Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Environ Res ; 239(Pt 1): 117251, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783323

RESUMO

To investigate the effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems, two individual reactors with the layered filling (L-SCPAD) and mixed filling (M-SCPAD) systems were established via sulfur and calcined pyrite. Effluent NO3--N concentration of the L-SCPAD and M-SCPAD systems was first increased to 6.44, 0.93 mg/L under 0.5 mg/L IBU exposure and gradually decreased to 1.66 mg/L, 0 mg/L under 4.0 mg/L IBU exposure, indicating that NO3--N removal performance of the M-SCPAD system was better than that of the L-SCPAD system. The variation of extracellular polymeric substances (EPS) characteristics demonstrated that more EPS was secreted in the M-SCPAD system compared to the L-SCPAD system, which contributed to forming a more stable biofilm structure and protecting microorganisms against the toxicity of IBU in the M-SCPAD system. Moreover, the increased electron transfer impedance and decreased cytochrome c implied that IBU inhibited the electron transfer efficiency of the L-SCPAD and M-SCPAD systems. The decreased adenosine triphosphate (ATP) and electron transfer system activity (ETSA) content showed that IBU inhibited metabolic activity, but the M-SCPAD system exhibited higher metabolic activity compared to the L-SCPAD system. In addition, the analysis of the bacterial community indicated a more stable abundance of nitrogen removal function bacteria (Bacillus) in the M-SCPAD system compared to the L-SCPAD system, which was conducive to maintaining a stable denitrification performance. The toxic response mechanism based on the biogeobattery effect was proposed in the SCPAD systems under IBU exposure. This study provided an important reference for the long-term toxic effect of IBU on the SCPAD systems.


Assuntos
Desnitrificação , Ibuprofeno , Ibuprofeno/toxicidade , Reatores Biológicos , Nitratos , Enxofre/química , Nitrogênio , Bactérias/metabolismo
2.
Curr Drug Targets ; 24(4): 361-370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36600619

RESUMO

BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs) are extensively used pharmaceuticals and tons of kilos are produced annually. Ibuprofen is one of the core medicines of non-steroidal anti-inflammatory drug and is primarily used for reduced pain, fever and tissue inflammation. It is also available for the treatment of osteoarthritis, rheumatoid arthritis, tendonitis, etc. It is still one of the most prescribed non-steroidal anti-inflammatory drugs in contemporary times. Although ibuprofen is a drug that has been used for years, it is also known to have various serious toxic effects. OBJECTIVE: In this review, we aimed to clarify toxic and genotoxic effects of Ibuprofen by analyzing major journal indexes. METHODS: The search was concentrated on the Web of Science, PubMed, Science Direct, Scopus, EBSCO Host, and Google Scholar databases, including the keyword combinations "genotoxicity", "toxicity", "teratogenicity", "side effects", "Ibuprofen". RESULTS: In the search procedure, a total number of 11738 studies about the topic were reviewed. Consequently, 42 studies were classified as appropriate according to the inclusion criteria and were therefore included in the review. The results presented and discussed in this review indicate that Ibuprofen might represent a toxic, genotoxic and teratogenic risk for non-target, freshwater invertebrates, vertebrates and toxic for human especially in overdose or misuse situation. CONCLUSION: Ibuprofen generally was found to be toxic, mutagenic, teratogenic and genotoxic agent in various organisms. In human cases mostly overdose or misuse was found to be toxic. However acute toxicity was also reported in some human clinical studies. More detailed genotoxicity, teratogenicity and especially carcinogenic potential should be investigated to reach full decision of its safety.


Assuntos
Artrite Reumatoide , Osteoartrite , Animais , Humanos , Ibuprofeno/toxicidade , Anti-Inflamatórios não Esteroides/toxicidade , Artrite Reumatoide/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Dano ao DNA
3.
Acta toxicol. argent ; 30(3): 156-162, dic. 2022.
Artigo em Português | LILACS | ID: biblio-1447116

RESUMO

Resumo Os contaminantes emergentes (CE), sao substáncias químicas (fármacos, produtos de higiene pessoal, drogas ilícitas entre outros) que estao presentes no ambiente como consequéncia da atividade antrópica e a falta de adequagao dos processos convencionais de tratamento de água e esgoto que nao logram remové-los eficientemente. Na atualidade o uso disseminado e desmedido de fármacos no tratamento da pandemia de COVID 19 tem aumentado a preocupagao dos impactos decorrentes da contaminagao por fármacos em ambientes aquáticos, consequéncia da liberagao no ambiente de grandes quantidades destes compostos. Assim, estudos de ecotoxicidade aquática sao fundamentais para avaliar o efeito de substáncias químicas tóxicas nas análises de impactos ambientais, sobretudo quando utilizado organismos representativos da biota aquática local, garantindo assim, maior confiabilidade e representatividade dos resultados obtidos. Diante disto, o objetivo deste trabalho foi validar a utili-dade do Dendrocephalus brasiliensis (Branchoneta) espécie autóctone do nordeste brasileiro como organismo teste para estudos de ecotoxicidade de fármacos utilizados no tratamento da COVID 19. Testes ecotoxicológicos utilizando D. brasiliensis foram realizados utilizando solugóes dos fármacos paracetamol, hidroxicloroquina, ivermectina e ibuprofeno, em concentragóes de 0,0025 até 600,0 mg/L seguindo os protocolos descritos pela Associagao Brasileira para Normas Técnicas (ABNT) para toxicidade aguda, protocolo padronizado para a realizagao do ensaio ecotoxicológicos utilizando como organismo teste a Daphnia magna, o qual foi empregada como referencia para comparar o padrao de resposta. Com os resultados obtidos foi realizado o cálculo da CL50-48h considerando como desfecho a morte dos organismos, ivermectina (< 0,0025 - < 0,0025), hidroxicloroquina (3,70 - 14,09), ibuprofeno (12,25 - 107,52), paracetamol (8,53 - 9,61), resultados CL50-48h mg/l D. magna e D. brasiliensis respectivamente. Os resultados obtidos mostraram um padrao diferenciado dependente da espécie e do fármaco analisado observando-se uma menor sensibilidade frente a exposigao da D. brasiliensis em comparagao a D. magna demonstrando a valia da D. brasiliensis como organismo teste. Pesquisas futuras dirigidas a analisar as potenciais interagóes destes fármacos em concentragóes ambientais reais sao necessárias para completar a validagao e ter uma aproximagao dos eventos acometidos em ambientes impactados por estes fármacos.


Abstract Emerging contaminants (EC) are chemical substances (pharmaceuticals, personal hygiene products, illicit drugs, among others) that are present in the environment because of human activity and the lack of adequacy of conventional water and sewage treatment processes that do not manage to remove them efficiently. Currently, the widespread and excessive use of drugs in the treatment of the COVID 19 pandemic has increased concern about the impacts resulting from contamination by drugs in aquatic environments, because of the release into the environment of large amounts of these compounds. Thus, aquatic ecotoxicity studies are essential to evaluate the effect of toxic chemical substances in the analysis of environmental impacts, especially when using representative organisms of the local aquatic biota, thus ensuring greater reliability and representativeness of the results obtained. In view of this, the objective of this work was to validate the usefulness of Dendrocephalus brasiliensis (Branchoneta), an autoch-thonous species from northeastern Brazil as a test organism for ecotoxicity studies of drugs used in the treatment of COVID 19. Ecotoxicological tests using D. brasiliensis were performed using drug solutions paracetamol, hydroxychloroquine, ivermectin and ibuprofen, in concentrations from 0.0025 to 600.0 mg/L following the protocols described by the Brazilian Association for Technical Norms (ABNT) for acute toxicity, standardized protocol for carrying out the ecotoxicological assay using as a test organism Daphnia magna, which was used as a reference to compare the response pattern. Based on the results obtained, the LC50-48h was calculated considering the death of organisms, ivermectin (< 0.0025 - < 0.0025), hydroxychloroquine (3.70 - 14.09), ibuprofen (12.25 - 107.52), paracetamol (8.53 - 9.61), results LC50-48h mg/l D. magna and D. brasiliensis respectively. The results obtained showed a differenti-ated pattern depending on the species and the analyzed drug, observing a lower sensitivity to exposure of D. brasiliensis compared to D. magna, demonstrating the value of D. brasiliensis as a test organism. Future research aimed at analyzing the potential interac-tions of these drugs at real environmental concentrations is necessary to complete the validation and to have an approximation of the events affected in environments impacted by these drugs.


Assuntos
Poluição Química da Água , Ibuprofeno/toxicidade , Testes de Toxicidade/métodos , Acetaminofen/toxicidade , Anostraca
4.
Int J Biol Macromol ; 221: 547-557, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36089084

RESUMO

Ibuprofen (IBU) is a non-steroidal anti-inflammatory drug released into water bodies causing toxic biological effects on living organisms. The current study aims to eliminate IBU from aqueous solutions by a novel carboxymethylcellulose/polypyrrole (CMC/PPY) composite with high removal efficiency. Pyrrole was polymerized to polypyrrole whose average size was about 20 nm on the CMC surface. The maximum removal percentage of IBU by CMC/PPY composite was optimized at initial concentration 10 mg/L, dosage 0.02 g, and pH 7 with adsorption capacity of 72.30 (mg/g) and removal of 83.17 %. IBU adsorption onto CMC/PPY theoretically fits into the Langmuir isotherm and Elovich-kinetic models. Fish and Phytotoxicity assessment were performed with zebrafish and seeds of Vigna mungo (VM) and Vigna radiata (VR). The toxicity study reveals that before adsorption, IBU shows high toxicity towards the zebrafish mortality (33 %), growth inhibition (58.52 % for VM, 60.84 % for VR), and germination (86.66 % for VM and 90 % for VR). As CMC/PPY adsorbs IBU, toxicity drastically decreases. Before adsorption, LC50 was 233.02 mg/L. After adsorption, the LC50 increases to 2325.07 mg/L as IBU molecules get adsorbed by CMC/PPY. These findings show the feasibility of preparing CMC/PPY composite to effectively remove pharmaceutical pollutant IBU from aqueous solutions with their toxicological assessment.


Assuntos
Ibuprofeno , Poluentes Químicos da Água , Animais , Ibuprofeno/toxicidade , Ibuprofeno/química , Polímeros/toxicidade , Carboximetilcelulose Sódica/toxicidade , Carboximetilcelulose Sódica/química , Pirróis/toxicidade , Peixe-Zebra , Poluentes Químicos da Água/química , Adsorção , Água/química , Preparações Farmacêuticas
5.
Environ Pollut ; 291: 118078, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534830

RESUMO

Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1-20 µg L-1) and Al (0.01-8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 µg L-1, 2.85 µg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Alumínio/metabolismo , Animais , Embrião não Mamífero/metabolismo , Ibuprofeno/metabolismo , Ibuprofeno/toxicidade , Estresse Oxidativo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-33992815

RESUMO

Despite the ubiquitous presence of multiple pollutants in aqueous environments have been extensively demonstrated, the ecological impact of chemical cocktails has not been studied in depth. In recent years, environmental studies have mainly focused on the risk assessment of individual chemical substances neglecting the effects of complex mixtures even though it has been demonstrated that combined effects exerted by pollutants might represent a greater hazard to the biocenosis. The current study evaluates the effects on the oxidative stress status induced by individual forms and binary mixtures of ibuprofen (IBU) and aluminum (Al) on brain, gills, liver and gut tissues of Danio rerio after long-term exposure to environmentally relevant concentrations (0.1-11 µg L-1 and 0.05 mg L-1- 6 mg L-1, respectively). Lipid peroxidation (LPO), Protein carbonyl content (PCC) and activity of Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GPX) were evaluated. Moreover, concentrations of both toxicants and the metabolite 2-OH-IBU were quantified on test water and tissues. Results show that ibuprofen (IBU) and aluminum (Al) singly promote the production of radical species and alters the oxidative stress status in all evaluated tissues of zebrafish, nevertheless, higher effects were elicited by mixtures as different interactions take place.


Assuntos
Alumínio/toxicidade , Antioxidantes/metabolismo , Ibuprofeno/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Alumínio/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/toxicidade , Encéfalo/efeitos dos fármacos , Química Encefálica , Relação Dose-Resposta a Droga , Esquema de Medicação , Trato Gastrointestinal/química , Brânquias/química , Ibuprofeno/química , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/química , Carbonilação Proteica , Testes de Toxicidade , Poluentes Químicos da Água/química , Peixe-Zebra
7.
Nanomedicine (Lond) ; 16(9): 741-758, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33856243

RESUMO

Aim: The low solubility and consequent poor bioavailability of ibuprofen (IBU) is a major drawback that can be overcome by anchoring IBU on ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) as effective multifunctional carriers for drug delivery. Methods: USPIONs were conjugated with glycerol phosphate (USPION-GP) and also co-conjugated with IBU (USPION-GP/IBU), and their in vivo toxicity and anti-inflammatory effects investigated. Phosphate buffer saline (control), IBU, USPION-GP and USPION-GP/IBU were intravenously administered 15 min before lipopolysaccharide-induced peritonitis in male Balb/c mice. Results: 4 h later, USPION bioconjugates did not appear to have caused toxicity to blood leukocytes or caused alterations in the spleen, liver or kidneys. Also, they inhibited lipopolysaccharide-induced neutrophil mobilization into the peritoneum. Conclusion: The absence of systemic toxicity and the unexpected anti-inflammatory action of USPION bioconjugates indicates that they could be a novel and effective approach to administer IBU and warrant further investigation.


Assuntos
Ibuprofeno , Nanopartículas Magnéticas de Óxido de Ferro , Animais , Anti-Inflamatórios/toxicidade , Anti-Inflamatórios não Esteroides/toxicidade , Disponibilidade Biológica , Ibuprofeno/toxicidade , Masculino , Camundongos , Solubilidade
8.
Eur J Pharmacol ; 902: 174098, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33848541

RESUMO

Current cystic fibrosis (CF) treatment strategies are primarily focused on oral/inhaled anti-inflammatories and antibiotics, resulting in a considerable treatment burden for CF patients. Therefore, combination treatments consisting of anti-inflammatories with antibiotics could reduce the CF treatment burden. However, there is an imperative need to understand the potential drug-drug interactions of these combination treatments to determine their efficacy. Thus, this study aimed to determine the interactions of the anti-inflammatory agent Ibuprofen with each of the CF-approved inhaled antibiotics (Tobramycin, Colistin and its prodrug colistimethate sodium/Tadim) and anti-bacterial and anti-inflammatory efficacy. Chemical interactions of the Ibuprofen:antibiotic combinations were elucidated using High-Resolution Mass-Spectrometry (HRMS) and 1H NMR. HRMS showed pairing of Ibuprofen and Tobramycin, further confirmed by 1H NMR whilst no pairing was observed for either Ibuprofen:Colistin or Ibuprofen:Tadim combinations. The anti-bacterial activity of the combinations against Pseudomonas aeruginosa showed that neither paired nor non-paired Ibuprofen:antibiotic therapies altered the anti-bacterial activity. The anti-inflammatory efficacy of the combination therapies was next determined at two different concentrations (Low and High) using in vitro models of NuLi-1 (healthy) and CuFi-1 (CF) cell lines. Differential response in the anti-inflammatory efficacy of Ibuprofen:Tobramycin combination was observed between the two concentrations due to changes in the structural conformation of the paired Ibuprofen:Tobramycin complex at High concentration, confirmed by 1H NMR. In contrast, the non-pairing of the Ibuprofen:Colistin and Ibuprofen:Tadim combinations showed a significant decrease in IL-8 secretion at both the concentrations. Importantly, all antibiotics alone showed anti-inflammatory properties, highlighting the inherent anti-inflammatory properties of these antibiotics.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Colistina/farmacologia , Fibrose Cística/tratamento farmacológico , Tobramicina/farmacologia , Antibacterianos/química , Antibacterianos/toxicidade , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colistina/análogos & derivados , Colistina/química , Colistina/toxicidade , Combinação de Medicamentos , Humanos , Ibuprofeno/química , Ibuprofeno/farmacologia , Ibuprofeno/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-8/metabolismo , Lipopolissacarídeos/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/química , Tobramicina/toxicidade
9.
Reprod Toxicol ; 96: 349-358, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32800787

RESUMO

Despite the Cox inhibitory anti-inflammatory and antipyretic effects of most widely used non-steroidal anti-inflammatory drugs (NSAIDs), such as Ibuprofen, their chronic use is associated with a plethora of patho-physiological insults. One such toxic effect on testicular tissues is not well studied and the underlying molecular mechanisms remain unexplored. Thus, the current study is designed to evaluate the antioxidant properties of essential trace element selenium (Se) to ameliorative Ibuprofen associated testicular toxic effects. Adult male Wistar rats were divided into 3 groups and fed on diets containing different concentrations of sodium selenite, viz. 0.01 mg/kg (Se- deficient), 0.2 mg/kg (Se-adequate), or 0.5 mg/kg (Se- supplemented) for 8 weeks. After diet feeding schedule, each group was divided into two subgroups i.e., with or without the treatment of Ibuprofen (120 mg/kg Bw). The protective effect of Se was evaluated by measuring testicular Se and selenoproteins status, spermatogenic markers, histopathology and testicular redox status. Ibuprofen diminished seminal volume, sperm count, sperm motility, which correlated well increased testicular reactive oxygen species. Se deficiency exacerbated these detrimental effects of ibuprofen by increasing oxidative stress. Alternatively, Se supplementation through antioxidant enzymes mediated protective effects. Se as essential antioxidant selenoproteins ameliorates Ibuprofen induced male reproductive toxicity.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Ibuprofeno/toxicidade , Substâncias Protetoras/uso terapêutico , Selenito de Sódio/uso terapêutico , Testículo/efeitos dos fármacos , Animais , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Masculino , Oxirredução , Oxirredutases/metabolismo , Substâncias Protetoras/farmacocinética , Substâncias Protetoras/farmacologia , Ratos Wistar , Selenito de Sódio/sangue , Selenito de Sódio/farmacocinética , Selenito de Sódio/farmacologia , Espermatozoides/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia
10.
Ecotoxicol Environ Saf ; 188: 109892, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31732272

RESUMO

Increasing quantities of pharmaceutical waste in the environment have disrupted the balance of ecosystems, and may have subsequent effects on human health. Although a handful of previous studies have shown the impacts of pharmaceutically active compounds on the environment, the toxicological effects of their degradation products remain largely unknown. In the current study, the photo-degradation products of environmental ibuprofen were assessed for both ecotoxicological and human health effects using a series of in vitro assays. Here, six of the major degradation products are synthesized with high purity (>98%) and characterized with 1HNMR, 13CNMR, FT-IR and HRMS. To evaluate human health effects, three gut microbiota species, Lactobacillus acidophilus, Enterococcus faecalis and Escherichia coli, and two human cell lines, HEK293T and HepG2, are exposed to various concentrations of ibuprofen and its degradation products. On L. acidophilus, the ibuprofen degradation product (±)-(2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol shows a greater toxic effect while ibuprofen enhances its growth at lower concentrations. At higher concentrations, ibuprofen shows at least a 2-fold higher toxicity compared to that of its degradation products. However, E. faecalis shows little or no effect upon exposure to these compounds. An induction of the SOS response in E. coli is observed but limited to only ibuprofen and 4-acetylbenzoic acid. In human cell line studies, survival of both HEK293T and HepG2 cell lines is profoundly impaired by the photo-degradation products of (±)- (2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, (±)-(2R,3S)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, and (±)-1-(4-(1-hydroxy-2methylpropyl)phenyl)ethan-1-one. In this work, the bioluminescence bacterium, Aliivibrio fischeri, is used as a model to assess environmental impact. Both ibuprofen and its degradation products inhibit the growth of this gram-negative bacteria with the primary compound showing the most significant impact. Overall, our results highlight that some of the degradation products of ibuprofen can be more toxic to human kidney cell line and liver cell line than the parent compound while ibuprofen can be more toxic to human gut microbiota and A. fischeri than ibuprofen degradation products.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Ibuprofeno/toxicidade , Fotólise , Poluentes Químicos da Água/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ecossistema , Ecotoxicologia , Microbioma Gastrointestinal/genética , Células HEK293 , Células Hep G2 , Humanos , Ibuprofeno/química , Resposta SOS em Genética/efeitos dos fármacos , Poluentes Químicos da Água/química
11.
Sci Rep ; 8(1): 13512, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202028

RESUMO

The efficiency of advanced oxidation processes (AOPs) for disposing of non-steroidal anti-inflammatory drugs (NSAIDs) has been widely studied, but the environmental fates and effects of the NSAIDs and their degradation products (DPs) are poorly understood. In this study, the efficiency of ultraviolet light/Na2S2O8 (UV/PS) in degrading three NSAIDs-diclofenac, naproxen, and ibuprofen-and the toxicity of their DPs on Cyprinus carpio (C. carpio) was investigated. Results showed that the three NSAIDs can be completely removed (removal rate > 99.9%) by UV/PS, while the mineralization rate of the NSAIDs was only 28%. When C. carpio were exposed to 0.1 µM NSAIDs, 10 µM persulfate (PS), and 0.1 µM DPs of the NSAIDs for 96 h, respectively, the toxicity effects are as the NSAID DPs > PS > NSAIDs. Research results into the time-dependent effect of NSAID DPs on C. carpio demonstrated that obvious toxicity effects were observed in the first 48 hours, and the toxicity effects strengthened over time. NSAID DPs may have more severe toxicity effects than NSAIDs on C. carpio; therefore, the operating conditions of UV/PS must be optimized to eliminate the ecotoxicity of DPs.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Carpas , Poluentes Ambientais/toxicidade , Doenças dos Peixes/prevenção & controle , Purificação da Água/métodos , Animais , Anti-Inflamatórios não Esteroides/química , Diclofenaco/química , Diclofenaco/efeitos da radiação , Diclofenaco/toxicidade , Monitorização de Parâmetros Ecológicos , Poluentes Ambientais/química , Poluentes Ambientais/efeitos da radiação , Poluição Ambiental/prevenção & controle , Doenças dos Peixes/induzido quimicamente , Ibuprofeno/química , Ibuprofeno/efeitos da radiação , Ibuprofeno/toxicidade , Eliminação de Resíduos de Serviços de Saúde , Naproxeno/química , Naproxeno/efeitos da radiação , Naproxeno/toxicidade , Oxirredução , Fotólise/efeitos dos fármacos , Fotólise/efeitos da radiação , Compostos de Sódio/química , Sulfatos/química , Testes de Toxicidade Aguda , Raios Ultravioleta , Águas Residuárias/química , Águas Residuárias/toxicidade
12.
Environ Toxicol Pharmacol ; 59: 105-113, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29558665

RESUMO

Ibuprofen is a pharmaceutical drug widely used by the global population and it has been found in aquatic ecosystems in several countries. This study evaluated the effects of ibuprofen in environmental concentrations (0, 0.1, 1 and 10 µg/L) on the freshwaterspecies Rhamdia quelen exposed for 14 days. In the posterior kidney, ibuprofen increased glutathione-S-transferase activity in all groups exposed. Furthermore, increased glutathione peroxidase activity and the levels of reduced glutathione in the group exposed to 10 µg/L. Ibuprofen decreased the carbonic anhydrase activity in the posterior kidney in all exposed groups, and increased the activity in the gills in group exposed to 0.1 µg/L. The levels of plasma magnesium increased in groups exposed to 0.1 and 1 µg/L. In the blood, ibuprofen decreased the white blood cell count in groups exposed to 0.1 e 1.0 µg/L. Therefore, these results indicated that ibuprofen caused nephrotoxicity and demonstrated immunosuppressive effect in Rhamdia quelen.


Assuntos
Peixes-Gato/metabolismo , Ibuprofeno/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Anidrases Carbônicas/metabolismo , Peixes-Gato/genética , Ensaio Cometa , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Osmorregulação/efeitos dos fármacos , Oxirredutases/metabolismo
13.
Water Res ; 131: 22-32, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29258002

RESUMO

The growing medical and personal needs of human populations have escalated release of pharmaceuticals and personal care products into our natural environment. This work investigates abiotic degradation pathways of a particular PPCP, ibuprofen, in the presence of a major mineral component of soil (kaolinite clay), as well as the health effects of the primary compound and its degradation products. Results from these studies showed that the rate and extent of ibuprofen degradation is greatly influenced by the presence of clay particles and solar radiation. In the absence of solar radiation, the dominant reaction mechanism was observed to be the adsorption of ibuprofen onto clay surface where surface silanol groups play a key role. In contrast, under solar radiation and in the presence of clay particles, ibuprofen breaks down to several fractions. The decay rates were at least 6-fold higher for irradiated samples compared to those of dark conditions. Toxicity of primary ibuprofen and its secondary residues were tested on three microorganisms: Bacillus megaterium, Pseudoaltermonas atlantica; and algae from the Chlorella genus. The results from the biological assays show that primary PPCP is more toxic than the mixture of secondary products. Overall, however, biological assays carried out using only 4-acetylbenzoic acid, the most abundant secondary product, show a higher toxic effect on algae compared to its parent compound.


Assuntos
Ibuprofeno/química , Ibuprofeno/toxicidade , Poluentes do Solo/toxicidade , Adsorção , Bacillus megaterium/efeitos dos fármacos , Biodegradação Ambiental , Chlorella/efeitos dos fármacos , Caulim , Minerais/química , Poluentes do Solo/química , Testes de Toxicidade/métodos
14.
Ecotoxicol Environ Saf ; 148: 693-701, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29172150

RESUMO

The increasing presence of pharmaceuticals in aquatic environments in the last decades, derived from human and veterinary use, has become an important environmental problem. Previous studies have shown that ibuprofen (IB) and carbamazepine (CBZ) modify physiological and biochemical processes in Senegalese sole (Solea senegalensis) in a temperature-dependent manner. In other vertebrates, there is evidence that both of these pharmaceuticals interfere with the 'arachidonic acid (AA) cascade', which is responsible for the biosynthesis of numerous enzymes that are involved in the osmoregulatory process. The present work aims to study the temperature-dependent effects of these two pharmaceuticals on several biochemical and molecular parameters in Senegalese sole. Regarding osmoregulation, Na+, K+ -ATPase enzyme activity was determined in the gills, kidney and intestine, and the expressions of both Na+, K+ -ATPase 1α-subunit isoforms (ATP1A1a and ATP1A1b) were quantified in gills. Gill prostaglandin-endoperoxide synthase-2 (PTGS2) gene expression and fatty acid composition were selected to determine the interference of both pharmaceuticals with the AA cascade. Senegalese sole juveniles, acclimatised at 15°C or 20°C, were exposed through intraperitoneal injection to IB (10mg/kg) and CBZ (1mg/kg) for 48h. Non-injected fish (Control) and those injected with the carrier (sunflower oil; S.O.), acclimated at each of the two temperatures, were used for comparison. The results show that IB directly affected the osmoregulatory mechanisms that alter gill and intestine Na+, K+ -ATPase activities. In addition, the copy number of ATP1A1a was higher at 20°C than at 15°C, which could be a direct response to the temperature variation. The gene expression of PTGS2 was affected by neither drug administration nor acclimation temperature. Nevertheless, detailed analysis of AA and eicosapentaenoic acid (EPA) percentages revealed a CBZ-derived effect in the fatty acid composition of the gills.


Assuntos
Aclimatação , Carbamazepina/toxicidade , Ácidos Graxos/metabolismo , Ibuprofeno/toxicidade , Transporte de Íons/efeitos dos fármacos , Temperatura , Poluentes Químicos da Água/toxicidade , Animais , Fenômenos Bioquímicos , Linguados/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Osmorregulação , Prostaglandina-Endoperóxido Sintases/metabolismo , Isoformas de Proteínas , ATPase Trocadora de Sódio-Potássio/metabolismo , Equilíbrio Hidroeletrolítico
15.
J Cell Physiol ; 233(3): 2304-2312, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28710861

RESUMO

Ketoprofen L-lysine salt (KLS), is widely used due to its analgesic efficacy and tolerability, and L-lysine was reported to increase the solubility and the gastric tolerance of ketoprofen. In a recent report, L-lysine salification has been shown to exert a gastroprotective effect due to its specific ability to counteract the NSAIDs-induced oxidative stress and up-regulate gastroprotective proteins. In order to derive further insights into the safety and efficacy profile of KLS, in this study we additionally compared the effect of lysine and arginine, another amino acid counterion commonly used for NSAIDs salification, in control and in ethanol challenged human gastric mucosa model. KLS is widely used for the control of post-surgical pain and for the management of pain and fever in inflammatory conditions in children and adults. It is generally well tolerated in pediatric patients, and data from three studies in >900 children indicate that oral administration is well tolerated when administered for up to 3 weeks after surgery. Since only few studies have so far investigated the effect of ketoprofen on gastric mucosa maintenance and adaptive mechanisms, in the second part of the study we applied the cMap approach to compare ketoprofen-induced and ibuprofen-induced gene expression profiles in order to explore compound-specific targeted biological pathways. Among the several genes exclusively modulated by ketoprofen, our attention was particularly focused on genes involved in the maintenance of gastric mucosa barrier integrity (cell junctions, morphology, and viability). The hypothesis was further validated by Real-time PCR.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Arginina/farmacologia , Células Epiteliais/efeitos dos fármacos , Etanol/toxicidade , Mucosa Gástrica/efeitos dos fármacos , Ibuprofeno/farmacologia , Cetoprofeno/análogos & derivados , Lisina/análogos & derivados , Anti-Inflamatórios não Esteroides/toxicidade , Arginina/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Combinação de Medicamentos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Ibuprofeno/toxicidade , Cetoprofeno/farmacologia , Cetoprofeno/toxicidade , Lisina/farmacologia , Lisina/toxicidade , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
16.
Artigo em Inglês | MEDLINE | ID: mdl-28757214

RESUMO

Pharmaceutical and personal care products (PPCPs) are the environmental pollutants of growing concern. The aim of this study was to indicate the effects of typical PPCPs on the marsh frog Pelophylax ridibundus. We treated male frogs with waterborne ibuprofen (IBU, 250ng·L-1), triclosan (TCS, 500ng·L-1), or estrone (E1, 100ng·L-1) for 14days. Common vulnerability of the frogs was detected from dramatic decrease of Zn, total and metalated metallothionein (MT) concentrations, Zn/Cu ratio, the elevation of activity of glutathione-S-transferase, cathepsin D and DNA instability in the liver, the depletion of cholinesterase in the brain and cortisol in the blood plasma in all exposures. Nevertheless, lipofuscin concentration in the liver was always decreased. The groups were best distinguished by cytochrome P450 (CYP450) activity determined by ELISA. The exposure to IBU caused lesser damage, but elevated the levels of oxyradicals and glutathione (GSH and GSSG) and lysosomal membrane instability. Exposures to TCS and E1 provoked the endocrine disturbance (increased levels of vitellogenin and thyrotropin in blood plasma), decreased lactate dehydrogenase activity and increased level of pyruvate in the liver. TCS caused the increase of GSSG by 7.3 times and lactate levels. Only E1 lead to decrease of deiodinase activity in the liver, activation of CYP450 and caspase-3 and efflux of cathepsin D from lysosomes. Spectrophotometric and ELISA assays of MTs and CYP450 gave distinct results in E1-group. Broad disruption of the hormonal pathways caused by E1 could be of concern for the health status of frogs in their habitats.


Assuntos
Estrona/toxicidade , Ibuprofeno/toxicidade , Ranidae/fisiologia , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Anti-Infecciosos Locais/toxicidade , Anti-Inflamatórios não Esteroides/toxicidade , Biomarcadores/sangue , Estrogênios/toxicidade , Metalotioneína/metabolismo , Estresse Fisiológico/efeitos dos fármacos
17.
J Biomater Sci Polym Ed ; 28(16): 1874-1887, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28693380

RESUMO

To improve the bioavailability of ibuprofen (IBU), we developed a novel binary complex of poly(PEGMA-co-MAA) hydrogel and IBU-loaded PLGA nanoparticles (IBU-PLGA NPs@hydrogels) as an oral intestinal targeting drug delivery system (OIDDS). The IBU-loaded PLGA NPs and pH-sensitive hydrogels were obtained via the solvent evaporation method and radical polymerization, respectively. The final OIDDS was obtained by immersing the hydrogel chips in the IBU-loaded PLGA NPs solutions (pH 7.4) for 3 d. The size distribution and morphology of cargo-free NPs were studied by laser granularity analyzer and transmission electron microscope (TEM). The inner structures of the pH-sensitive hydrogel chips were observed with an S-4800 scanning electron microscope (SEM). The distribution states of IBU in the OIDDS were also studied with X-ray diffraction (XRD) and differential scanning calorimetry (DSC). TEM photographs illustrated that the PLGA NPs had a round shape with an average diameter about 100 nm. Fourier transform infrared spectrum (FTIR) confirmed the synthesis of poly(PEGMA-co-MAA) hydrogel. The SEM picture showed that the final hydrogel had 3D net-work structures. Moreover, the poly(PEGMA-co-MAA) hydrogel showed an excellent pH-sensitivity. The XRD and DSC curves suggested that IBU distributed in the OIDDS with an amorphous state. The cumulated release profiles indicated that the final OIDDS could release IBU in alkaline environment (e.g. intestinal tract) at a sustained manner. Therefore, the novel OIDDS could improve the oral bioavailability of IBU, and had a potential application in drug delivery.


Assuntos
Ibuprofeno/administração & dosagem , Ibuprofeno/química , Ácido Láctico/química , Metacrilatos/administração & dosagem , Metacrilatos/química , Nanopartículas/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Ácido Poliglicólico/química , Células 3T3 , Administração Oral , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Ibuprofeno/toxicidade , Metacrilatos/toxicidade , Camundongos , Polietilenoglicóis/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
18.
Mater Sci Eng C Mater Biol Appl ; 74: 485-492, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28254322

RESUMO

In this work, biobased fibrous membranes with micro- and nano-fibers are fabricated for use as drug delivery carries because of their biocompatibility, eco-friendly approach, and potential for scale-up. The cellulose micro-/nano-fiber (CMF) matrices were prepared by electrospinning of pulp in an ionic liquid, 1-butyl-3-methylimidazolium chloride. A model drug, ibuprofen (IBU), was loaded on the CMF matrices by a simple immersing method. The amount of IBU loading was about 6% based on the weight of cellulose membrane. The IBU-loaded CMF matrices were characterized by Fourier-transform infrared spectroscopy, thermal gravimetric analysis, and scanning electron microscopy. The test of ibuprofen release was carried out in an acetate buffer solution of pH5.5 and examined by UV-Vis spectroscopy. Release profiles from the CMF matrices indicated that the drug release rate could be determined by a Fickian diffusion mechanism.


Assuntos
Anti-Inflamatórios não Esteroides/química , Celulose/química , Portadores de Fármacos/química , Ibuprofeno/química , Nanofibras/química , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Ibuprofeno/metabolismo , Ibuprofeno/toxicidade , Líquidos Iônicos/química , Camundongos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Molhabilidade , Difração de Raios X
19.
Arh Hig Rada Toksikol ; 67(1): 1-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27092633

RESUMO

Interindividual variability in drug metabolism is an important cause of adverse drug reactions and variability in drug efficiency. Polymorphisms of cytochrome P450 (CYPs) genes have a significant effect on drug metabolism and toxicity. This review brings an update about how genetic polymorphisms of CYP2C8 and CYP2C9 enzymes affect the disposition and clinical outcomes of ibuprofen and diclofenac, two of the most common pain relievers. The most common side effects associated with the influence of CYP2C8*3 and CYP2C9*2*3 variants on ibuprofen and diclofenac pharmacokinetics are hepatotoxicity and gastrointestinal bleeding. CYP genotyping may therefore identify patients at increased risk of these adverse reactions, and these patients could have their doses adjusted or start receiving another NSAID that does not share the same metabolic pathways with ibuprofen or diclofenac. However, before genotyping is introduced into regular clinical practice, more research is needed to evaluate the effectiveness of this strategy in improving treatment with ibuprofen and diclofenac.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/metabolismo , Diclofenaco/toxicidade , Ibuprofeno/metabolismo , Ibuprofeno/toxicidade , Anti-Inflamatórios não Esteroides/toxicidade , Citocromo P-450 CYP2C8/genética , Predisposição Genética para Doença , Humanos , Úlcera Péptica/induzido quimicamente , Polimorfismo Genético
20.
J Pharm Pharmacol ; 67(10): 1406-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26099455

RESUMO

OBJECTIVES: 2-Arylpropionic acid (profen) drugs are associated with severe hepatotoxicity; however, risk factors are still poorly understood. Acyl-coenzyme A (acyl-CoA) thioesters of profen drugs play a more important role in the covalent binding to rat hepatocyte proteins than the respective acyl-glucuronides. Therefore, we examined whether acyl-glucuronides, acyl-CoA thioesters and oxidative metabolites of profen drugs stereoselectively participated in liver damage. METHODS: Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) leakage from three-dimensional cultured rat hepatocytes. KEY FINDINGS: LDH leakage was not induced by R-2-phenylpropionic acid and R-ibuprofen greatly forming acyl-CoA thioesters. S-Naproxen metabolized mainly by Uridine 5'-diphosphate (UDP)-glucuronosyl-transferase did not enhance LDH leakage. However, flurbiprofen (FLP) induced LDH leakage. A selective cytochrome P450 (CYP) 2C11 inhibitor suppressed 40-50% of the R-FLP and S-FLP-induced cytotoxicity. Borneol non-stereoselectively accelerated the FLP-induced cytotoxicity. The R-FLP-induced cytotoxicity decreased intracellular adenosine triphosphate (ATP) levels to 50% of untreated hepatocytes. An inhibitor of mitochondrial permeability transition pore, cyclosporin A (Cys A), rescued ATP levels and LDH leakage back to control levels. CONCLUSION: The reactive acyl-CoA thioesters and acyl-glucuronides were not associated with liver damage, denying one of the leading hypotheses. CYP metabolism of FLP non-stereoselectively participated in Cys A-sensitive cytotoxicity, suggesting mitochondrial injury.


Assuntos
Ciclosporina/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Flurbiprofeno/toxicidade , Hepatócitos/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/metabolismo , Ibuprofeno/toxicidade , L-Lactato Desidrogenase/metabolismo , Masculino , Mitocôndrias/patologia , Naproxeno/toxicidade , Fenilpropionatos/toxicidade , Ratos , Ratos Wistar , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA