates tumor-associated immune cells in a manner that favors improved T-cell function and reduced inhibitory cellular mechanisms. These effects facilitated robust antitumor responses in tumor-bearing mice, demonstrating the therapeutic potential of combining these epigenetic modulators for the treatment of NSCLC. Cancer Discov; 7(8); 852-67. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 783.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Pirimidinas/administração & dosagem , Idoso , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Histona Desacetilases/genética , Histona Desacetilases/imunologia , Humanos , Ácidos Hidroxâmicos/efeitos adversos , Imunoterapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Pirimidinas/efeitos adversos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Trends Immunol ; 38(3): 151-153, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28089218

RESUMO

Natural killer (NK) cells are alerted to infected and transformed cells by local upregulation of ligands for the NK-activating receptor NKG2D. In a recent report, Greene et al. unveil a new mechanism that induces the expression of the NKG2D ligand retinoic acid early-inducible (RAE-1) in response to murine cytomegalovirus (MCMV) infection through inhibition of casein kinase 2 (CK2), an activator of the repressor histone deacetylase HDAC3.


Assuntos
Infecções por Herpesviridae/imunologia , Histona Desacetilases/imunologia , Células Matadoras Naturais/imunologia , Muromegalovirus/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Caseína Quinase II/metabolismo , Citotoxicidade Imunológica , Epigênese Genética , Células HEK293 , Humanos , Imunidade Inata , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Transdução de Sinais , Fator de Transcrição Sp3/genética , Fator de Transcrição Sp3/metabolismo
19.
Methods Mol Biol ; 1510: 93-101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27761815
20.
Methods Mol Biol ; 1510: 257-276, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27761827

RESUMO

Transcriptional activation by STAT5 is repressed by deacetylase inhibitors. Investigating the role of deacetylases (HDACs) in STAT5-mediated transcription implies the analysis of molecular events taking place at the chromatin level. We describe here two alternative methods of chromatin immunoprecipitation that allow the characterization of chromatin modifications ensuing STAT5 activation and its inhibition by deacetylase inhibitors, in particular changes in histone acetylation, in histone occupancy, and in the association/dissociation of transcription factors and other chromatin-associated factors.


Assuntos
Linfócitos B/imunologia , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Ácidos Hidroxâmicos/farmacologia , Fator de Transcrição STAT5/genética , Acetilação , Animais , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatina/química , Cromatina/imunologia , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Histona Desacetilases/imunologia , Histonas/genética , Histonas/imunologia , Interleucina-3/farmacologia , Ativação Linfocitária , Camundongos , Fator de Transcrição STAT5/imunologia , Fatores de Transcrição , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA