Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Cancer ; 3(6): 753-767, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35449309

RESUMO

Small cell lung cancer (SCLC) is notorious for its early and frequent metastases, which contribute to it as a recalcitrant malignancy. To understand the molecular mechanisms underlying SCLC metastasis, we generated SCLC mouse models with orthotopically transplanted genome-edited lung organoids and performed multiomics analyses. We found that a deficiency of KMT2C, a histone H3 lysine 4 methyltransferase frequently mutated in extensive-stage SCLC, promoted multiple-organ metastases in mice. Metastatic and KMT2C-deficient SCLC displayed both histone and DNA hypomethylation. Mechanistically, KMT2C directly regulated the expression of DNMT3A, a de novo DNA methyltransferase, through histone methylation. Forced DNMT3A expression restrained metastasis of KMT2C-deficient SCLC through repressing metastasis-promoting MEIS/HOX genes. Further, S-(5'-adenosyl)-L-methionine, the common cofactor of histone and DNA methyltransferases, inhibited SCLC metastasis. Thus, our study revealed a concerted epigenetic reprogramming of KMT2C- and DNMT3A-mediated histone and DNA hypomethylation underlying SCLC metastasis, which suggested a potential epigenetic therapeutic vulnerability.


Assuntos
DNA Metiltransferase 3A , Histona-Lisina N-Metiltransferase , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Metiltransferase 3A/genética , Metilases de Modificação do DNA/genética , Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metiltransferases/genética , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/secundário
2.
Biosci Rep ; 41(11)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34724040

RESUMO

Lysine methyltransferase 2D (KMT2D), as one of the key histone methyltransferases responsible for histone 3 lysine 4 methylation (H3K4me), has been proved to be the main pathogenic gene of Kabuki syndrome disease. Kabuki patients with KMT2D mutation frequently present various dental abnormalities, including abnormal tooth number and crown morphology. However, the exact function of KMT2D in tooth development remains unclear. In this report, we systematically elucidate the expression pattern of KMT2D in early tooth development and outline the molecular mechanism of KMT2D in dental epithelial cell line. KMT2D and H3K4me mainly expressed in enamel organ and Kmt2d knockdown led to the reduction in cell proliferation activity and cell cycling activity in dental epithelial cell line (LS8). RNA-sequencing (RNA-seq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis screened out several important pathways affected by Kmt2d knockdown including Wnt signaling. Consistently, Top/Fop assay confirmed the reduction in Wnt signaling activity in Kmt2d knockdown cells. Nuclear translocation of ß-catenin was significantly reduced by Kmt2d knockdown, while lithium chloride (LiCl) partially reversed this phenomenon. Moreover, LiCl partially reversed the decrease in cell proliferation activity and G1 arrest, and the down-regulation of Wnt-related genes in Kmt2d knockdown cells. In summary, the present study uncovered a pivotal role of histone methyltransferase KMT2D in dental epithelium proliferation and cell cycle homeostasis partially through regulating Wnt/ß-catenin signaling. The findings are important for understanding the role of KMT2D and histone methylation in tooth development.


Assuntos
Células Epiteliais/metabolismo , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/deficiência , Proteína de Leucina Linfoide-Mieloide/genética , Dente/metabolismo , Via de Sinalização Wnt/genética , Animais , Proteína Quinase CDC2/metabolismo , Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/genética , Ciclina D1/metabolismo , Células Epiteliais/citologia , Histonas/metabolismo , Cloreto de Lítio/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Dente Molar/metabolismo , Dente/citologia , Via de Sinalização Wnt/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619101

RESUMO

Hotspot histone H3 mutations have emerged as drivers of oncogenesis in cancers of multiple lineages. Specifically, H3 lysine 36 to methionine (H3K36M) mutations are recurrently identified in chondroblastomas, undifferentiated sarcomas, and head and neck cancers. While the mutation reduces global levels of both H3K36 dimethylation (H3K36me2) and trimethylation (H3K36me3) by dominantly inhibiting their respective specific methyltransferases, the relative contribution of these methylation states to the chromatin and phenotypic changes associated with H3K36M remains unclear. Here, we specifically deplete H3K36me2 or H3K36me3 in mesenchymal cells, using CRISPR-Cas9 to separately knock out the corresponding methyltransferases NSD1/2 or SETD2. By profiling and comparing the epigenomic and transcriptomic landscapes of these cells with cells expressing the H3.3K36M oncohistone, we find that the loss of H3K36me2 could largely recapitulate H3.3K36M's effect on redistribution of H3K27 trimethylation (H3K27me3) and gene expression. Consistently, knockout of Nsd1/2, but not Setd2, phenocopies the differentiation blockade and hypersensitivity to the DNA-hypomethylating agent induced by H3K36M. Together, our results support a functional divergence between H3K36me2 and H3K36me3 and their nonredundant roles in H3K36M-driven oncogenesis.


Assuntos
Carcinogênese/genética , Epigênese Genética , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Antimetabólitos Antineoplásicos/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Citarabina/farmacologia , Decitabina/farmacologia , Edição de Genes , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Lisina/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Metilação/efeitos dos fármacos , Camundongos , Mutação , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transcriptoma/efeitos dos fármacos
4.
Nature ; 590(7846): 504-508, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536620

RESUMO

Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Nucleares/metabolismo , Animais , Biocatálise , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Feminino , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Metilação , Camundongos , Modelos Moleculares , Mutação , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biochem Biophys Res Commun ; 558: 202-208, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33036756

RESUMO

The process of autophagy is dysregulated in many cancers including clear cell renal cell carcinoma (ccRCC). Autophagy involves the coordination of numerous autophagy-related (ATG) genes, as well as processes involving the actin cytoskeleton. The histone methyltransferase SETD2, frequently inactivated in ccRCC, has recently been shown to also methylate cytoskeletal proteins, which in the case of actin lysine 68 trimethylation (ActK68me3) regulates actin polymerization dynamics. Here we show that cells lacking SETD2 exhibit autophagy defects, as well as decreased interaction of the actin nucleation promoting factor WHAMM with its target actin, which is required for initiation of autophagy. Interestingly, the WHAMM actin binding deficit could be rescued with pharmacologic induction of actin polymerization in SETD2-null cells using Jasplakinolide. These data indicate that the decreased interaction between WHAMM and its target actin in SETD2-null cells was secondary to altered actin dynamics rather than loss of the SETD2 ActK68me3 mark itself, and underscores the importance of the functional defect in actin polymerization in SETD2-null cells exhibiting autophagy defects.


Assuntos
Actinas/metabolismo , Carcinoma de Células Renais/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Renais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Autofagia/genética , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo , Técnicas de Inativação de Genes , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia
6.
Hepatology ; 73(5): 1797-1815, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33058300

RESUMO

BACKGROUND AND AIMS: Trimethylation of Lys36 on histone 3 (H3K36me3) catalyzed by histone methyltransferase SET domain-containing 2 (SETD2) is one of the most conserved epigenetic marks from yeast to mammals. SETD2 is frequently mutated in multiple cancers and acts as a tumor suppressor. APPROACH AND RESULTS: Here, using a liver-specific Setd2 depletion model, we found that Setd2 deficiency is sufficient to trigger spontaneous HCC. Meanwhile, Setd2 depletion significantly increased tumor and tumor size of a diethylnitrosamine-induced HCC model. The mechanistic study showed that Setd2 suppresses HCC not only through modulating DNA damage response, but also by regulating lipid metabolism in the liver. Setd2 deficiency down-regulated H3K36me3 enrichment and expression of cholesterol efflux genes and caused lipid accumulation. High-fat diet enhanced lipid accumulation and promoted the development of HCC in Setd2-deficient mice. Chromatin immunoprecipitation sequencing analysis further revealed that Setd2 depletion induced c-Jun/activator protein 1 (AP-1) activation in the liver, which was trigged by accumulated lipid. c-Jun acts as an oncogene in HCC and functions through inhibiting p53 in Setd2-deficient cells. CONCLUSIONS: We revealed the roles of Setd2 in HCC and the underlying mechanisms in regulating cholesterol homeostasis and c-Jun/AP-1 signaling.


Assuntos
Carcinoma Hepatocelular/etiologia , Histona-Lisina N-Metiltransferase/deficiência , Metabolismo dos Lipídeos , Neoplasias Hepáticas/etiologia , Fígado/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Colesterol/sangue , Imunoprecipitação da Cromatina , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos/sangue
7.
Commun Biol ; 3(1): 278, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483278

RESUMO

Histone H3 lysine 4 methylation (H3K4me) is extensively regulated by numerous writer and eraser enzymes in mammals. Nine H3K4me enzymes are associated with neurodevelopmental disorders to date, indicating their important roles in the brain. However, interplay among H3K4me enzymes during brain development remains largely unknown. Here, we show functional interactions of a writer-eraser duo, KMT2A and KDM5C, which are responsible for Wiedemann-Steiner Syndrome (WDSTS), and mental retardation X-linked syndromic Claes-Jensen type (MRXSCJ), respectively. Despite opposite enzymatic activities, the two mouse models deficient for either Kmt2a or Kdm5c shared reduced dendritic spines and increased aggression. Double mutation of Kmt2a and Kdm5c clearly reversed dendritic morphology, key behavioral traits including aggression, and partially corrected altered transcriptomes and H3K4me landscapes. Thus, our study uncovers common yet mutually suppressive aspects of the WDSTS and MRXSCJ models and provides a proof of principle for balancing a single writer-eraser pair to ameliorate their associated disorders.


Assuntos
Anormalidades Múltiplas/genética , Agressão , Anormalidades Craniofaciais/genética , Espinhas Dendríticas/metabolismo , Transtornos do Crescimento/genética , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Hipertricose/genética , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Modelos Animais de Doenças , Histona Desmetilases/deficiência , Histona-Lisina N-Metiltransferase/deficiência , Masculino , Metilação , Camundongos , Proteína de Leucina Linfoide-Mieloide/deficiência
8.
Gastroenterology ; 159(2): 682-696.e13, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360551

RESUMO

BACKGROUND & AIMS: SETDB1, a histone methyltransferase that trimethylates histone H3 on lysine 9, promotes development of several tumor types. We investigated whether SETDB1 contributes to development of pancreatic ductal adenocarcinoma (PDAC). METHODS: We performed studies with Ptf1aCre; KrasG12D; Setdb1f/f, Ptf1aCre; KrasG12D; Trp53f/+; Setdb1f/f, and Ptf1aCre; KrasG12D; Trp53f/f; Setdb1f/f mice to investigate the effects of disruption of Setdb1 in mice with activated KRAS-induced pancreatic tumorigenesis, with heterozygous or homozygous disruption of Trp53. We performed microarray analyses of whole-pancreas tissues from Ptf1aCre; KrasG12D; Setdb1f/f, and Ptf1aCre; KrasG12D mice and compared their gene expression patterns. Chromatin immunoprecipitation assays were performed using acinar cells isolated from pancreata with and without disruption of Setdb1. We used human PDAC cells for SETDB1 knockdown and inhibitor experiments. RESULTS: Loss of SETDB1 from pancreas accelerated formation of premalignant lesions in mice with pancreata that express activated KRAS. Microarray analysis revealed up-regulated expression of genes in the apoptotic pathway and genes regulated by p53 in SETDB1-deficient pancreata. Deletion of Setdb1 from pancreas prevented formation of PDACs, concomitant with increased apoptosis and up-regulated expression of Trp53 in mice heterozygous for disruption of Trp53. In contrast, pancreata of mice with homozygous disruption of Trp53 had no increased apoptosis, and PDACs developed. Chromatin immunoprecipitation revealed that SETDB1 bound to the Trp53 promoter to regulate its expression. Expression of an inactivated form of SETDB1 in human PDAC cells with wild-type TP53 resulted in TP53-induced apoptosis. CONCLUSIONS: We found that the histone methyltransferase SETDB1 is required for development of PDACs, induced by activated KRAS, in mice. SETDB1 inhibits apoptosis by regulating expression of p53. SETDB1 might be a therapeutic target for PDACs that retain p53 function.


Assuntos
Apoptose , Carcinoma Ductal Pancreático/enzimologia , Transformação Celular Neoplásica/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pancreáticas/enzimologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Sítios de Ligação , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos Knockout , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
9.
Mol Brain ; 13(1): 85, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471461

RESUMO

Genetic and epigenetic factors contribute to the development of the spinal cord. Failure in correct exertion of the developmental programs, including neurulation, neural tube closure and neurogenesis of the diverse spinal cord neuronal subtypes results in defects of variable severity. We here report on the histone methyltransferase Disruptor of Telomeric 1 Like (DOT1L), which mediates histone H3 lysine 79 (H3K79) methylation. Conditional inactivation of DOT1L using Wnt1-cre as driver (Dot1l-cKO) showed that DOT1L expression is essential for spinal cord neurogenesis and localization of diverse neuronal subtypes, similar to its function in the development of the cerebral cortex and cerebellum. Transcriptome analysis revealed that DOT1L deficiency favored differentiation over progenitor proliferation. Dot1l-cKO mainly decreased the numbers of dI1 interneurons expressing Lhx2. In contrast, Lhx9 expressing dI1 interneurons did not change in numbers but localized differently upon Dot1l-cKO. Similarly, loss of DOT1L affected localization but not generation of dI2, dI3, dI5, V0 and V1 interneurons. The resulting derailed interneuron patterns might be responsible for increased cell death, occurrence of which was restricted to the late developmental stage E18.5. Together our data indicate that DOT1L is essential for subtype-specific neurogenesis, migration and localization of dorsal and ventral interneurons in the developing spinal cord, in part by regulating transcriptional activation of Lhx2.


Assuntos
Diferenciação Celular , Histona-Lisina N-Metiltransferase/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Medula Espinal/citologia , Medula Espinal/embriologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Movimento Celular , Proliferação de Células , Galinhas , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/metabolismo , Integrases/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Camundongos Transgênicos , Neurogênese/genética , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína Wnt1/metabolismo
10.
Blood ; 135(25): 2271-2285, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32202636

RESUMO

SETD2, the histone H3 lysine 36 methyltransferase, previously identified by us, plays an important role in the pathogenesis of hematologic malignancies, but its role in myelodysplastic syndromes (MDSs) has been unclear. In this study, low expression of SETD2 correlated with shortened survival in patients with MDS, and the SETD2 levels in CD34+ bone marrow cells of those patients were increased by decitabine. We knocked out Setd2 in NUP98-HOXD13 (NHD13) transgenic mice, which phenocopies human MDS, and found that loss of Setd2 accelerated the transformation of MDS into acute myeloid leukemia (AML). Loss of Setd2 enhanced the ability of NHD13+ hematopoietic stem and progenitor cells (HSPCs) to self-renew, with increased symmetric self-renewal division and decreased differentiation and cell death. The growth of MDS-associated leukemia cells was inhibited though increasing the H3K36me3 level by using epigenetic modifying drugs. Furthermore, Setd2 deficiency upregulated hematopoietic stem cell signaling and downregulated myeloid differentiation pathways in the NHD13+ HSPCs. Our RNA-seq and chromatin immunoprecipitation-seq analysis indicated that S100a9, the S100 calcium-binding protein, is a target gene of Setd2 and that the addition of recombinant S100a9 weakens the effect of Setd2 deficiency in the NHD13+ HSPCs. In contrast, downregulation of S100a9 leads to decreases of its downstream targets, including Ikba and Jnk, which influence the self-renewal and differentiation of HSPCs. Therefore, our results demonstrated that SETD2 deficiency predicts poor prognosis in MDS and promotes the transformation of MDS into AML, which provides a potential therapeutic target for MDS-associated acute leukemia.


Assuntos
Anemia Refratária com Excesso de Blastos/patologia , Calgranulina B/fisiologia , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/fisiologia , Leucemia Mieloide Aguda/etiologia , Anemia Refratária com Excesso de Blastos/genética , Anemia Refratária com Excesso de Blastos/metabolismo , Animais , Calgranulina B/biossíntese , Calgranulina B/genética , Transformação Celular Neoplásica , Células Cultivadas , Decitabina/farmacologia , Regulação para Baixo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/patologia , Código das Histonas/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/biossíntese , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Síndromes Mielodisplásicas/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Prognóstico , Proteínas Recombinantes/uso terapêutico , Fatores de Tempo , Análise Serial de Tecidos , Transcriptoma
11.
Cell Death Dis ; 11(1): 69, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988284

RESUMO

Inactivating mutations in the SETD2 gene, encoding for a nonredundant histone H3 methyltransferase and regulator of transcription, is a frequent molecular feature in clear cell renal cell carcinomas (ccRCC). SETD2 deficiency is associated with recurrence of ccRCC and bears low prognostic values. Targeting autophagy, a conserved catabolic process with critical functions in maintenance of cellular homeostasis and cell conservation under stress condition, is emerging as a potential therapeutic strategy to combat ccRCC. Epigenetics-based pathways are now appreciated as key components in the regulation of autophagy. However, whether loss of function in the SETD2 histone modifying enzyme occurring in ccRCC cells may impact on their ability to undergo autophagy remained to be explored. Here, we report that SETD2 deficiency in RCC cells is associated with the aberrant accumulation of both free ATG12 and of an additional ATG12-containing complex, distinct from the ATG5-ATG12 complex. Rescue of SETD2 functions in the SETD2 deficiency in RCC cells, or reduction of SETD2 expression level in RCC cells wild type for this enzyme, demonstrates that SETD2 deficiency in RCC is directly involved in the acquisition of these alterations in the autophagic process. Furthermore, we revealed that deficiency in SETD2, known regulator of alternative splicing, is associated with increased expression of a short ATG12 spliced isoform at the depend of the canonical long ATG12 isoform in RCC cells. The defect in the ATG12-dependent conjugation system was found to be associated with a decrease autophagic flux, in accord with the role for this ubiquitin-like protein conjugation system in autophagosome formation and expansion. Finally, we report that SETD2 and ATG12 gene expression levels are associated with favorable respective unfavorable prognosis in ccRCC patients. Collectively, our findings bring further argument for considering the SETD2 gene status of ccRCC tumors, when therapeutic interventions, such as targeting the autophagic process, are considered to combat these kidney cancers.


Assuntos
Proteína 12 Relacionada à Autofagia/metabolismo , Autofagia/genética , Carcinoma de Células Renais/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias Renais/genética , Processamento Alternativo/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Mutação , Prognóstico , RNA Interferente Pequeno
12.
Cell Death Differ ; 27(4): 1243-1258, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31515511

RESUMO

Acute liver injury is commonly caused by bacterial endotoxin/lipopolysaccharide (LPS), and by drug overdose such as acetaminophen (APAP). The exact role of epigenetic modification in acute liver injury remains elusive. Here, we investigated the role of histone methyltransferase G9a in LPS- or APAP overdose-induced acute liver injury. Under D-galactosamine sensitization, liver-specific G9a-deficient mice (L-G9a-/-) exhibited 100% mortality after LPS injection, while the control and L-G9a+/- littermates showed very mild mortality. Moreover, abrogation of hepatic G9a or inhibiting the methyltransferase activity of G9a aggravated LPS-induced liver damage. Similarly, under sublethal APAP overdose, L-G9a-/- mice displayed more severe liver injury. Mechanistically, ablation of G9a inhibited H3K9me1 levels at the promoters of Gstp1/2, two liver detoxifying enzymes, and consequently suppressed their transcription. Notably, treating L-G9a-/- mice with recombinant mouse GSTP1 reversed the LPS- or APAP overdose-induced liver damage. Taken together, we identify a novel beneficial role of G9a-GSTP1 axis in protecting against acute liver injury.


Assuntos
Glutationa S-Transferase pi/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Fígado/lesões , Fígado/metabolismo , Acetaminofen , Doença Aguda , Animais , Apoptose/efeitos dos fármacos , Dano ao DNA , Galactose , Deleção de Genes , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Histona-Lisina N-Metiltransferase/deficiência , Histonas/metabolismo , Humanos , Inflamação/patologia , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/patologia , Lisina/metabolismo , Masculino , Metilação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/farmacologia
13.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31557133

RESUMO

Kabuki syndrome 1 (KS1) is a Mendelian disorder of the epigenetic machinery caused by mutations in the gene encoding KMT2D, which methylates lysine 4 on histone H3 (H3K4). KS1 is characterized by intellectual disability, postnatal growth retardation, and distinct craniofacial dysmorphisms. A mouse model (Kmt2d+/ßGeo) exhibits features of the human disorder and has provided insight into other phenotypes; however, the mechanistic basis of skeletal abnormalities and growth retardation remains elusive. Using high-resolution micro-CT, we show that Kmt2d+/ßGeo mice have shortened long bones and ventral bowing of skulls. In vivo expansion of growth plates within skulls and long bones suggests disrupted endochondral ossification as a common disease mechanism. Stable chondrocyte cell lines harboring inactivating mutations in Kmt2d exhibit precocious differentiation, further supporting this mechanism. A known inducer of chondrogenesis, SOX9, and its targets show markedly increased expression in Kmt2d-/- chondrocytes. By transcriptome profiling, we identify Shox2 as a putative KMT2D target. We propose that decreased KMT2D-mediated H3K4me3 at Shox2 releases Sox9 inhibition and thereby leads to enhanced chondrogenesis, providing a potentially novel and plausible explanation for precocious chondrocyte differentiation. Our findings provide insight into the pathogenesis of growth retardation in KS1 and suggest therapeutic approaches for this and related disorders.


Assuntos
Anormalidades Múltiplas/genética , Diferenciação Celular/genética , Condrogênese/genética , Face/anormalidades , Doenças Hematológicas/genética , Histona-Lisina N-Metiltransferase/deficiência , Proteínas de Homeodomínio/metabolismo , Proteína de Leucina Linfoide-Mieloide/deficiência , Crânio/crescimento & desenvolvimento , Doenças Vestibulares/genética , Anormalidades Múltiplas/patologia , Animais , Condrócitos/patologia , Modelos Animais de Doenças , Face/patologia , Feminino , Doenças Hematológicas/patologia , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Oxigênio/metabolismo , Fatores de Transcrição SOX9/metabolismo , Crânio/citologia , Crânio/diagnóstico por imagem , Doenças Vestibulares/patologia , Microtomografia por Raio-X
14.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31465303

RESUMO

Chromatin modifiers act to coordinate gene expression changes critical to neuronal differentiation from neural stem/progenitor cells (NSPCs). Lysine-specific methyltransferase 2D (KMT2D) encodes a histone methyltransferase that promotes transcriptional activation and is frequently mutated in cancers and in the majority (>70%) of patients diagnosed with the congenital, multisystem intellectual disability disorder Kabuki syndrome 1 (KS1). Critical roles for KMT2D are established in various non-neural tissues, but the effects of KMT2D loss in brain cell development have not been described. We conducted parallel studies of proliferation, differentiation, transcription, and chromatin profiling in KMT2D-deficient human and mouse models to define KMT2D-regulated functions in neurodevelopmental contexts, including adult-born hippocampal NSPCs in vivo and in vitro. We report cell-autonomous defects in proliferation, cell cycle, and survival, accompanied by early NSPC maturation in several KMT2D-deficient model systems. Transcriptional suppression in KMT2D-deficient cells indicated strong perturbation of hypoxia-responsive metabolism pathways. Functional experiments confirmed abnormalities of cellular hypoxia responses in KMT2D-deficient neural cells and accelerated NSPC maturation in vivo. Together, our findings support a model in which loss of KMT2D function suppresses expression of oxygen-responsive gene programs important to neural progenitor maintenance, resulting in precocious neuronal differentiation in a mouse model of KS1.


Assuntos
Anormalidades Múltiplas/genética , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/genética , Proteínas de Ligação a DNA/deficiência , Face/anormalidades , Doenças Hematológicas/genética , Histona-Lisina N-Metiltransferase/deficiência , Proteína de Leucina Linfoide-Mieloide/deficiência , Proteínas de Neoplasias/deficiência , Células-Tronco Neurais/patologia , Neurônios/patologia , Doenças Vestibulares/genética , Anormalidades Múltiplas/patologia , Animais , Encéfalo/citologia , Hipóxia Celular/genética , Proliferação de Células/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Face/patologia , Feminino , Fibroblastos , Doenças Hematológicas/patologia , Histona-Lisina N-Metiltransferase/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/genética , Oxigênio/metabolismo , Cultura Primária de Células , RNA-Seq , Análise de Célula Única , Pele/citologia , Pele/patologia , Doenças Vestibulares/patologia
15.
Cytogenet Genome Res ; 158(4): 205-212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31434093

RESUMO

EHMT2 (euchromatic histone lysine methyltransferase 2), a histone methyltransferase, has been shown to be involved in multiple human cancers. In this study, we determined mRNA and protein expression of EHMT2 in cervical cancer cells and normal cervical epithelial cells. EHMT2 was inhibited with short hairpin RNA (shEHMT2) in cervical cancer cells. Cell viability, colony proliferation, apoptosis, adhesion, and invasion assays and Western blot were performed to assess the function of EHMT2. As a result, EHMT2 was upregulated in human cervical cancer cells compared to normal cervical epithelial cells. Suppression of EHMT2 expression impairs cell proliferation and induces apoptosis. Furthermore, EHMT2 silencing inhibited cell adhesion and invasion. Finally, knockdown of EHMT2 resulted in a reduction of the expression of the tumorigenic proteins Bcl-2, Mcl-1, and Survivin and in an increase in the expression of the anti-malignant protein E-cadherin. In conclusion, our data suggest that EHMT2 plays a key role in cell proliferation and metastatic capacity in cervical cancer cells and could serve as a potential therapeutic target.


Assuntos
Inativação Gênica , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/prevenção & controle , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/patologia , Apoptose/genética , Caderinas/biossíntese , Adesão Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Neoplasias do Colo do Útero/genética
16.
Sci Adv ; 5(5): eaav3673, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31086817

RESUMO

Alternative lengthening of telomeres, or ALT, is a recombination-based process that maintains telomeres to render some cancer cells immortal. The prevailing view is that ALT is inhibited by heterochromatin because heterochromatin prevents recombination. To test this model, we used telomere-specific quantitative proteomics on cells with heterochromatin deficiencies. In contrast to expectations, we found that ALT does not result from a lack of heterochromatin; rather, ALT is a consequence of heterochromatin formation at telomeres, which is seeded by the histone methyltransferase SETDB1. Heterochromatin stimulates transcriptional elongation at telomeres together with the recruitment of recombination factors, while disrupting heterochromatin had the opposite effect. Consistently, loss of SETDB1, disrupts telomeric heterochromatin and abrogates ALT. Thus, inhibiting telomeric heterochromatin formation in ALT cells might offer a new therapeutic approach to cancer treatment.


Assuntos
Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Encurtamento do Telômero , Telômero/metabolismo , Animais , Linhagem Celular Tumoral , Chaperonas de Histonas/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Metiltransferases/deficiência , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína Nuclear Ligada ao X/metabolismo
17.
Elife ; 82019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747104

RESUMO

Induced pluripotent stem cell (iPSC)-derived neurons are increasingly used to model Autism Spectrum Disorder (ASD), which is clinically and genetically heterogeneous. To study the complex relationship of penetrant and weaker polygenic risk variants to ASD, 'isogenic' iPSC-derived neurons are critical. We developed a set of procedures to control for heterogeneity in reprogramming and differentiation, and generated 53 different iPSC-derived glutamatergic neuronal lines from 25 participants from 12 unrelated families with ASD. Heterozygous de novo and rare-inherited presumed-damaging variants were characterized in ASD risk genes/loci. Combinations of putative etiologic variants (GLI3/KIF21A or EHMT2/UBE2I) in separate families were modeled. We used a multi-electrode array, with patch-clamp recordings, to determine a reproducible synaptic phenotype in 25% of the individuals with ASD (other relevant data on the remaining lines was collected). Our most compelling new results revealed a consistent spontaneous network hyperactivity in neurons deficient for CNTN5 or EHMT2. The biobank of iPSC-derived neurons and accompanying genomic data are available to accelerate ASD research. Editorial note: This article has been through an editorial process in which authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Assuntos
Transtorno Autístico/fisiopatologia , Contactinas/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Adolescente , Adulto , Células Cultivadas , Criança , Contactinas/deficiência , Contactinas/genética , Fenômenos Eletrofisiológicos , Feminino , Heterozigoto , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Adulto Jovem , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
18.
J Proteome Res ; 18(1): 331-340, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30406665

RESUMO

SETD2, a histone H3 lysine trimethyltransferase, is frequently inactivated and associated with recurrence of clear cell renal cell carcinoma (ccRCC). However, the impact of SETD2 loss on metabolic alterations in ccRCC is still unclear. In this study, SETD2 null isogenic 38E/38F clones derived from 786-O cells were generated by zinc finger nucleases, and subsequent metabolic, genomic, and cellular phenotypic changes were analyzed by targeted metabolomics, RNA sequencing, and biological methods, respectively. Our results showed that compared with parental 786-O cells, 38E/38F cells had elevated levels of MTT/Alamar blue levels, ATP, glycolytic/mitochondrial respiratory capacity, citrate synthase (CS) activity, and TCA metabolites such as aspartate, malate, succinate, fumarate, and α-ketoglutarate. The 38E/38F cells also utilized alternative sources beyond pyruvate to generate acetyl-CoA for the TCA cycle. Moreover, 38E/38F cells showed disturbed gene networks mainly related to mitochondrial metabolism and the oxidation of fatty acids and glucose, which was associated with increased PGC1α, mitochondrial mass, and cellular size/complexity. Our results indicate that SETD2 deficiency induces a metabolic switch toward enhanced oxidative phosphorylation in ccRCC, which can be related to PGC1α-mediated metabolic networks. Therefore, this current study lays the foundation for the further development of a global metabolic analysis of cancer cells in individual patients, which ultimately will have significant potential for the discovery of novel therapeutics and precision medicine in SETD2-inactivated ccRCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Histona-Lisina N-Metiltransferase/deficiência , Metabolômica/métodos , Fosforilação Oxidativa , Linhagem Celular , Células Clonais , Humanos , Redes e Vias Metabólicas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
19.
Elife ; 72018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30526847

RESUMO

Protein histidine methylation is a rare post-translational modification of unknown biochemical importance. In vertebrates, only a few methylhistidine-containing proteins have been reported, including ß-actin as an essential example. The evolutionary conserved methylation of ß-actin H73 is catalyzed by an as yet unknown histidine N-methyltransferase. We report here that the protein SETD3 is the actin-specific histidine N-methyltransferase. In vitro, recombinant rat and human SETD3 methylated ß-actin at H73. Knocking-out SETD3 in both human HAP1 cells and in Drosophila melanogaster resulted in the absence of methylation at ß-actin H73 in vivo, whereas ß-actin from wildtype cells or flies was > 90% methylated. As a consequence, we show that Setd3-deficient HAP1 cells have less cellular F-actin and an increased glycolytic phenotype. In conclusion, by identifying SETD3 as the actin-specific histidine N-methyltransferase, our work pioneers new research into the possible role of this modification in health and disease and questions the substrate specificity of SET-domain-containing enzymes.


Assuntos
Actinas/metabolismo , Fibroblastos/enzimologia , Histona-Lisina N-Metiltransferase/genética , Músculo Esquelético/enzimologia , Processamento de Proteína Pós-Traducional , Actinas/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sequência Conservada , Drosophila melanogaster/classificação , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Fibroblastos/citologia , Glicólise/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/farmacologia , Humanos , Cinética , Metilação , Modelos Moleculares , Músculo Esquelético/química , Fenótipo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
20.
Anticancer Res ; 38(11): 6069-6083, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30396921

RESUMO

BACKGROUND/AIM: Transcriptomic analysis was performed to evaluate the differential gene expression profiles of Setd7 knockdown (KD) and the effects of phenethyl isothiocyanate (PEITC) in human prostate cancer (PCa) LNCaP cells. MATERIALS AND METHODS: RNA isolated from wild-type and Setd7-KD LNCaP cells in the presence or absence of PEITC was subjected to microarray analysis followed by Ingenuity® Pathway Analysis (IPA). RESULTS: Setd7 KD impacted a larger set of genes and caused a higher fold change compared to PEITC treatment. Several signaling pathways were altered particularly inflammation-related TNFR signaling and PTEN/PI3K/AKT signaling by Setd7 KD and PEITC. Interestingly, PEITC and Setd7 KD at a small subset of genes that could be potential molecular targets. CONCLUSION: This study offers new insights into the mechanisms of action of the epigenetic modifier Setd7 and the effects of PEITC treatment in PCa cells and enhances our understanding of the potential cancer preventive/treatment effects of isothiocyanate compounds such as PEITC in PCa.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Isotiocianatos/farmacologia , Linhagem Celular Tumoral , Epigênese Genética , Técnicas de Inativação de Genes , Histona-Lisina N-Metiltransferase/biossíntese , Histona-Lisina N-Metiltransferase/deficiência , Humanos , Masculino , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA