Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Ther ; 32(3): 619-636, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38310355

RESUMO

Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked recessive lysosomal storage disorder due to a mutation in the lysosomal enzyme iduronate-2-sulfatase (IDS) gene. IDS deficiency leads to a progressive, multisystem accumulation of glycosaminoglycans (GAGs) and results in central nervous system (CNS) manifestations in the severe form. We developed up to clinical readiness a new hematopoietic stem cell (HSC) gene therapy approach for MPS II that benefits from a novel highly effective transduction protocol. We first provided proof of concept of efficacy of our approach aimed at enhanced IDS enzyme delivery to the CNS in a murine study of immediate translational value, employing a lentiviral vector (LV) encoding a codon-optimized human IDS cDNA. Then the therapeutic LV was tested for its ability to efficiently and safely transduce bona fide human HSCs in clinically relevant conditions according to a standard vs. a novel protocol that demonstrated superior ability to transduce bona fide long-term repopulating HSCs. Overall, these results provide strong proof of concept for the clinical translation of this approach for the treatment of Hunter syndrome.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Animais , Camundongos , Mucopolissacaridose II/terapia , Mucopolissacaridose II/tratamento farmacológico , Iduronato Sulfatase/genética , Iduronato Sulfatase/metabolismo , Terapia Genética , Sistema Nervoso Central/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Células-Tronco Hematopoéticas/metabolismo
2.
Hum Gene Ther ; 35(7-8): 256-268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38085235

RESUMO

Deficiency of iduronate 2-sulfatase (IDS) causes Mucopolysaccharidosis type II (MPS II), a lysosomal storage disorder characterized by systemic accumulation of glycosaminoglycans (GAGs), leading to a devastating cognitive decline and life-threatening respiratory and cardiac complications. We previously found that hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) employing tagged IDS with insulin-like growth factor 2 (IGF2) or ApoE2, but not receptor-associated protein minimal peptide (RAP12x2), efficiently prevented brain pathology in a murine model of MPS II. In this study, we report on the effects of HSPC-LVGT on peripheral pathology and we analyzed IDS biodistribution. We found that HSPC-LVGT with all vectors completely corrected GAG accumulation and lysosomal pathology in liver, spleen, kidney, tracheal mucosa, and heart valves. Full correction of tunica media of the great heart vessels was achieved only with IDS.IGF2co gene therapy, while the other vectors provided near complete (IDS.ApoE2co) or no (IDSco and IDS.RAP12x2co) correction. In contrast, tracheal, epiphyseal, and articular cartilage remained largely uncorrected by all vectors tested. These efficacies were closely matched by IDS protein levels following HSPC-LVGT. Our results demonstrate the capability of HSPC-LVGT to correct pathology in tissues of high clinical relevance, including those of the heart and respiratory system, while challenges remain for the correction of cartilage pathology.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Animais , Camundongos , Mucopolissacaridose II/genética , Ácido Idurônico/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Distribuição Tecidual , Iduronato Sulfatase/genética , Terapia Genética/métodos , Cartilagem/metabolismo , Cartilagem/patologia
3.
Hum Gene Ther ; 35(7-8): 243-255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37427450

RESUMO

Mucopolysaccharidosis type II (MPSII) is a rare pediatric X-linked lysosomal storage disease, caused by heterogeneous mutations in the iduronate-2-sulfatase (IDS) gene, which result in accumulation of heparan sulfate (HS) and dermatan sulfate within cells. This leads to severe skeletal abnormalities, hepatosplenomegaly, and cognitive deterioration. The progressive nature of the disease is a huge obstacle to achieve full neurological correction. Although current therapies can only treat somatic symptoms, a lentivirus-based hematopoietic stem cell gene therapy (HSCGT) approach has recently achieved improved central nervous system (CNS) neuropathology in the MPSII mouse model following transplant at 2 months of age. In this study, we evaluate neuropathology progression in 2-, 4- and 9-month-old MPSII mice, and using the same HSCGT strategy, we investigated somatic and neurological disease attenuation following treatment at 4 months of age. Our results showed gradual accumulation of HS between 2 and 4 months of age, but full manifestation of microgliosis/astrogliosis as early as 2 months. Late HSCGT fully reversed the somatic symptoms, thus achieving the same degree of peripheral correction as early therapy. However, late treatment resulted in slightly decreased efficacy in the CNS, with poorer brain enzymatic activity, together with reduced normalization of HS oversulfation. Overall, our findings confirm significant lysosomal burden and neuropathology in 2-month-old MPSII mice. Peripheral disease is readily reversible by LV.IDS-HSCGT regardless of age of transplant, suggesting a viable treatment for somatic disease. However, in the brain, higher IDS enzyme levels are achievable with early HSCGT treatment, and later transplant seems to be less effective, supporting the view that the earlier patients are diagnosed and treated, the better the therapy outcome.


Assuntos
Iduronato Sulfatase , Sintomas Inexplicáveis , Mucopolissacaridose II , Doenças do Sistema Nervoso , Humanos , Criança , Camundongos , Animais , Lactente , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Iduronato Sulfatase/genética , Iduronato Sulfatase/uso terapêutico , Iduronato Sulfatase/metabolismo , Heparitina Sulfato , Terapia Genética/métodos , Células-Tronco/metabolismo
4.
Hum Gene Ther ; 35(7-8): 232-242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37212263

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a mutation in the IDS gene, resulting in deficiency of the enzyme iduronate-2-sulfatase (IDS) causing heparan sulfate (HS) and dermatan sulfate (DS) accumulation in all cells. This leads to skeletal and cardiorespiratory disease with severe neurodegeneration in two thirds of sufferers. Enzyme replacement therapy is ineffective at treating neurological disease, as intravenously delivered IDS is unable to cross the blood-brain barrier (BBB). Hematopoietic stem cell transplant is also unsuccessful, presumably due to insufficient IDS enzyme production from transplanted cells engrafting in the brain. We used two different peptide sequences (rabies virus glycoprotein [RVG] and gh625), both previously published as BBB-crossing peptides, fused to IDS and delivered via hematopoietic stem cell gene therapy (HSCGT). HSCGT with LV.IDS.RVG and LV.IDS.gh625 was compared with LV.IDS.ApoEII and LV.IDS in MPS II mice at 6 months post-transplant. Levels of IDS enzyme activity in the brain and peripheral tissues were lower in LV.IDS.RVG- and LV.IDS.gh625-treated mice than in LV.IDS.ApoEII- and LV.IDS-treated mice, despite comparable vector copy numbers. Microgliosis, astrocytosis, and lysosomal swelling were partially normalized in MPS II mice treated with LV.IDS.RVG and LV.IDS.gh625. Skeletal thickening was normalized by both treatments to wild-type levels. Although reductions in skeletal abnormalities and neuropathology are encouraging, given the low levels of enzyme activity compared with control tissue from LV.IDS- and LV.IDS.ApoEII-transplanted mice, the RVG and gh625 peptides are unlikely to be ideal candidates for HSCGT in MPS II and are inferior to the ApoEII peptide that we have previously demonstrated to be more effective at correcting MPS II disease than IDS alone.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Doenças do Sistema Nervoso , Vírus da Raiva , Camundongos , Animais , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Ácido Idurônico , Iduronato Sulfatase/genética , Glicoproteínas/genética , Peptídeos
5.
AAPS J ; 25(4): 61, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340133

RESUMO

Mucopolysaccharidosis type II, commonly called Hunter syndrome, is a rare X-linked recessive disease caused by the deficiency of the lysosomal enzyme iduronate-2-sulphatase (I2S). A deficiency of I2S causes an abnormal glycosaminoglycans accumulation in the body's cells. Although enzyme replacement therapy is the standard therapy, adeno-associated viruses (AAV)-based gene therapy could provide a single-dose solution to achieve a prolonged and constant enzyme level to improve patient's quality of life. Currently, there is no integrated regulatory guidance to describe the bioanalytical assay strategy to support gene therapy products. Herein, we describe the streamlined strategy to validate/qualify the transgene protein and its enzymatic activity assays. The method validation for the I2S quantification in serum and method qualification in tissues was performed to support the mouse GLP toxicological study. Standard curves for I2S quantification ranged from 2.00 to 50.0 µg/mL in serum and 6.25 to 400 ng/mL in the surrogate matrix. Acceptable precision, accuracy, and parallelism in the tissues were demonstrated. To assess the function of the transgene protein, fit-for-purpose method qualification for the I2S enzyme activity in serum was performed. The observed data indicated that the enzymatic activity in serum increased dose-dependently in the lower I2S concentration range. The highest I2S transgene protein was observed in the liver among tissue measured, and its expression level was maintained up to 91 days after the administration of rAAV8 with a codon-optimized human I2S. In conclusion, the multifaceted bioanalytical method for I2S and its enzymatic activity were established to assess gene therapy products in Hunter syndrome.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Animais , Camundongos , Mucopolissacaridose II/terapia , Mucopolissacaridose II/tratamento farmacológico , Ácido Idurônico , Qualidade de Vida , Iduronato Sulfatase/genética , Iduronato Sulfatase/uso terapêutico , Terapia Genética , Terapia de Reposição de Enzimas/métodos
6.
Hum Gene Ther ; 34(1-2): 8-18, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541357

RESUMO

The mucopolysaccharidoses (MPS) are a group of recessively inherited conditions caused by deficiency of lysosomal enzymes essential to the catabolism of glycosaminoglycans (GAG). MPS I is caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA), while MPS II is caused by a lack of iduronate-2-sulfatase (IDS). Lack of these enzymes leads to early mortality and morbidity, often including neurological deficits. Enzyme replacement therapy has markedly improved the quality of life for MPS I and MPS II affected individuals but is not effective in addressing neurologic manifestations. For MPS I, hematopoietic stem cell transplant has shown effectiveness in mitigating the progression of neurologic disease when carried out in early in life, but neurologic function is not restored in patients transplanted later in life. For both MPS I and II, gene therapy has been shown to prevent neurologic deficits in affected mice when administered early, but the effectiveness of treatment after the onset of neurologic disease manifestations has not been characterized. To test if neurocognitive function can be recovered in older animals, human IDUA or IDS-encoding AAV9 vector was administered by intracerebroventricular injection into MPS I and MPS II mice, respectively, after the development of neurologic deficit. Vector sequences were distributed throughout the brains of treated animals, associated with high levels of enzyme activity and normalized GAG storage. Two months after vector infusion, treated mice exhibited spatial navigation and learning skills that were normalized, that is, indistinguishable from those of normal unaffected mice, and significantly improved compared to untreated, affected animals. We conclude that cognitive function was restored by AAV9-mediated, central nervous system (CNS)-directed gene transfer in the murine models of MPS I and MPS II, suggesting that gene transfer may result in neurodevelopment improvements in severe MPS I and MPS II when carried out after the onset of cognitive decline.


Assuntos
Disfunção Cognitiva , Iduronato Sulfatase , Mucopolissacaridose II , Mucopolissacaridose I , Doenças do Sistema Nervoso , Humanos , Animais , Camundongos , Idoso , Qualidade de Vida , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Sistema Nervoso Central/metabolismo , Iduronidase/genética , Iduronidase/metabolismo , Iduronato Sulfatase/genética , Disfunção Cognitiva/metabolismo , Glicosaminoglicanos/metabolismo , Modelos Animais de Doenças
7.
Hum Gene Ther ; 33(23-24): 1279-1292, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36226412

RESUMO

Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked recessive lysosomal disease caused by deficiency of iduronate-2-sulfatase (IDS). The absence of IDS results in the accumulation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. Currently, the only approved treatment option for MPS II is enzyme replacement therapy (ERT), Elaprase. However, ERT is demanding for the patient and does not ameliorate neurological manifestations of the disease. Using an IDS-deficient mouse model that phenocopies the human disease, we evaluated hematopoietic stem and progenitor cells (HSPCs) transduced with a lentiviral vector (LVV) carrying a codon-optimized human IDS coding sequence regulated by a ubiquitous MNDU3 promoter (MNDU3-IDS). Mice treated with MNDU3-IDS LVV-transduced cells showed supraphysiological levels of IDS enzyme activity in plasma, peripheral blood mononuclear cells, and in most analyzed tissues. These enzyme levels were sufficient to normalize GAG storage in analyzed tissues. Importantly, IDS levels in the brains of MNDU3-IDS-engrafted animals were restored to 10-20% than that of wild-type mice, sufficient to normalize GAG content and prevent emergence of cognitive deficit as evaluated by neurobehavioral testing. These results demonstrate the potential effectiveness of ex vivo MNDU3-IDS LVV-transduced HSPCs for treatment of MPS II.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Animais , Camundongos , Humanos , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Leucócitos Mononucleares , Iduronato Sulfatase/genética , Terapia de Reposição de Enzimas , Modelos Animais de Doenças , Células-Tronco Hematopoéticas
8.
Mol Genet Metab ; 137(1-2): 127-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36027721

RESUMO

Two-thirds of patients with mucopolysaccharidosis II (MPS II; Hunter syndrome) have cognitive impairment. This phase 2/3, randomized, controlled, open-label, multicenter study (NCT02055118) investigated the effects of intrathecally administered idursulfase-IT on cognitive function in patients with MPS II. Children older than 3 years with MPS II and mild-to-moderate cognitive impairment (assessed by Differential Ability Scales-II [DAS-II], General Conceptual Ability [GCA] score) who had tolerated intravenous idursulfase for at least 4 months were randomly assigned (2:1) to monthly idursulfase-IT 10 mg (n = 34) via an intrathecal drug delivery device (IDDD; or by lumbar puncture) or no idursulfase-IT treatment (n = 15) for 52 weeks. All patients continued to receive weekly intravenous idursulfase 0.5 mg/kg as standard of care. Of 49 randomized patients, 47 completed the study (two patients receiving idursulfase-IT discontinued). The primary endpoint (change from baseline in DAS-II GCA score at week 52 in a linear mixed-effects model for repeated measures analysis) was not met: although there was a smaller decrease in DAS-II GCA scores with idursulfase-IT than with no idursulfase-IT at week 52, this was not significant (least-squares mean treatment difference [95% confidence interval], 3.0 [-7.3, 13.3]; p = 0.5669). Changes from baseline in Vineland Adaptive Behavioral Scales-II Adaptive Behavior Composite scores at week 52 (key secondary endpoint) were similar in the idursulfase-IT (n = 31) and no idursulfase-IT (n = 14) groups. There were trends towards a potential positive effect of idursulfase-IT across DAS-II composite, cluster, and subtest scores, notably in patients younger than 6 years at baseline. In a post hoc analysis, there was a significant (p = 0.0174), clinically meaningful difference in change from baseline in DAS-II GCA scores at week 52 with idursulfase-IT (n = 13) versus no idursulfase-IT (n = 6) among those younger than 6 years with missense iduronate-2-sulfatase gene variants. Overall, idursulfase-IT reduced cerebrospinal glycosaminoglycan levels from baseline by 72.0% at week 52. Idursulfase-IT was generally well tolerated. These data suggest potential benefits of idursulfase-IT in the treatment of cognitive impairment in some patients with neuronopathic MPS II. After many years of extensive review and regulatory discussions, the data were found to be insufficient to meet the evidentiary standard to support regulatory filings.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Mieloma Múltiplo , Criança , Pré-Escolar , Humanos , Terapia de Reposição de Enzimas/métodos , Glicosaminoglicanos , Iduronato Sulfatase/genética , Ácido Idurônico , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética
9.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563245

RESUMO

Mucopolysaccharidosis type II (Hunter Syndrome) is a rare, x-linked recessive, progressive, multi-system, lysosomal storage disease caused by the deficiency of iduronate-2-sulfatase (IDS), which leads to the pathological storage of glycosaminoglycans in nearly all cell types, tissues and organs. The condition is clinically heterogeneous, and most patients present with a progressive, multi-system disease in their early years. This article outlines the pathology of the disorder and current treatment strategies, including a detailed review of haematopoietic stem cell transplant outcomes for MPSII. We then discuss haematopoietic stem cell gene therapy and how this can be employed for treatment of the disorder. We consider how preclinical innovations, including novel brain-targeted techniques, can be incorporated into stem cell gene therapy approaches to mitigate the neuropathological consequences of the condition.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Iduronato Sulfatase , Mucopolissacaridose II , Encéfalo/metabolismo , Encéfalo/patologia , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/metabolismo , Iduronato Sulfatase/uso terapêutico , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Mucopolissacaridose II/terapia
10.
Curr Pharm Des ; 26(40): 5100-5109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33138761

RESUMO

BACKGROUND: Mucopolysaccharidosis type II (Hunter syndrome, or MPS II) is an X-linked lysosomal disorder caused by the deficiency of iduronate-2-sulfatase, which leads to the accumulation of glycosaminoglycans (GAGs) in a variety of tissues, resulting in a multisystemic disease that can also impair the central nervous system (CNS). OBJECTIVE: This review focuses on providing the latest information and expert opinion about the therapies available and under development for MPS II. METHODS: We have comprehensively revised the latest studies about hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT - intravenous, intrathecal, intracerebroventricular, and intravenous with fusion proteins), small molecules, gene therapy/genome editing, and supportive management. RESULTS AND DISCUSSION: Intravenous ERT is a well-established specific therapy, which ameliorates the somatic features but not the CNS manifestations. Intrathecal or intracerebroventricular ERT and intravenous ERT with fusion proteins, presently under development, seem to be able to reduce the levels of GAGs in the CNS and have the potential of reducing the impact of the neurological burden of the disease. Gene therapy and/or genome editing have shown promising results in preclinical studies, bringing hope for a "one-time therapy" soon. Results with HSCT in MPS II are controversial, and small molecules could potentially address some disease manifestations. In addition to the specific therapeutic options, supportive care plays a major role in the management of these patients. CONCLUSION: At this time, the treatment of individuals with MPS II is mainly based on intravenous ERT, whereas HSCT can be a potential alternative in specific cases. In the coming years, several new therapy options that target the neurological phenotype of MPS II should be available.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Terapia de Reposição de Enzimas , Glicosaminoglicanos/uso terapêutico , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/uso terapêutico , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética , Fenótipo
11.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707880

RESUMO

Mucopolysaccharidosis type II is a lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS) and characterized by the accumulation of the primary storage substrate, glycosaminoglycans (GAGs). Understanding central nervous system (CNS) pathophysiology in neuronopathic MPS II (nMPS II) has been hindered by the lack of CNS biomarkers. Characterization of fluid biomarkers has been largely focused on evaluating GAGs in cerebrospinal fluid (CSF) and the periphery; however, GAG levels alone do not accurately reflect the broad cellular dysfunction in the brains of MPS II patients. We utilized a preclinical mouse model of MPS II, treated with a brain penetrant form of IDS (ETV:IDS) to establish the relationship between markers of primary storage and downstream pathway biomarkers in the brain and CSF. We extended the characterization of pathway and neurodegeneration biomarkers to nMPS II patient samples. In addition to the accumulation of CSF GAGs, nMPS II patients show elevated levels of lysosomal lipids, neurofilament light chain, and other biomarkers of neuronal damage and degeneration. Furthermore, we find that these biomarkers of downstream pathology are tightly correlated with heparan sulfate. Exploration of the responsiveness of not only CSF GAGs but also pathway and disease-relevant biomarkers during drug development will be crucial for monitoring disease progression, and the development of effective therapies for nMPS II.


Assuntos
Encéfalo/metabolismo , Glicosaminoglicanos/metabolismo , Iduronato Sulfatase/metabolismo , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Mucopolissacaridose II/sangue , Mucopolissacaridose II/líquido cefalorraquidiano , Adolescente , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Dermatan Sulfato/sangue , Dermatan Sulfato/líquido cefalorraquidiano , Dermatan Sulfato/metabolismo , Terapia de Reposição de Enzimas , Feminino , Gangliosídeos/metabolismo , Glicosaminoglicanos/líquido cefalorraquidiano , Transplante de Células-Tronco Hematopoéticas , Heparitina Sulfato/sangue , Heparitina Sulfato/líquido cefalorraquidiano , Heparitina Sulfato/metabolismo , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/farmacologia , Lactente , Inflamação/metabolismo , Lisossomos/patologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Mucopolissacaridose II/metabolismo , Mucopolissacaridose II/terapia , Proteínas de Neurofilamentos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Mol Genet Metab ; 130(4): 262-273, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32631737

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease (LSD) caused by a deficiency of the iduronate-2-sulfatase (IDS) that catabolizes glycosaminoglycans (GAGs). Abnormal accumulations of GAGs in somatic cells lead to various manifestations including central nervous system (CNS) disease. Enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are the currently available therapy for MPS II, but both therapies fail to improve CNS manifestations. We previously showed that hematopoietic stem cell targeted gene therapy (HSC-GT) with lethal irradiation improved CNS involvement in a murine model of MPS II which lacks the gene coding for IDS. However, the strong preconditioning, with lethal irradiation, would cause a high rate of morbidity and mortality. Therefore, we tested milder preconditioning procedures with either low dose irradiation or low dose irradiation plus an anti c-kit monoclonal antibody (ACK2) to assess CNS effects in mice with MPS II after HSC-GT. Mice from all the HSC-GT groups displayed super-physiological levels of IDS enzyme activity and robust reduction of abnormally accumulated GAGs to the wild type mice levels in peripheral organs. However, only the mice treated with lethal irradiation showed significant cognitive function improvement as well as IDS elevation and GAG reduction in the brain. These results suggest that an efficient engraftment of genetically modified cells for HSC-GT requires strong preconditioning to ameliorate CNS involvement in cases with MPS II.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Terapia de Reposição de Enzimas , Terapia Genética , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Iduronato Sulfatase/administração & dosagem , Mucopolissacaridose II/complicações , Animais , Doenças do Sistema Nervoso Central/enzimologia , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/genética , Modelos Animais de Doenças , Feminino , Glicosaminoglicanos/análise , Iduronato Sulfatase/genética , Camundongos , Camundongos Endogâmicos C57BL
13.
DNA Cell Biol ; 39(2): 226-234, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31895584

RESUMO

Hunter's syndrome (mucopolysaccharidosis type II) is a rare X-linked lysosomal storage disorder caused by mutations in the iduronate-2-sulfatase (IDS) gene. Motivated by the case of a child affected by this syndrome, we compared the intracellular fate of wild-type IDS (IDSWT) and four nonsense mutations of IDS (IDSL482X, IDSY452X, IDSR443X, and IDSW337X) generating progressively shorter forms of IDS associated with mild to severe forms of the disease. Our analyses revealed formylation of all forms of IDS at cysteine 84, which is a prerequisite for enzymatic activity. After formylation, IDSWT was transported within lysosomes, where it was processed in the mature form of the enzyme. The length of disease-causing deletions correlated with gravity of the folding and transport phenotype, which was anticipated by molecular dynamics analyses. The shortest form of IDS, IDSW337X, was retained in the endoplasmic reticulum (ER) and degraded by the ubiquitin-proteasome system. IDSR443X, IDSY452X, and IDSL482X passed ER quality control and were transported to the lysosomes, but failed lysosomal quality control, resulting in their rapid clearance and in loss-of-function phenotype. Failure of ER quality control inspection is an established cause of loss of function observed in protein misfolding diseases. Our data reveal that fulfillment of ER requirements might not be sufficient, highlight lysosomal quality control as the distal station to control lysosomal enzymes fitness and pave the way for alternative therapeutic interventions.


Assuntos
Códon sem Sentido/genética , Retículo Endoplasmático/genética , Iduronato Sulfatase/genética , Lisossomos/metabolismo , Mucopolissacaridose II/genética , Animais , Retículo Endoplasmático/metabolismo , Glicoproteínas/genética , Humanos , Camundongos , Mucopolissacaridose II/tratamento farmacológico , Mutação/genética
14.
Int J Mol Sci ; 20(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757021

RESUMO

Mucopolysaccharidosis type II (MPS II) is a rare lysosomal storage disease (LSD) involving a genetic error in iduronic acid-2-sulfatase (IDS) metabolism that leads to accumulation of glycosaminoglycans within intracellular lysosomes. The primary treatment for MPS II, enzyme replacement therapy, is not effective for central nervous system (CNS) symptoms, such as intellectual disability, because the drugs do not cross the blood-brain barrier. Recently, autophagy has been associated with LSDs. In this study, we examined the morphologic relationship between neuronal damage and autophagy in IDS knockout mice using antibodies against subunit c of mitochondrial adenosine triphosphate (ATP) synthetase and p62. Immunohistological changes suggesting autophagy, such as vacuolation, were observed in neurons, microglia, and pericytes throughout the CNS, and the numbers increased over postnatal development. Oral administration of chloroquine, which inhibits autophagy, did not suppress damage to microglia and pericytes, but greatly reduced neuronal vacuolation and eliminated neuronal cells with abnormal inclusions. Thus, decreasing autophagy appears to prevent neuronal degeneration. These results suggest that an autophagy modulator could be used in addition to conventional enzyme replacement therapy to preserve the CNS in patients with MPS II.


Assuntos
Autofagia , Mucopolissacaridose II/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cloroquina/farmacologia , Iduronato Sulfatase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mucopolissacaridose II/patologia , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
15.
Curr Gene Ther ; 18(2): 90-95, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29618310

RESUMO

Mucopolysaccharidosis type II or Hunter syndrome is an X-linked lysosomal storage disease caused by a mutation in the gene encoding the lysosomal enzyme iduronate-2-sulfatase. The consequent enzyme deficiency causes a progressive, multisystem accumulation of glycosaminoglycans, which is the cause of the clinical manifestations involving also Central Nervous System for patients with the severe form of disease. The limits of the currently available therapies for Hunter syndrome, hematopoietic stem cell transplantation and recombinant enzyme replacement therapy, mainly regarding brain achievement, have encouraged several studies which recognized gene therapy as a potential therapeutic option for this condition. In vitro studies firstly aimed at the demonstration that viral vector- mediated IDS gene expression could lead to high levels of enzyme activity in transduced cells. The encouraging results obtained allowed the realization of many preclinical studies investigating the utilization of gene therapy vectors in animal models of Mucopolysaccharidosis II, together with a phase I clinical trial approved for Hunter patients affected by the mild form of the disease. Together to in vivo studies in which recombinant vectors are directly administered, systematically or by direct injection into Central Nervous System, also ex vivo gene therapy, consisting in transplantation of autologous hematopoietic stem cells, modified in vitro, into the animal or patient, has been tested. A wider clinical application of the results obtained so far is essential to ensure that gene therapy can be definitively validated as a therapeutic option available and usable for this rare but life-threatening disorder.


Assuntos
Terapia Genética , Iduronato Sulfatase/genética , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Doenças Raras/genética , Doenças Raras/terapia , Animais , Pré-Escolar , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/sangue , Vetores Genéticos/líquido cefalorraquidiano , Humanos , Lactente , Mutação , Retroviridae
16.
Clin Genet ; 93(5): 1008-1014, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29396849

RESUMO

Lysosomal storage diseases (LSDs) are a group of genetic disorders, resulting from deficiencies of lysosomal enzyme. Genotype-phenotype correlation is essential for timely and proper treatment allocation. Recently, by integrating prediction outcomes of 7 bioinformatics tools, we developed a SAAMP algorithm to predict the impact of individual amino-acid substitution. To optimize this approach, we evaluated the performance of these bioinformatics tools in a broad array of genes. PolyPhen and PROVEAN had the best performances, while SNP&GOs, PANTHER and I-Mutant had the worst performances. Therefore, SAAMP 2.0 was developed by excluding 3 tools with worst performance, yielding a sensitivity of 94% and a specificity of 90%. To generalize the guideline to proteins without known structures, we built the three-dimensional model of iduronate-2-sulfatase by homology modeling. Further, we investigated the phenotype severity of known disease-causing mutations of the GLB1 gene, which lead to 2 LSDs (GM1 gangliosidosis and Morquio disease type B). Based on the previous literature and structural analysis, we associated these mutations with disease subtypes and proposed a theory to explain the complicated genotype-phenotype correlation. Collectively, an updated guideline for phenotype prediction with SAAMP 2.0 was proposed, which will provide essential information for early diagnosis and proper treatment allocation, and they may be generalized to many monogenic diseases.


Assuntos
Estudos de Associação Genética , Iduronato Sulfatase/química , Doenças por Armazenamento dos Lisossomos/genética , beta-Galactosidase/química , Algoritmos , Substituição de Aminoácidos/genética , Biologia Computacional , Gangliosidose GM1/genética , Gangliosidose GM1/patologia , Predisposição Genética para Doença , Genótipo , Humanos , Iduronato Sulfatase/genética , Doenças por Armazenamento dos Lisossomos/patologia , Mucopolissacaridose IV/genética , Mucopolissacaridose IV/patologia , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação , Conformação Proteica , beta-Galactosidase/genética
17.
Hum Gene Ther ; 28(8): 626-638, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28478695

RESUMO

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare X-linked recessive lysosomal disorder caused by defective iduronate-2-sulfatase (IDS), resulting in accumulation of heparan sulfate and dermatan sulfate glycosaminoglycans (GAGs). Enzyme replacement is the only Food and Drug Administration-approved therapy available for MPS II, but it is expensive and does not improve neurologic outcomes in MPS II patients. This study evaluated the effectiveness of adeno-associated virus (AAV) vector encoding human IDS delivered intracerebroventricularly in a murine model of MPS II. Supraphysiological levels of IDS were observed in the circulation (160-fold higher than wild type) for at least 28 weeks post injection and in most tested peripheral organs (up to 270-fold) at 10 months post injection. In contrast, only low levels of IDS were observed (7-40% of wild type) in all areas of the brain. Sustained IDS expression had a profound effect on normalization of GAG in all tested tissues and on prevention of hepatomegaly. Additionally, sustained IDS expression in the central nervous system (CNS) had a prominent effect in preventing neurocognitive deficit in MPS II mice treated at 2 months of age. This study demonstrates that CNS-directed, AAV9 mediated gene transfer is a potentially effective treatment for Hunter syndrome, as well as other monogenic disorders with neurologic involvement.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Iduronato Sulfatase/genética , Mucopolissacaridose II/genética , Mucopolissacaridose II/psicologia , Animais , Sistema Nervoso Central/metabolismo , Cognição , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/administração & dosagem , Glicosaminoglicanos/metabolismo , Humanos , Iduronato Sulfatase/sangue , Iduronato Sulfatase/metabolismo , Masculino , Camundongos , Mucopolissacaridose II/sangue , Mucopolissacaridose II/terapia , Testes Neuropsicológicos , Projetos Piloto , Fatores de Tempo , Distribuição Tecidual , Transdução Genética
18.
JCI Insight ; 1(9): e86696, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27699273

RESUMO

Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-Ids) to the cerebrospinal fluid of MPSII mice with already established disease. Treated mice showed a significant increase in IDS activity throughout the encephalon, with full resolution of lysosomal storage lesions, reversal of lysosomal dysfunction, normalization of brain transcriptomic signature, and disappearance of neuroinflammation. Moreover, our vector also transduced the liver, providing a peripheral source of therapeutic protein that corrected storage pathology in visceral organs, with evidence of cross-correction of nontransduced organs by circulating enzyme. Importantly, AAV9-Ids-treated MPSII mice showed normalization of behavioral deficits and considerably prolonged survival. These results provide a strong proof of concept for the clinical translation of our approach for the treatment of Hunter syndrome patients with cognitive impairment.


Assuntos
Terapia Genética , Iduronato Sulfatase/genética , Mucopolissacaridose II/terapia , Animais , Dependovirus , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL
19.
Hum Gene Ther ; 26(6): 357-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25761450

RESUMO

Mucopolysaccharidosis type II (MPS II) is a neuropathic lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS), which leads to the accumulation of glycosaminoglycans (GAGs). We demonstrated that biochemical alterations in the brains of MPS II mice are not corrected by bone marrow transplantation (BMT) or enzyme replacement therapy, although BMT has been shown to be effective for other neurodegenerative MPSs, such as Hurler syndrome. In this study, we demonstrated that lentiviral isogeneic hematopoietic stem cell (HSC) gene therapy corrected neuronal manifestations by ameliorating lysosomal storage and autophagic dysfunction in the brains of MPS II mice. IDS-transduced HSCs increased enzyme activity both in various visceral organs and the CNS. Decreased levels of GAGs were observed in many organs, including cerebra, after transplantation of IDS-transduced HSCs. In addition, lentiviral HSC gene therapy normalized the secondary accumulation of autophagic substrates, such as p62 and ubiquitin-protein conjugates, in cerebra. Furthermore, in contrast to naive MPS II mice, there was no deterioration of neuronal function observed in transplant recipients. These results indicated that lentiviral HSC gene therapy is a promising approach for the treatment of CNS lesions in MPS II.


Assuntos
Terapia Genética/métodos , Glicoproteínas/genética , Células-Tronco Hematopoéticas/fisiologia , Mucopolissacaridose II/terapia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Glicoproteínas/metabolismo , Glicosaminoglicanos/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Iduronato Sulfatase/genética , Iduronato Sulfatase/metabolismo , Lentivirus/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridose II/genética , Transdução Genética
20.
J Inherit Metab Dis ; 38(2): 333-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25503568

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficient activity of the iduronate-2-sulfatase. This leads to accumulation of glycosaminoglycans (GAGs) in the lysosomes of various cells. Although it has been proposed that bone marrow transplantation (BMT) may have a beneficial effect for patients with MPS II, the requirement for donor-cell chimerism to reduce GAG levels is unknown. To address this issue, we transplanted various ratios of normal and MPS II bone marrow cells in a mouse model of MPS II and analyzed GAG accumulation in various tissues. Chimerism of whole leukocytes and each lineage of BMT recipients' peripheral blood was similar to infusion ratios. GAGs were significantly reduced in the liver, spleen, and heart of recipients. The level of GAG reduction in these tissues depends on the percentage of normal-cell chimerism. In contrast to these tissues, a reduction in GAGs was not observed in the kidney and brain, even if 100 % donor chimerism was achieved. These observations suggest that a high degree of chimerism is necessary to achieve the maximum effect of BMT, and donor lymphocyte infusion or enzyme replacement therapy might be considered options in cases of low-level chimerism in MPS II patients.


Assuntos
Transplante de Medula Óssea , Glicosaminoglicanos/metabolismo , Iduronato Sulfatase/metabolismo , Mucopolissacaridose II/cirurgia , Quimeras de Transplante , Animais , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Iduronato Sulfatase/genética , Fígado/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucopolissacaridose II/enzimologia , Mucopolissacaridose II/genética , Miocárdio/enzimologia , Baço/enzimologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA