Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.545
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732193

RESUMO

One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.


Assuntos
Carbono , Técnicas de Reprodução Assistida , Humanos , Carbono/metabolismo , Vitamina B 12/metabolismo , Fertilização in vitro/métodos , Feminino , Homocisteína/metabolismo , Homocisteína/sangue , Ácido Fólico/metabolismo , Suplementos Nutricionais , Colina/metabolismo , Zinco/metabolismo , Betaína/metabolismo , Biomarcadores
2.
Lipids Health Dis ; 23(1): 139, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741154

RESUMO

INTRODUCTION: Although previous studies have linked obesity and erectile dysfunction, the novel surrogate indicators of adipose accumulation are more essential and dependable factors to consider. Therefore, the primary objective of the current investigation was to examine and clarify the association between metabolic score for visceral fat (METS-VF) and erectile dysfunction. METHODS: Firstly, multivariate logistic regression analysis, smoothed curve fitting, and threshold effect analysis were employed to investigate the association between METS-VF and erectile dysfunction. Mediation analysis was also performed to evaluate the mediating role of homocysteine and inflammation. After that, subgroup analysis was carried out to examine the stability of the correlation of METS-VF with erectile dysfunction in various population settings. Furthermore, the area under the receiver operating characteristic (ROC) curve and eXtreme Gradient Boosting (XGBoost) algorithm were utilized to assess the capability of identifying METS-VF in comparison to the other four obesity-related indicators in identifying erectile dysfunction. RESULTS: After adjusting for all confounding factors, METS-VF was strongly and favourablely correlated with erectile dysfunction. With each additional unit rise in METS-VF, the prevalence of erectile dysfunction increased by 141%. A J-shaped relationship between METS-VF and erectile dysfunction was discovered through smoothed curve fitting. Marital status, physical activity, and smoking status can potentially modify this association. This finding of the ROC curve suggests that METS-VF had a powerful identifying capacity for erectile dysfunction (AUC = 0.7351). Homocysteine and inflammation mediated 4.24% and 2.81%, respectively. CONCLUSION: The findings of the current investigation suggest that METS-VF can be considered a dependable identifying indicator of erectile dysfunction.


Assuntos
Disfunção Erétil , Curva ROC , Masculino , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Humanos , Pessoa de Meia-Idade , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Biomarcadores/metabolismo , Adulto , Homocisteína/sangue , Homocisteína/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Idoso , Fatores de Risco , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Modelos Logísticos
3.
In Vivo ; 38(3): 1199-1202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688645

RESUMO

BACKGROUND/AIM: Hair-follicle keratinocytes contain high levels of cysteine, which is derived from methionine, rapidly proliferate, and form the hair shaft. The high proliferation rate of hair-follicle keratinocytes resembles that of aggressive cancer cells. In the present study, we determined the effect of a methionine-deficient diet on hair loss (alopecia) in mice with or without homocysteine supplementation. MATERIALS AND METHODS: Mice were fed a normal rodent diet (2020X, ENVIGO) (Group 1); a methionine-choline-deficient diet (TD.90262, ENVIGO) (Group 2); a methionine-choline-deficient diet with a 10 mg/kg/day supply of homocysteine administered by intra-peritoneal (i.p.) injection for 2 weeks (Group 3). In Group 2, mice were fed a methionine-choline-deficient diet for an additional 2 weeks but with 10 mg/kg/day of i.p. l-homocysteine and the mice were observed for two additional weeks. Subsequently, the mice were fed a standard diet that included methionine. Hair loss was monitored by photography. RESULTS: After 14 days, hair loss was observed in Group 2 mice on a methionine-restricted diet but not in Group 3 mice on the methionine-restricted diet which received i.p. homocysteine. In Group 2, at 2 weeks after methionine restriction, hair loss was not rescued by homocysteine supplementation. However, after restoration of methionine in the diet, hair growth resumed. Thus, after 2 weeks of methionine restriction, only methionine restored hair loss, not homocysteine. CONCLUSION: Hair maintenance requires methionine in the diet. Future experiments will determine the effects of methionine restriction on hair-follicle stem cells.


Assuntos
Folículo Piloso , Cabelo , Homocisteína , Metionina , Animais , Metionina/deficiência , Metionina/metabolismo , Metionina/administração & dosagem , Camundongos , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Homocisteína/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Alopecia/metabolismo , Alopecia/etiologia , Alopecia/patologia , Modelos Animais de Doenças , Dieta , Queratinócitos/metabolismo
4.
Neurol Res ; 46(6): 544-552, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565201

RESUMO

BACKGROUND AND AIMS: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) of unknown cause. Alterations in one-carbon metabolism have impact in the pathophysiology by genetic susceptibility to MS and increased the risk of MS. The aim of this study was to investigate the contribution of the gene polymorphism on Methylenetetrahydrofolate Reductase (MTHFR), Methionine Synthase Reductase (MTRR), Methionine Synthase (MTR) enzymes and of the essential factors (homocysteine, Hcy; cysteine, Cys; and vitamin B12, VitB12) in folate metabolism. METHODS: Eligible MS patients (n = 147) and health controls (n = 127) were participated. The gene polymorphisms were analyzed by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and the levels of plasma Hcy, Cys and VitB12 were measured by Enzyme Linked Immunuabsorbent Assay (ELISA). RESULTS AND CONCLUSION: Our results showed that the levels of Hcy and VitB12 were lower and the levels of Cys were higher in MS compared to controls. The observation of high Cys values in all 3 gene polymorphisms suggests that the transsulfiration pathway of Hcy is directed towards Cys formation since the methionine synthesis pathway does not work. We could not find any association with all gene polymorphisms with the risk of MS. The T allele of MTHFR C677T and G allele of MTR A2756G are risk factors for serum Cys level on MS. As for MTR A2756G, serum vitB12 was observed in MS patients with G allele.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Ferredoxina-NADP Redutase , Ácido Fólico , Predisposição Genética para Doença , Homocisteína , Metilenotetra-Hidrofolato Redutase (NADPH2) , Esclerose Múltipla , Humanos , Feminino , Masculino , Ácido Fólico/sangue , Ácido Fólico/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/sangue , Adulto , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Predisposição Genética para Doença/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Ferredoxina-NADP Redutase/genética , Homocisteína/sangue , Homocisteína/metabolismo , Pessoa de Meia-Idade , Vitamina B 12/sangue , Cisteína/genética
5.
Sci Rep ; 14(1): 9364, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654065

RESUMO

The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.


Assuntos
Domínio Catalítico , Cistationina gama-Liase , Sulfeto de Hidrogênio , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimologia , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/química , Cristalografia por Raios X , Especificidade por Substrato , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Modelos Moleculares , Cisteína/metabolismo , Cisteína/química , Conformação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Homocisteína/metabolismo , Homocisteína/química , Catálise
6.
Int Immunopharmacol ; 132: 111950, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38579564

RESUMO

Neutrophils play a vital role in the innate immunity by perform effector functions through phagocytosis, degranulation, and forming extracellular traps. However, over-functioning of neutrophils has been associated with sterile inflammation such as Type 2 Diabetes, atherosclerosis, cancer and autoimmune disorders. Neutrophils exhibiting phenotypical and functional heterogeneity in both homeostatic and pathological conditions suggests distinct signaling pathways are activated in disease-specific stimuli and alter neutrophil functions. Hence, we examined mass spectrometry based post-translational modifications (PTM) of neutrophil proteins in response to pathologically significant stimuli, including high glucose, homocysteine and bacterial lipopolysaccharides representing diabetes-indicator, an activator of thrombosis and pathogen-associated molecule, respectively. Our data revealed that these aforesaid stimulators differentially deamidate, citrullinate, acetylate and methylate neutrophil proteins and align to distinct biological functions associated with degranulation, platelet activation, innate immune responses and metabolic alterations. The PTM patterns in response to high glucose showed an association with neutrophils extracellular traps (NETs) formation, homocysteine induced proteins PTM associated with signaling of systemic lupus erythematosus and lipopolysaccharides induced PTMs were involved in pathways related to cardiomyopathies. Our study provides novel insights into neutrophil PTM patterns and functions in response to varied pathological stimuli, which may serve as a resource to design therapeutic strategies for the management of neutrophil-centred diseases.


Assuntos
Armadilhas Extracelulares , Homocisteína , Lipopolissacarídeos , Neutrófilos , Processamento de Proteína Pós-Traducional , Neutrófilos/imunologia , Neutrófilos/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Homocisteína/metabolismo , Glucose/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Imunidade Inata , Cardiomiopatias/imunologia , Cardiomiopatias/metabolismo , Transdução de Sinais
7.
Eur J Neurosci ; 59(10): 2732-2747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501537

RESUMO

Elevated serum homocysteine (Hcy) level is a risk factor for Alzheimer's disease (AD) and accelerates cell aging. However, the mechanism by which Hcy induces neuronal senescence remains largely unknown. In this study, we observed that Hcy significantly promoted senescence in neuroblastoma 2a (N2a) cells with elevated ß-catenin and Kelch-like ECH-associated protein 1 (KEAP1) levels. Intriguingly, Hcy promoted the interaction between KEAP1 and the Wilms tumor gene on the X chromosome (WTX) while hampering the ß-catenin-WTX interaction. Mechanistically, Hcy attenuated the methylation level of the KEAP1 promoter CpG island and activated KEAP1 transcription. However, a slow degradation rate rather than transcriptional activation contributed to the high level of ß-catenin. Hcy-upregulated KEAP1 competed with ß-catenin to bind to WTX. Knockdown of both ß-catenin and KEAP1 attenuated Hcy-induced senescence in N2a cells. Our data highlight a crucial role of the KEAP1-ß-catenin pathway in Hcy-induced neuronal-like senescence and uncover a promising target for AD treatment.


Assuntos
Senescência Celular , Homocisteína , Proteína 1 Associada a ECH Semelhante a Kelch , Neuroblastoma , Ubiquitinação , beta Catenina , beta Catenina/metabolismo , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Animais , Homocisteína/farmacologia , Homocisteína/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Linhagem Celular Tumoral , Ubiquitinação/efeitos dos fármacos , Neuroblastoma/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
8.
Am J Clin Nutr ; 119(4): 917-926, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325765

RESUMO

BACKGROUND: Protein recommendations for older adults are based on nitrogen balance data from young adults. Physiological studies using the indicator amino acid oxidation method suggest they need 30% to 50% more protein than current recommendations. We herein present glutathione (GSH) as a physiological estimate of protein adequacy in older adults. OBJECTIVES: The objective was to measure GSH kinetics in response to varying protein intakes in a repeated-measures design in healthy adults aged ≥60 y using the precursor-product method. METHODS: Sixteen healthy older adults (n = 8 male and n = 8 female; body mass index ≤30 kg/m2) were studied. Each received 4 of 6 protein intakes in random order (0.66, 0.8, 0.9, 1.1, 1.3 and 1.5 g⋅kg-1⋅d-1). At each intake level, participants underwent isotope infusion studies of 7 h duration following a 3-d adaptation to the test level of protein. On the fourth day, GSH fractional (FSR) and absolute synthesis (ASR) rates were quantified by measuring the incorporation of U-[13C2-15N]glycine into GSH at isotopic steady state. A mixed-effect change-point regression model was used to determine a breakpoint in FSR and ASR. Secondary outcomes included plasma concentrations of oxidative stress markers, homocysteine, 5-L-oxoproline (5-OP), and urinary sulfate. The effect of secondary outcomes on GSH kinetics was analyzed using a joint linear mixed-effect model and Tukey's post hoc test. RESULTS: A protein intake of 1.08 g⋅kg-1⋅d-1 (95% confidence interval [CI]: 0.83, 1.32; Rm2 = 0.207; Rc2 = 0.671; P < 0.001) maximized GSH FSR. There was no effect of protein intake on concentrations of erythrocyte GSH, plasma homocysteine, oxidative stress markers, or 5-OP (P > 0.05). Protein intake had a positive effect on urinary sulfate excretion (P < 0.0001). CONCLUSION: A protein intake of 1.08 g⋅kg-1⋅d-1 from a high-quality protein maximized GSH synthesis in adults ≥60 y. This lends support to data suggesting a requirement higher than the current recommendation. This study was registered at clinicaltrials.gov as NCT02971046.


Assuntos
Eritrócitos , Glutationa , Adulto Jovem , Humanos , Masculino , Feminino , Idoso , Glutationa/análise , Glutationa/metabolismo , Eritrócitos/química , Glicina , Homocisteína/metabolismo , Sulfatos/análise , Sulfatos/metabolismo
9.
Aging Cell ; 23(5): e14106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38358083

RESUMO

Cerebrovascular dysfunction has been implicated as a major contributor to Alzheimer's Disease (AD) pathology, with cerebral endothelial cell (cEC) stress promoting ischemia, cerebral-blood flow impairments and blood-brain barrier (BBB) permeability. Recent evidence suggests that cardiovascular (CV)/cerebrovascular risk factors, including hyperhomocysteinemia (Hhcy), exacerbate AD pathology and risk. Yet, the underlying molecular mechanisms for this interaction remain unclear. Our lab has demonstrated that amyloid beta 40 (Aß40) species, and particularly Aß40-E22Q (AßQ22; vasculotropic Dutch mutant), promote death receptor 4 and 5 (DR4/DR5)-mediated apoptosis in human cECs, barrier permeability, and angiogenic impairment. Previous studies show that Hhcy also induces EC dysfunction, but it remains unknown whether Aß and homocysteine function through common molecular mechanisms. We tested the hypotheses that Hhcy exacerbates Aß-induced cEC DR4/5-mediated apoptosis, barrier dysfunction, and angiogenesis defects. This study was the first to demonstrate that Hhcy specifically potentiates AßQ22-mediated activation of the DR4/5-mediated extrinsic apoptotic pathway in cECs, including DR4/5 expression, caspase 8/9/3 activation, cytochrome-c release and DNA fragmentation. Additionally, we revealed that Hhcy intensifies the deregulation of the same cEC junction proteins mediated by Aß, precipitating BBB permeability. Furthermore, Hhcy and AßQ22, impairing VEGF-A/VEGFR2 signaling and VEGFR2 endosomal trafficking, additively decrease cEC angiogenic capabilities. Overall, these results show that the presence of the CV risk factor Hhcy exacerbates Aß-induced cEC apoptosis, barrier dysfunction, and angiogenic impairment. This study reveals specific mechanisms through which amyloidosis and Hhcy jointly operate to produce brain EC dysfunction and death, highlighting new potential molecular targets against vascular pathology in comorbid AD/CAA and Hhcy conditions.


Assuntos
Peptídeos beta-Amiloides , Apoptose , Barreira Hematoencefálica , Células Endoteliais , Homocisteína , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Humanos , Peptídeos beta-Amiloides/metabolismo , Homocisteína/farmacologia , Homocisteína/metabolismo , Células Endoteliais/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Neovascularização Patológica/metabolismo , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/complicações
10.
Cells ; 13(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38334606

RESUMO

Elevation of the intermediate amino acid metabolite Homocysteine (Hcy) causes Hyperhomocysteinemia (HHcy), a metabolic disorder frequently associated with mutations in the methionine-cysteine metabolic cycle as well as with nutritional deficiency and aging. The previous literature suggests that HHcy is a strong risk factor for cardiovascular diseases. Severe HHcy is well-established to correlate with vascular pathologies primarily via endothelial cell death. Though moderate HHcy is more prevalent and associated with an increased risk of cardiovascular abnormalities in later part of life, its precise role in endothelial physiology is largely unknown. In this study, we report that moderate elevation of Hcy causes endothelial dysfunction through impairment of their migration and proliferation. We established that unlike severe elevation of Hcy, moderate HHcy is not associated with suppression of endothelial VEGF/VEGFR transcripts and ROS induction. We further showed that moderate HHcy induces a sub-lethal ER stress that causes defective endothelial migration through abnormal actin cytoskeletal remodeling. We also found that sub-lethal increase in Hcy causes endothelial proliferation defect by suppressing mitochondrial respiration and concomitantly increases glycolysis to compensate the consequential ATP loss and maintain overall energy homeostasis. Finally, analyzing a previously published microarray dataset, we confirmed that these hallmarks of moderate HHcy are conserved in adult endothelial cells as well. Thus, we identified adaptive UPR and metabolic rewiring as two key mechanistic signatures in moderate HHcy-associated endothelial dysfunction. As HHcy is clinically associated with enhanced vascular inflammation and hypercoagulability, identifying these mechanistic pathways may serve as future targets to regulate endothelial function and health.


Assuntos
Doenças Cardiovasculares , Doenças Vasculares , Humanos , Células Endoteliais/metabolismo , Homocisteína/metabolismo , Morte Celular , Doenças Vasculares/metabolismo , Doenças Cardiovasculares/metabolismo
11.
Nutrients ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337615

RESUMO

Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Hiper-Homocisteinemia , Camundongos , Animais , Humanos , Aterosclerose/metabolismo , Dieta , S-Adenosilmetionina/metabolismo , Ácido Fólico/efeitos adversos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Metaboloma , Homocisteína/metabolismo , Apolipoproteínas/metabolismo
12.
Microbiol Spectr ; 12(2): e0280323, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230928

RESUMO

Streptococcus suis (S. suis) has been increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Multidrug-resistant Streptococcus suis is becoming increasingly prevalent, and novel strategies to treat bacterial infections caused by these organisms are desperately needed. In the present study, an untargeted metabolomics analysis showed that the significant decrease in methionine content and the methionine biosynthetic pathway were significantly affected by the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis in drug-resistant S. suis. The addition of L-methionine restored the bactericidal activity of macrolides, doxycycline, and ciprofloxacin on S. suis in vivo and in vitro. Further studies showed that the exogenous addition of methionine affects methionine metabolism by reducing S-adenosylmethionine synthetase activity and the contents of S-adenosylmethionine, S-adenosyl homocysteine, and S-ribose homocysteine. Methionine can decrease the total methylation level and methylesterase activity in multidrug resistant S. suis. The drug transport proteins and efflux pump genes were significantly downregulated in S. suis by exogenous L-methionine. Moreover, the exogenous addition of methionine can reduce the survival of S. suis by affecting oxidative stress and metal starvation in bacteria. Thus, L-methionine may influence the development of resistance in S. suis through methyl metabolism and metal starvation. This study provides a new perspective on the mitigation of drug resistance in S. suis.IMPORTANCEBacterial antibiotic resistance has become a severe threat to human and animal health. Increasing the efficacy of existing antibiotics is a promising strategy against antibiotic resistance. Here, we report that L-methionine enhances the efficacy of macrolides, doxycycline, and ciprofloxacin antibiotics in killing Streptococcus suis, including multidrug-resistant pathogens. We investigated the mechanism of action of exogenous methionine supplementation in restoring macrolides in Streptococcus suis and the role of the methionine cycle pathway on methylation levels, efflux pump genes, oxidative stress, and metal starvation in Streptococcus suis. It provides a theoretical basis for the rational use of macrolides in clinical practice and also identifies a possible target for restoring drug resistance in Streptococcus suis.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Streptococcus suis/genética , Macrolídeos/uso terapêutico , Metionina/metabolismo , Metionina/uso terapêutico , Doxiciclina/uso terapêutico , Infecções Estreptocócicas/microbiologia , Antibacterianos/uso terapêutico , Ciprofloxacina , Homocisteína/metabolismo , Homocisteína/uso terapêutico
13.
Am J Clin Nutr ; 119(2): 371-383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992970

RESUMO

BACKGROUND: In 2005, the Institute of Medicine advised using methods other than nitrogen balance (NB) for determining protein requirements. Since then, protein requirements using indicator amino acid oxidation (IAAO) have been published and are higher than NB. Glutathione (GSH), a tripeptide of cysteine, glutamate, and glycine, is a principal antioxidant that can be used as a functional indicator of protein adequacy. OBJECTIVES: The aim of this study was to measure changes in erythrocyte GSH kinetics [fractional synthesis rate (FSR) and absolute synthesis rate (ASR)] in healthy adults following a range of protein intakes at and above the current recommendations. METHODS: Sixteen healthy adults [8 males and 8 females, aged 25.6 ± 0.9 y (mean ± SEM)] were studied at 4 of 6 protein intakes ranging from 0.6 to 1.5 g⋅kg-1⋅d-1. Erythrocyte GSH kinetics were assessed during a 7-h infusion of [U-13C2-15N]glycine following 2 d of adaptation to each protein intake. Blood and urine tests were performed to measure oxidative stress markers, plasma homocysteine, triglycerides, plasma amino acid concentrations, 5-L-oxoproline (5-OP), and urinary sulfate. The protein intake that maximized GSH synthesis was determined using mixed-effect change-point regression in R. Primary and secondary outcomes were analyzed using linear mixed-effects and repeated-measures analysis of variance with Tukey's post hoc test. RESULTS: The protein intake that maximized GSH FSR at 78%⋅d-1 was 1.0 g⋅kg-1⋅d-1 (95% confidence interval: 0.63, 1.39). GSH ASR was significantly lower at 0.6 and 0.8 g⋅kg-1⋅d-1 than at 1.5 g⋅kg-1⋅d-1 (2.03 and 2.17, respectively, compared with 3.71 mmol⋅L-1⋅d-1). Increasing the protein intake led to increased urinary sulfate but did not affect erythrocyte GSH concentration, plasma oxidative stress markers, triglycerides, homocysteine, or 5-OP. CONCLUSIONS: A protein intake of 1.0 g⋅kg-1⋅d-1 maximized GSH synthesis, which is in agreement with earlier IAAO-derived protein requirements of 0.93 to 1.2 g⋅kg-1⋅d-1. These findings suggest that recommendations based on NB (0.66 g⋅kg-1⋅d-1) may underestimate protein needs for adequate health. This trial was registered at clinicaltrials.gov as NCT02971046.


Assuntos
Eritrócitos , Glutationa , Adulto , Feminino , Humanos , Masculino , Eritrócitos/metabolismo , Glutationa/metabolismo , Glicina , Homocisteína/metabolismo , Necessidades Nutricionais , Oxirredução , Sulfatos/metabolismo , Triglicerídeos/metabolismo
14.
Biol Trace Elem Res ; 202(5): 2124-2132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37606879

RESUMO

Oxidative stress and inflammation have pivotal roles in gastric ulcer development caused by alcohol consumption. Trace element boric acid taken into the human and animal body from dietary sources displays strong antioxidant and anti-inflammatory functions. However, the mechanisms underlying these actions of boric acid remain unclear, and its effectiveness in preventing gastric lesions is unknown. Therefore, the present study was undertaken to evaluate the protective effects of boric acid in alcohol-induced gastric ulcer and elucidate its potential mechanisms. Gastric ulcer was induced by 75% oral ethanol administration in rats, and the effectiveness of prophylactic boric acid treatment at 100 mg/kg concentration was assessed by histopathological examination, ELISA assay and qRT-PCR. Gross macroscopic and histopathological evaluations revealed that boric acid alleviated gastric mucosal lesions. Boric acid decreased reactive oxygen species (ROS) and malondialdehyde (MDA) concentration and the overall oxidation state of the body while improving antioxidant status. It reduced the concentration of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). The mRNA expression of JAK2 and STAT3 was decreased while the expression of AMPK was increased with boric acid pretreatment. Moreover, Sema3A and PlexinA1 levels were elevated upon boric acid pretreatment, and homocysteine levels were reduced. Our results demonstrated that boric acid protects gastric mucosa from ethanol-induced damage by regulating oxidative and inflammatory responses. In addition, our findings suggested that the gastroprotective activity of boric acid could be attributed to its regulatory function in the IL-6/JAK2/STAT3 signaling modulated by AMPK and that Sema3A/PlxnA1 axis and homocysteine are potentially involved in this process.


Assuntos
Antiulcerosos , Ácidos Bóricos , Úlcera Gástrica , Humanos , Ratos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Antioxidantes/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases Ativadas por AMP , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia , Semaforina-3A/uso terapêutico , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mucosa Gástrica , Etanol/efeitos adversos , Transdução de Sinais , Homocisteína/metabolismo
15.
Biotechnol Prog ; 40(1): e3411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37985220

RESUMO

To study the relationship between the yield of 1,3-propanediol (1,3-PDO) and the flux change of the Clostridium butyricum metabolic pathway, an optimized calculation method based on dynamic flux balance analysis was used by combining genome-scale flux balance analysis with a kinetic model. A more comprehensive and extensive metabolic pathway was obtained by optimization calculations. The primary extended branches include: the dihydroxyacetone node, which enters the pentose phosphate pathway; the α-oxoglutarate node, which has synthetic metabolic pathways for glutamic acid and amino acids; and the serine and homocysteine nodes, which produce cystathionine before homocysteine enters the methionine cycle pathway. According to the expanded metabolic network, the flux distribution of key nodes in the metabolic pathway and the relationship between the flux distribution ratio of nodes and the yield of 1,3-PDO were analyzed. At the dihydroxyacetone node, the flux of dihydroxyacetone converted to dihydroxyacetone phosphate was positively correlated with the yield of 1,3-PDO. As an important intermediate product, the flux change in the metabolic pathway of α-oxoglutarate reacting with amino acids to produce glutamic acid is positively correlated with the yield. When pyruvate was used as the central node to convert into lactic acid and α-oxoglutarate, the proportion of branch flux was negatively correlated with the yield of 1,3-PDO. These studies provide a theoretical basis for the optimization and further study of the metabolic pathway of C. butyricum.


Assuntos
Clostridium butyricum , Clostridium butyricum/metabolismo , Fermentação , Di-Hidroxiacetona , Ácidos Cetoglutáricos/metabolismo , Glicerol/metabolismo , Propilenoglicóis , Propilenoglicol/metabolismo , Homocisteína/metabolismo , Glutamatos/metabolismo
16.
Mol Genet Metab ; 141(1): 108111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103461

RESUMO

Methionine dependence, the inability to grow in culture when methionine in the medium is replaced by its metabolic precursor homocysteine, occurs in many tumor cell lines. In most affected lines, the cause of methionine dependence is not known. An exception is the melanoma-derived cell line MeWo-LC1, in which hypermethylation of the MMACHC gene is associated with decreased MMACHC expression. Decreased expression results in decreased provision of the methylcobalamin cofactor required for activity of methionine synthase and thus decreased conversion of homocysteine to methionine. Analysis of data in the Cancer Cell Line Encyclopedia Archive demonstrated that MMACHC hypermethylation and decreased MMACHC expression occurred more frequently in melanoma cell lines when compared to other tumor cell lines. We further investigated methionine dependence and aspects of MMACHC function in a panel of six melanoma lines, including both melanoma lines with known methionine dependence status (MeWo, which is methionine independent, and A375, which is methionine dependent). We found that the previously unclassified melanoma lines HMCB, Colo829 and SH-4 were methionine dependent, while SK-Mel-28 was methionine independent. However, despite varying levels of MMACHC methylation and expression, none of the tested lines had decreased methylcobalamin and adenosylcobalamin synthesis as seen in MeWo-LC1, and the functions of both cobalamin-dependent enzymes methionine synthase and methylmalonyl-CoA mutase were intact. Thus, while melanoma lines were characterized by relatively high levels of MMACHC methylation and low expression, the defect in metabolism observed in MeWo-LC1 was unique, and decreased MMACHC expression was not a cause of methionine dependence in the other melanoma lines.


Assuntos
Melanoma , Metionina , Humanos , Metionina/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Racemetionina/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Homocisteína/metabolismo , Vitamina B 12/metabolismo , Oxirredutases/metabolismo
17.
Eur Rev Med Pharmacol Sci ; 27(21): 10631-10641, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37975388

RESUMO

OBJECTIVE: Polycystic ovary syndrome (PCOS) is a prevalent health condition that commonly affects adolescent girls and young women. The purpose of this study was to evaluate the correlation between levels of total glutathione (TG), reduced glutathione (GSH), superoxide dismutase (SOD), lipid peroxidation, and homocysteine with PCOS. PATIENTS AND METHODS: This study employed a cross-sectional case-control design, involving a target population of 305 Sudanese females. Among them, 205 individuals were categorized as cases, and 100 served as controls. The TG, GSH, SOD, lipid peroxidation, and homocysteine levels were measured in the serum of study participants through enzyme-linked immunosorbent essay. RESULTS: Total glutathione (1,174.5 ± 271.4 vs. 986.1 ± 191.5, p = 0.01), GSH (801.3 ± 132.2 vs. 748.6 ± 103.1, p = 0.007), SOD (225.2 ± 57.8 vs. 195.5 ± 49.6, p = 0.009), lipid peroxidation (3.4 ± 1.1 vs. 2.4 ± 0.7, p = 0.03), and homocysteine (14.9 ± 2.1 vs. 13.5 ± 1.6, p = 0.04), showed significant differences between the two groups (cases vs. controls). A moderate positive correlation between TG, GSH, SOD, lipid peroxidation, homocysteine, BMI, age, and duration of PCOS was observed. Furthermore, a strong positive correlation between BMI, age, and duration of PCOS was noted within the patient group. CONCLUSIONS: In conclusion, this study demonstrates that patients with PCOS have elevated levels of TG, GSH, SOD, lipid peroxidation, and homocysteine compared to the control group. These findings suggest a potential association between PCOS and oxidative stress, lipid metabolism, and homocysteine pathways. Moreover, the observed positive correlation with BMI, age, and duration of PCOS indicates the importance of these factors in disease progression.


Assuntos
Antioxidantes , Síndrome do Ovário Policístico , Adolescente , Humanos , Feminino , Antioxidantes/metabolismo , Síndrome do Ovário Policístico/metabolismo , Estudos Transversais , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Homocisteína/metabolismo
18.
J Biol Chem ; 299(12): 105449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949228

RESUMO

Cystathionine ß-synthase (CBS) catalyzes the committing step in the transsulfuration pathway, which is important for clearing homocysteine and furnishing cysteine. The transsulfuration pathway also generates H2S, a signaling molecule. CBS is a modular protein with a heme and pyridoxal phosphate-binding catalytic core, which is separated by a linker region from the C-terminal regulatory domain that binds S-adenosylmethionine (AdoMet), an allosteric activator. Recent cryo-EM structures reveal that CBS exists in a fibrillar form and undergoes a dramatic architectural rearrangement between the basal and AdoMet-bound states. CBS is the single most common locus of mutations associated with homocystinuria, and, in this study, we have characterized three clinical variants (K384E/N and M391I), which reside in the linker region. The native fibrillar form is destabilized in the variants, and differences in their limited proteolytic fingerprints also reveal conformational alterations. The crystal structure of the truncated K384N variant, lacking the regulatory domain, reveals that the overall fold of the catalytic core is unperturbed. M391I CBS exhibits a modest (1.4-fold) decrease while the K384E/N variants exhibit a significant (∼8-fold) decrease in basal activity, which is either unresponsive to or inhibited by AdoMet. Pre-steady state kinetic analyses reveal that the K384E/N substitutions exhibit pleiotropic effects and that the differences between them are expressed in the second half reaction, that is, homocysteine binding and reaction with the aminoacrylate intermediate. Together, these studies point to an important role for the linker in stabilizing the higher-order oligomeric structure of CBS and enabling AdoMet-dependent regulation.


Assuntos
Cistationina beta-Sintase , Mutação , Humanos , Regulação Alostérica/genética , Cristalografia por Raios X , Cistationina beta-Sintase/química , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Homocisteína/metabolismo , Homocistinúria/enzimologia , Homocistinúria/genética , Cinética , S-Adenosilmetionina/metabolismo , Conformação Proteica , Domínio Catalítico
19.
Sci Rep ; 13(1): 19438, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945738

RESUMO

To provide a theoretical basis for the prevention and treatment of atherosclerosis (As), the current study aimed to investigate the mechanism underlying the effect of homocysteine (Hcy) on inducing the lipid deposition and foam cell formation of the vascular smooth muscle cell (VSMC) via C1q/Tumor necrosis factor-related protein9 (CTRP9) promoter region Hypermethylation negative regulating endoplasmic reticulum stress (ERs). Therefore, apolipoprotein E deficient (ApoE-/-) mice were randomly divided into the control [ApoE-/- + normal diet (NC)] and high methionine [ApoE-/- + (normal diet supplemented with 1.7% methionine (HMD)] groups (n = 6 mice/group). Following feeding for 15 weeks, the serum levels of Homocysteine (Hcy), total cholesterol (TC), and triglyceride (TG) were measured using an automatic biochemical analyzer. HE and oil red O staining were performed on the aorta roots to observe the pathological changes. Additionally, immunofluorescence staining was performed to detect the protein expression levels of CTRP9, glucose-regulated protein 78 kD (GRP78), phosphorylated protein kinase RNA-like ER kinase (p-PERK), activating transcription factor 6a (ATF6a), phosphorylated inositol-requiring enzyme-1α (p-IRE1α), sterol regulatory element binding proteins-1c (SREBP1c) and sterol regulatory element binding proteins-2 (SREBP2) in VSMC derived from murine aortic roots. In vitro, VSMC was stimulated with 100 µmol/l Hcy. After transfection of plasmids with overexpression and interference of CTRP9, ERs agonist (TM) and inhibitor (4-PBA) were given to stimulate VSMC cells. HE staining and oil red O staining were used to observe the effect of Hcy stimulation on lipid deposition in VSMC. Additionally, The mRNA and protein expression levels of CTRP9, GRP78, PERK, ATF6a, IRE1α, SREBP1c, and SREBP2 in VSMC were detected by RT-qPCR and western blot analysis, respectively. Finally, The methylation modification of the CTRP9 promoter region has been studied. The NCBI database was used to search the promoter region of the CTRP9 gene, and CpG Island was used to predict the methylation site. After Hcy stimulation of VSMC, overexpression of DNMT1, and intervention with 5-Azc, assess the methylation level of the CTRP9 promoter through bisulfite sequencing PCR (BSP). The results showed that the serum levels of Hcy, TC, and TG in the ApoE-/- + HMD group were significantly increased compared with the ApoE-/- + NC group. In addition, HE staining and oil red O staining showed obvious AS plaque formation in the vessel wall, and a large amount of fat deposition in VSMC, thus indicating that the hyperhomocysteinemia As an animal model was successfully established. Furthermore, CTRP9 were downregulated, while GRP78, p-PERK, ATF6a, p-IRE1α, SREBP1c, SREBP2 was upregulated in aortic VSMC in the ApoE-/- + HMD group. Consistent with the in vivo results, Hcy can inhibit the expression of CTRP9 in VSMC and induce ERs and lipid deposition in VSMC. Meanwhile, the increased expression of CTRP9 can reduce ERs and protect the lipid deposition in Hcy induced VSMC. Furthermore, ERs can promote Hcy induced VSMC lipid deposition, inhibition of ERs can reduce Hcy induced VSMC lipid deposition, and CTRP9 may play a protective role in Hcy induced VSMC lipid deposition and foam cell transformation through negative regulation of ERs. In addition, The CTRP9 promoter in the Hcy group showed hypermethylation. At the same time as Hcy intervention, overexpression of DNMT1 increases the methylation level of the CTRP9 promoter, while 5-Azc can reduce the methylation level of the CTRP9 promoter. Finally, Hcy can up-regulate the expression of DNMT1 and down-regulate the expression of CTRP9. After overexpression of DNMT1, the expression of CTRP9 is further decreased. After 5-Azc inhibition of DNMT1, the expression of DNMT1 decreases, while the expression of CTRP9 increases. It is suggested that the molecular mechanism of Hcy inhibiting the expression of CTRP9 is related to the hypermethylation of the CTRP9 promoter induced by Hcy and regulated by DNMT1. 5-Azc can inhibit the expression of DNMT1 and reverse the regulatory effect of DNMT1 on CTRP9. Overall, the results of the present study suggested that Hcy induces DNA hypermethylation in the CTRP9 promoter region by up-regulating DNMT1 expression, and negatively regulates ERs mediated VSMC lipid deposition and foam cell formation. CTRP9 may potentially be a therapeutic target in the treatment of hyperhomocysteinemia and As.


Assuntos
Aterosclerose , Hiper-Homocisteinemia , Camundongos , Animais , Endorribonucleases/metabolismo , Chaperona BiP do Retículo Endoplasmático , Músculo Liso Vascular/metabolismo , Células Espumosas/metabolismo , Hiper-Homocisteinemia/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Aterosclerose/metabolismo , Regiões Promotoras Genéticas , Metionina/metabolismo , Apolipoproteínas E/metabolismo , Lipídeos/farmacologia , Homocisteína/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Estresse do Retículo Endoplasmático
20.
Zhonghua Fu Chan Ke Za Zhi ; 58(10): 774-782, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37849258

RESUMO

Objective: To characterize the relationship between the levels of plasma methyl donor and related metabolites (including choline, betaine, methionine, dimethylglycine and homocysteine) and fetal growth in twin pregnancies. Methods: A hospital-based cohort study was used to collect clinical data of 92 pregnant women with twin pregnancies and their fetuses who were admitted to Peking University Third Hospital from March 2017 to January 2018. Fasting blood was collected from the pregnant women with twin pregnancies (median gestational age: 18.9 weeks). The levels of methyl donors and related metabolites in plasma were quantitatively analyzed by high-performance liquid chromatography combined with mass spectrometry. The generalized estimation equation was used to analyze the relationship between maternal plasma methyl donors and related metabolites levels and neonatal outcomes of twins, and the generalized additive mixed model was used to analyze the relationship between maternal plasma methyl donors and related metabolites levels and fetal growth ultrasound indicators. Results: (1) General clinical data: of the 92 women with twin pregnancies, 66 cases (72%) were dichorionic diamniotic (DCDA) twin pregnancies, and 26 cases (28%) were monochorionic diamniotic (MCDA) twin pregnancies. The comparison of the levels of five plasma methyl donors and related metabolites in twin pregnancies with different basic characteristics showed that the median levels of plasma choline and betaine in pregnant women ≥35 years old were higher than those in pregnant women <35 years old, and the differences were statistically significant (all P<0.05). (2) Correlation between plasma methyl donor and related metabolites levels and neonatal growth indicators: after adjusting for confounding factors, plasma homocysteine level in pregnant women with twins was significantly negatively correlated with neonatal birth weight (ß=-47.9, 95%CI:-94.3- -1.6; P=0.043). Elevated methionine level was significantly associated with decreased risks of small for gestational age infants (SGA; OR=0.5, 95%CI: 0.3-0.9; P=0.021) and low birth weight infants (OR=0.6, 95%CI: 0.4-0.9; P=0.020). Increased homocysteine level was associated with increased risks of SGA (OR=1.5, 95%CI: 1.0-2.2; P=0.029) and inconsistent growth in twin fetuses (OR=1.9, 95%CI: 1.0-3.7; P=0.049). (3) Correlation between the levels of plasma methyl donors and related metabolites and intrauterine growth indicators of twins pregnancies: for every 1 standard deviation increase in plasma choline level in pregnant women with twin pregnancies, fetal head circumference, abdominal circumference, femoral length and estimated fetal weight in the second trimester increased by 1.9 mm, 2.6 mm, 0.5 mm and 20.1 g, respectively, and biparietal diameter, abdominal circumference and estimated fetal weight increased by 0.7 mm, 3.0 mm and 38.4 g in the third trimester, respectively, and the differences were statistically significant (all P<0.05). (4) Relationship between plasma methyl donor and related metabolites levels in pregnant women with different chorionicity and neonatal birth weight and length: the negative correlation between plasma homocysteine level and neonatal birth weight was mainly found in DCDA twin pregnancy (ß=-65.9, 95%CI:-110.6- -21.1; P=0.004). The levels of choline, betaine and dimethylglycine in plasma of MCDA twin pregnancy were significantly correlated with the birth weight and length of newborns (all P<0.05). Conclusion: Homocysteine level is associated with low birth weight in twins, methionine is associated with decreased risk of SGA, and choline is associated with fetal growth in the second and third trimesters of pregnancy.


Assuntos
Peso ao Nascer , Desenvolvimento Fetal , Gravidez de Gêmeos , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez/sangue , Gravidez/metabolismo , Betaína/sangue , Betaína/metabolismo , Peso ao Nascer/fisiologia , Colina/sangue , Colina/metabolismo , Estudos de Coortes , Desenvolvimento Fetal/fisiologia , Peso Fetal/fisiologia , Homocisteína/sangue , Homocisteína/metabolismo , Metionina/sangue , Metionina/metabolismo , Gravidez de Gêmeos/sangue , Gravidez de Gêmeos/fisiologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Trimestres da Gravidez/sangue , Trimestres da Gravidez/fisiologia , Resultado da Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA