Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
Sci Rep ; 14(1): 7797, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565565

RESUMO

Bacterial pathogens adapt and replicate within host cells, while host cells develop mechanisms to eliminate them. Using a dual proteomic approach, we characterized the intra-macrophage proteome of the facultative intracellular pathogen, Francisella novicida. More than 900 Francisella proteins were identified in infected macrophages after a 10-h infection. Biotin biosynthesis-related proteins were upregulated, emphasizing the role of biotin-associated genes in Francisella replication. Conversely, proteins encoded by the Francisella pathogenicity island (FPI) were downregulated, supporting the importance of the F. tularensis Type VI Secretion System for vacuole escape, not cytosolic replication. In the host cell, over 300 proteins showed differential expression among the 6200 identified during infection. The most upregulated host protein was cis-aconitate decarboxylase IRG1, known for itaconate production with antimicrobial properties in Francisella. Surprisingly, disrupting IRG1 expression did not impact Francisella's intracellular life cycle, suggesting redundancy with other immune proteins or inclusion in larger complexes. Over-representation analysis highlighted cell-cell contact and actin polymerization in macrophage deregulated proteins. Using flow cytometry and live cell imaging, we demonstrated that merocytophagy involves diverse cell-to-cell contacts and actin polymerization-dependent processes. These findings lay the groundwork for further exploration of merocytophagy and its molecular mechanisms in future research.Data are available via ProteomeXchange with identifier PXD035145.


Assuntos
Francisella tularensis , Tularemia , Animais , Francisella tularensis/genética , Actinas/metabolismo , Biotina/metabolismo , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrófagos/metabolismo , Estágios do Ciclo de Vida , Tularemia/microbiologia , Ilhas Genômicas
2.
Emerg Microbes Infect ; 13(1): 2339946, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38578304

RESUMO

Streptococcus suis is a significant and emerging zoonotic pathogen. ST1 and ST7 strains are the primary agents responsible for S. suis human infections in China, including the Guangxi Zhuang Autonomous Region (GX). To enhance our understanding of S. suis ST1 population characteristics, we conducted an investigation into the phylogenetic structure, genomic features, and virulence levels of 73 S. suis ST1 human strains from GX between 2005 and 2020. The ST1 GX strains were categorized into three lineages in phylogenetic analysis. Sub-lineage 3-1a exhibited a closer phylogenetic relationship with the ST7 epidemic strain SC84. The strains from lineage 3 predominantly harboured 89K-like pathogenicity islands (PAIs) which were categorized into four clades based on sequence alignment. The acquirement of 89K-like PAIs increased the antibiotic resistance and pathogenicity of corresponding transconjugants. We observed significant diversity in virulence levels among the 37 representative ST1 GX strains, that were classified as follows: epidemic (E)/highly virulent (HV) (32.4%, 12/37), virulent plus (V+) (29.7%, 11/37), virulent (V) (18.9%, 7/37), and lowly virulent (LV) (18.9%, 7/37) strains based on survival curves and mortality rates at different time points in C57BL/6 mice following infection. The E/HV strains were characterized by the overproduction of tumour necrosis factor (TNF)-α in serum and promptly established infection at the early phase of infection. Our research offers novel insights into the population structure, evolution, genomic features, and pathogenicity of ST1 strains. Our data also indicates the importance of establishing a scheme for characterizing and subtyping the virulence levels of S. suis strains.


Assuntos
Genoma Bacteriano , Ilhas Genômicas , Filogenia , Infecções Estreptocócicas , Streptococcus suis , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Streptococcus suis/classificação , Streptococcus suis/isolamento & purificação , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/epidemiologia , China/epidemiologia , Humanos , Virulência , Animais , Camundongos , Feminino , Genômica , Fatores de Virulência/genética
3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38547398

RESUMO

The hypervirulent lineages of Klebsiella pneumoniae (HvKp) cause invasive infections such as Klebsiella-liver abscess. Invasive infection often occurs after initial colonization of the host gastrointestinal tract by HvKp. Over 80% of HvKp isolates belong to the clonal group 23 sublineage I that has acquired genomic islands (GIs) GIE492 and ICEKp10. Our analysis of 12 361 K. pneumoniae genomes revealed that GIs GIE492 and ICEKp10 are co-associated with the CG23-I and CG10118 HvKp lineages. GIE492 and ICEKp10 enable HvKp to make a functional bacteriocin microcin E492 (mccE492) and the genotoxin colibactin, respectively. We discovered that GIE492 and ICEKp10 play cooperative roles and enhance gastrointestinal colonization by HvKp. Colibactin is the primary driver of this effect, modifying gut microbiome diversity. Our in vitro assays demonstrate that colibactin and mccE492 kill or inhibit a range of Gram-negative Klebsiella species and Escherichia coli strains, including Gram-positive bacteria, sometimes cooperatively. Moreover, mccE492 and colibactin kill human anaerobic gut commensals that are similar to the taxa found altered by colibactin in the mouse intestines. Our findings suggest that GIs GIE492 and ICEKp10 enable HvKp to kill several commensal bacterial taxa during interspecies interactions in the gut. Thus, acquisition of GIE492 and ICEKp10 could enable better carriage in host populations and explain the dominance of the CG23-I HvKp lineage.


Assuntos
Ilhas Genômicas , Klebsiella pneumoniae , Peptídeos , Policetídeos , Animais , Camundongos , Humanos , Virulência , Klebsiella pneumoniae/genética , Fatores de Virulência/genética , Antibacterianos/farmacologia
4.
Gut Microbes ; 16(1): 2314201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38391242

RESUMO

Helicobacter pylori strains can be broadly classified into two groups based on whether they contain or lack a chromosomal region known as the cag pathogenicity island (cag PAI). Colonization of the human stomach with cag PAI-positive strains is associated with an increased risk of gastric cancer and peptic ulcer disease, compared to colonization with cag PAI-negative strains. The cag PAI encodes a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS) that delivers CagA and non-protein substrates into host cells. Animal model experiments indicate that CagA and the Cag T4SS stimulate a gastric mucosal inflammatory response and contribute to the development of gastric cancer. In this review, we discuss recent studies defining structural and functional features of CagA and the Cag T4SS and mechanisms by which H. pylori strains containing the cag PAI promote the development of gastric cancer and peptic ulcer disease.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Úlcera Péptica , Neoplasias Gástricas , Animais , Humanos , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Helicobacter pylori/genética , Ilhas Genômicas , Úlcera Péptica/complicações , Infecções por Helicobacter/complicações
5.
Brain Pathol ; 34(3): e13217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37865975

RESUMO

Glioma stem cells (GSCs) exhibit diverse molecular subtypes with the mesenchymal (MES) population representing the most malignant variant. The oncogenic potential of Salmonella pathogenicity island 1 (SPI1), an oncogenic transcription factor, has been established across various human malignancies. In this study, we explored the association between the SPI1 pathway and the MES GSC phenotype. Through comprehensive analysis of the Cancer Genome Atlas and Chinese Glioma Genome Atlas glioma databases, along with patient-derived GSC cultures, we analyzed SPI1 expression. Using genetic knockdown and overexpression techniques, we assessed the functional impact of SPI1 on GSC MES marker expression, invasion, proliferation, self-renewal, and sensitivity to radiation in vitro, as well as its influence on tumor formation in vivo. Additionally, we investigated the downstream signaling cascades activated by SPI1. Our findings revealed a positive correlation between elevated SPI1 expression and the MES phenotype, which in turn, correlated with poor survival. SPI1 enhanced GSC MES differentiation, self-renewal, and radioresistance in vitro, promoting tumorigenicity in vivo. Mechanistically, SPI1 augmented the transcriptional activity of both TGF-ß1 and FKBP12 while activating the non-canonical PI3K/Akt pathway. Notably, inhibition of TGF-ß1/PI3K/Akt signaling partially attenuated SPI1-induced GSC MES differentiation and its associated malignant phenotype. Collectively, our results underscore SPI1's role in activating TGF-ß1/PI3K/Akt signaling through transcriptional upregulation of FKBP12, thereby supporting the aggressive MES phenotype of GSCs. Therefore, SPI1 emerges as a potential therapeutic target in glioma treatment.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Regulação para Cima , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Ilhas Genômicas , Células-Tronco Neoplásicas/metabolismo , Glioma/patologia , Fenótipo , Linhagem Celular Tumoral , Proliferação de Células
6.
Microbiology (Reading) ; 169(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37862087

RESUMO

The Salmonella pathogenicity island 2 (SPI-2)-encoded type III secretion system (injectisome) is assembled following uptake of bacteria into vacuoles in mammalian cells. The injectisome translocates virulence proteins (effectors) into infected cells. Numerous studies have established the requirement for a functional SPI-2 injectisome for growth of Salmonella Typhimurium in mouse macrophages, but the results of similar studies involving Salmonella Typhi and human-derived macrophages are not consistent. It is important to clarify the functions of the S. Typhi SPI-2 injectisome, not least because an inactivated SPI-2 injectisome forms the basis for live attenuated S. Typhi vaccines that have undergone extensive trials in humans. Intracellular expression of injectisome genes and effector delivery take longer in the S. Typhi/human macrophage model than for S. Typhimurium and we propose that this could explain the conflicting results. Furthermore, strains of both S. Typhimurium and S. Typhi contain intact genes for several 'core' effectors. In S. Typhimurium these cooperate to regulate the vacuole membrane and contribute to intracellular bacterial replication; similar functions are therefore likely in S. Typhi.


Assuntos
Ilhas Genômicas , Salmonella typhi , Camundongos , Animais , Humanos , Salmonella typhi/genética , Salmonella typhi/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonella typhimurium/metabolismo , Macrófagos/microbiologia , Mamíferos/genética , Mamíferos/metabolismo
7.
Indian J Gastroenterol ; 42(5): 686-693, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37665542

RESUMO

BACKGROUND: Long-term use of proton pump inhibitors (PPIs) can increase the risk of gastric cancer in Helicobacter pylori-infected patients; nevertheless, there is no data about their impact on the pathogenicity of H. pylori. This study aimed at investigating the transcriptional alteration of key gene mediators of cytotoxin-associated gene-pathogenicity island (cag-PAI) among clinical H. pylori isolates in response to omeprazole at different pH levels. METHODS: Accordingly, H. pylori isolates with the same virulence genotypes selected from the gastric biopsies of patients and transcriptional alteration in the cag-PAI genes studied in the presence or absence of omeprazole (2 mg/mL) at pH 2.0, 4.0 and 7.0 after 30 and 90 minutes of the treatment. Relative changes in the transcriptional levels were recorded in each assay, separately. RESULTS: Of 18 H. pylori isolates, the cag-PAI empty site was detected in four strains, while the presence of cagA, cagL and cagY was characterized in 77.7%, 83.3% and 83.3% of the cag-PAI-positive strains, respectively. Transcriptional analysis of the selected strains showed up-regulation of cagA and cagL, mainly at pH 2.0 and 4.0 after 30 and 90-minute exposure. A diversity in the expression levels of cag-PAI genes was seen among the strains at the extent and time of induction. CONCLUSION: Our results showed that omeprazole could increase the expression of H. pylori cagA and cagL at acidic pH. Heterogeneity among the strains probably has an impact on the extent of their interplay with PPIs. Further studies are needed to establish this correlation.


Assuntos
Helicobacter pylori , Inibidores da Bomba de Prótons , Humanos , Inibidores da Bomba de Prótons/efeitos adversos , Helicobacter pylori/genética , Ilhas Genômicas/genética , Omeprazol/farmacologia , Concentração de Íons de Hidrogênio
8.
Infect Immun ; 91(9): e0015023, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37638724

RESUMO

Helicobacter pylori strains containing the cag pathogenicity island (PAI) are associated with the development of gastric adenocarcinoma and peptic ulcer disease. The cag PAI encodes a secreted effector protein (CagA) and a type IV secretion system (Cag T4SS). Cag T4SS activity is required for the delivery of CagA and non-protein substrates into host cells. The Cag T4SS outer membrane core complex (OMCC) contains a channel-like domain formed by helix-loop-helix elements (antenna projections, AP) from 14 copies of the CagY protein (a VirB10 ortholog). Similar VirB10 antenna regions are present in T4SS OMCCs from multiple bacterial species and are predicted to span the outer membrane. In this study, we investigated the role of the CagY antenna region in Cag T4SS OMCC assembly and Cag T4SS function. An H. pylori mutant strain with deletion of the entire CagY AP (∆AP) retained the capacity to produce CagY and assemble an OMCC, but it lacked T4SS activity (CagA translocation and IL-8 induction in AGS gastric epithelial cells). In contrast, a mutant strain with Gly-Ser substitutions in the unstructured CagY AP loop retained Cag T4SS activity. Mutants containing CagY AP loops with shortened lengths were defective in CagA translocation and exhibited reduced IL-8-inducing activity compared to control strains. These data indicate that the CagY AP region is required for Cag T4SS activity and that Cag T4SS activity can be modulated by altering the length of the CagY AP unstructured loop.


Assuntos
Helicobacter pylori , Helicobacter pylori/genética , Interleucina-8 , Sistemas de Secreção Tipo IV/genética , Células Epiteliais , Ilhas Genômicas
9.
Nat Commun ; 14(1): 3667, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339949

RESUMO

The intrinsic virulence of extra-intestinal pathogenic Escherichia coli is associated with numerous chromosomal and/or plasmid-borne genes, encoding diverse functions such as adhesins, toxins, and iron capture systems. However, the respective contribution to virulence of those genes seems to depend on the genetic background and is poorly understood. Here, we analyze genomes of 232 strains of sequence type complex STc58 and show that virulence (quantified in a mouse model of sepsis) emerged in a sub-group of STc58 due to the presence of the siderophore-encoding high-pathogenicity island (HPI). When extending our genome-wide association study to 370 Escherichia strains, we show that full virulence is associated with the presence of the aer or sit operons, in addition to the HPI. The prevalence of these operons, their co-occurrence and their genomic location depend on strain phylogeny. Thus, selection of lineage-dependent specific associations of virulence-associated genes argues for strong epistatic interactions shaping the emergence of virulence in E. coli.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Camundongos , Virulência/genética , Ferro , Infecções por Escherichia coli/patologia , Ilhas Genômicas/genética , Estudo de Associação Genômica Ampla , Filogenia
10.
Sci Rep ; 13(1): 3365, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849501

RESUMO

The Maf polymorphic toxin system is involved in conflict between strains found in pathogenic Neisseria species such as Neisseria meningitidis and Neisseria gonorrhoeae. The genes encoding the Maf polymorphic toxin system are found in specific genomic islands called maf genomic islands (MGIs). In the MGIs, the MafB and MafI encode toxin and immunity proteins, respectively. Although the C-terminal region of MafB (MafB-CT) is specific for toxic activity, the underlying enzymatic activity that renders MafB-CT toxic is unknown in many MafB proteins due to lack of homology with domain of known function. Here we present the crystal structure of the MafB2-CTMGI-2B16B6/MafI2MGI-2B16B6 complex from N. meningitidis B16B6. MafB2-CTMGI-2B16B6 displays an RNase A fold similar to mouse RNase 1, although the sequence identity is only ~ 14.0%. MafB2-CTMGI-2B16B6 forms a 1:1 complex with MafI2MGI-2B16B6 with a Kd value of ~ 40 nM. The complementary charge interaction of MafI2MGI-2B16B6 with the substrate binding surface of MafB2-CTMGI-2B16B6 suggests that MafI2MGI-2B16B6 inhibits MafB2-CTMGI-2B16B6 by blocking access of RNA to the catalytic site. An in vitro enzymatic assay showed that MafB2-CTMGI-2B16B6 has ribonuclease activity. Mutagenesis and cell toxicity assays demonstrated that His335, His402 and His409 are important for the toxic activity of MafB2-CTMGI-2B16B6, suggesting that these residues are critical for its ribonuclease activity. These data provide structural and biochemical evidence that the origin of the toxic activity of MafB2MGI-2B16B6 is the enzymatic activity degrading ribonucleotides.


Assuntos
Ilhas Genômicas , Neisseria meningitidis , Animais , Camundongos , Interleucina-6 , Neisseria , Ribonucleases , Proteínas Proto-Oncogênicas c-maf
11.
Eur J Cancer Prev ; 32(3): 301-304, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719829

RESUMO

Infection by Helicobacter pylori (Hp) has been causally linked to risk of gastric cancer (GC). The coevolution of Hp and humans shaped the risk of GC as our species left Africa and migrated to the other continents. Latin America (LatAm) is a high GC incidence region where Hp evolved uniquely in the 500 years since European colonization. Differential virulence of the Hp cagA -pathogenicity island (cagPAI) by ancestral origin has been reported. We hypothesized that Hp phylogenetic origin might play a role in determining GC risk in LatAm. We used genotypes of 50 Hp genetic variants mapping to the Hp cagPAI, studied in 1220 subjects from Venezuela, Colombia, Mexico and Paraguay, who were infected with cagA-positive Hp, including 150 GC, 177 high-grade premalignant lesions (HGPMLs) and 893 low-grade premalignant lesions. We estimated the phylogenetic origin of Hp cagPAI in all study subjects by use of the STRUCTURE software and principal component analysis (PCA) and tested whether the estimated African ancestry percentage was associated with the risk of GC or HGPML. African ancestral component estimates by STRUCTURE and PCA were highly correlated. STRUCTURE-based African origin estimate was not significantly associated with the risk of HGPML, but it was inversely associated with GC risk: the OR associated with the continuous values of African component was 0.09 (95% CI, 0.01-0.85; P = 0.035). Similar trends were observed for GC with PCA-based estimates, but the association was not statistically significant. These results suggest that Hp ancestral origin may play a role in gastric carcinogenesis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Helicobacter pylori/genética , Filogenia , Ilhas Genômicas/genética , América Latina , Lesões Pré-Cancerosas/epidemiologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/genética
12.
Res Vet Sci ; 156: 1-6, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706696

RESUMO

PURPOSE: This study evaluated pathogenic effect of TGF-ß1/Smad3 pathway in mouse model after infecting them with HPI+ and HPI- strains of Escherichia coli (E. coli) which were isolated from diarrhea in calves. METHODS: Kunming mice were randomly divided into 3 groups: a control group, HPI+-infection group and HPI--infection group. After intraperitoneal injection of HPI strains of E. coli (concentration: 3 × 108 cfu/mL) in mice, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) contents were detected at 12 h post infection. The sections of liver and kidney were obtained for histopathological observations. Propidium iodide and 4',6-diamidino-2-phenylindole (DAPI) staining was used to analyze the cell apoptosis. The immunohistochemistry staining and quantitative real time PCR (q-PCR) were performed for evaluating the protein and mRNA expression of TGF-ß1, Collagen I and Smad3. The histological change and PI staining of liver and kidney showed significant injuries. Compared with the control group, the serum ALT and AST activities and TNF-α and IL-6 contents of mice in the HPI+ and HPI- groups were increased, number of apoptotic cells and expression of TGF-ß1, Collagen Iand Smad3 were up-regulated after E. coli infection in liver and kidney, which was significantly increased in HPI+-infected compared to HPI-. CONCLUSION: The study concludes that E. coli HPI induced and enhanced the over expression of TGF-ß1/Smad3 pathway and ultimately caused pathological anomalies.


Assuntos
Doenças dos Bovinos , Animais , Bovinos , Camundongos , Doenças dos Bovinos/genética , Diarreia/genética , Escherichia coli/genética , Ilhas Genômicas , Interleucina-6/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/genética , Modelos Animais
14.
Curr Top Microbiol Immunol ; 444: 117-155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38231217

RESUMO

The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.


Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Estômago , Transporte Biológico , Citotoxinas , Ilhas Genômicas
15.
Ren Fail ; 44(1): 1819-1832, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36299239

RESUMO

BACKGROUND/AIM: Uremic cardiomyopathy (UCM) is a characteristic cardiac pathology that is commonly found in patients with chronic kidney disease. This study dissected the mechanism of SPI1 in myocardial fibrosis and inflammation induced by UCM through S100A8/A9. METHODS: An UCM rat model was established, followed by qRT-PCR and western blot analyses of SPI1 and S100A8/A9 expression in myocardial tissues. After alterations of SPI1 and S100A8/A9 expression in UCM rats, the blood specimens were harvested from the cardiac apex of rats. The levels of creatine phosphokinase-MB (CK-MB), blood creatinine, blood urea nitrogen (BUN), and inflammatory cytokines (interleukin [IL]-6, IL-1ß, and tumor necrosis factor-α [TNF-α]) were examined in the collected blood. Collagen fibrosis was assessed by Masson staining. The expression of fibrosis markers [transforming growth factor (TGF)-ß1, α-smooth muscle actin (SMA), Collagen 4a1, and Fibronectin], IL-6, IL-1ß, and TNF-α was measured in myocardial tissues. Chromatin immunoprecipitation and dual-luciferase reporter gene assays were conducted to test the binding relationship between SPI1 and S100A8/A9. RESULTS: S100A8/A9 and SPI1 were highly expressed in the myocardial tissues of UCM rats. Mechanistically, SPI1 bound to the promoter of S100A8/A9 to facilitate S100A8/A9 transcription. S100A8/A9 or SPI1 knockdown reduced myocardial fibrosis and inflammation and the levels of CK-MB, blood creatinine, and BUN, as well as the expression of TGF-ß1, α-SMA, Collagen 4a1, Fibronectin, IL-6, TNF-α, and IL-1ß in UCM rats. CONCLUSION: SPI1 knockdown diminished S100A8/A9 transcription, thus suppressing myocardial fibrosis and inflammation caused by UCM.


Assuntos
Calgranulina A , Calgranulina B , Cardiomiopatias , Animais , Ratos , Actinas/metabolismo , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/prevenção & controle , Creatina Quinase , Creatinina , Citocinas/metabolismo , Regulação para Baixo , Fibronectinas/metabolismo , Fibrose/genética , Fibrose/metabolismo , Ilhas Genômicas , Inflamação/genética , Inflamação/metabolismo , Interleucina-6/metabolismo , Luciferases/genética , Luciferases/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/genética , Fatores de Crescimento Transformadores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Uremia/complicações , Uremia/genética , Uremia/metabolismo
16.
BMC Genomics ; 23(1): 498, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804292

RESUMO

BACKGROUND: The impact of S. enterica colonization in cattle is highly variable and often serovar-dependent. The aim of this study was to compare the global transcriptomes of highly pathogenic bovine-adapted S. enterica serovar Dublin and the less pathogenic, bovine-adapted, serovar Cerro during interactions with bovine epithelial cells, to identify genes that impact serovar-related outcomes of S. enterica infections in dairy animals. RESULT: Bovine epithelial cells were infected with S. enterica strains from serovars Dublin and Cerro, and the bacterial RNA was extracted and sequenced. The total number of paired-end reads uniquely mapped to non-rRNA and non-tRNA genes in the reference genomes ranged between 12.1 M (Million) and 23.4 M (median: 15.7 M). In total, 360 differentially expressed genes (DEGs) were identified with at least two-fold differences in the transcript abundances between S. Dublin and S. Cerro (false discovery rate ≤ 5%). The highest number of DEGs (17.5%, 63 of 360 genes) between the two serovars were located on the genomic regions potentially associated with Salmonella Pathogenicity Islands (SPIs). DEGs potentially located in the SPI-regions that were upregulated (≥ 2-fold) in the S. Dublin compared with S. Cerro included: 37 SPI-1 genes encoding mostly Type 3 Secretion System (T3SS) apparatus and effectors; all of the six SPI-4 genes encoding type I secretion apparatus (siiABCDEF); T3SS effectors and chaperone (sopB, pipB, and sigE) located in SPI-5; type VI secretion system associated protein coding genes (sciJKNOR) located in SPI-6; and T3SS effector sopF in SPI-11. Additional major functional categories of DEGs included transcription regulators (n = 25), amino acid transport and metabolism (n = 20), carbohydrate transport and metabolism (n = 20), energy production and metabolism (n = 19), cell membrane biogenesis (n = 18), and coenzyme transport and metabolism (n = 15). DEGs were further mapped to the metabolic pathways listed in the KEGG database; most genes of the fatty acid ß-oxidation pathway were upregulated/uniquely present in the S. Dublin strains compared with the S. Cerro strains. CONCLUSIONS: This study identified S. enterica genes that may be responsible for symptomatic or asymptomatic infection and colonization of two bovine-adapted serovars in cattle.


Assuntos
Salmonella enterica , Animais , Bovinos , Células Epiteliais , Ilhas Genômicas , Sorogrupo , Transcriptoma
17.
Nucleic Acids Res ; 50(14): 8349-8362, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871290

RESUMO

Replication is a crucial cellular process. Replicative helicases unwind DNA providing the template strand to the polymerase and promoting replication fork progression. Helicases are multi-domain proteins which use an ATPase domain to couple ATP hydrolysis with translocation, however the role that the other domains might have during translocation remains elusive. Here, we studied the unexplored self-loading helicases called Reps, present in Staphylococcus aureus pathogenicity islands (SaPIs). Our cryoEM structures of the PriRep5 from SaPI5 (3.3 Å), the Rep1 from SaPI1 (3.9 Å) and Rep1-DNA complex (3.1Å) showed that in both Reps, the C-terminal domain (CTD) undergoes two distinct movements respect the ATPase domain. We experimentally demonstrate both in vitro and in vivo that SaPI-encoded Reps need key amino acids involved in the staircase mechanism of translocation. Additionally, we demonstrate that the CTD's presence is necessary for the maintenance of full ATPase and helicase activities. We speculate that this high interdomain flexibility couples Rep's activities as initiators and as helicases.


Assuntos
Adenosina Trifosfatases , DNA Helicases , Staphylococcus aureus , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , DNA/química , DNA Helicases/metabolismo , Replicação do DNA , Ilhas Genômicas , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
18.
J Bacteriol ; 204(5): e0055521, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35435721

RESUMO

Alpha-pore-forming toxins (α-PFTs) are secreted by many species of bacteria, including Escherichia coli, Aeromonas hydrophila, and Bacillus thuringiensis, as part of their arsenal of virulence factors, and are often cytotoxic. In particular, for α-PFTs, the membrane-spanning channel they form is composed of hydrophobic α-helices. These toxins oligomerize at the surface of target cells and transition from a soluble to a protomer state in which they expose their hydrophobic regions and insert into the membrane to form a pore. The pores may be composed of homooligomers of one component or heterooligomers with two or three components, resulting in bi- or tripartite toxins. The multicomponent α-PFTs are often expressed from a single operon. Recently, motility-associated killing factor A (MakA), an α-PFT, was discovered in Vibrio cholerae. We report that makA is found on the V. cholerae GI-10 genomic island within an operon containing genes for two other potential α-PFTs, MakB and MakE. We determined the X-ray crystal structures for MakA, MakB, and MakE and demonstrated that all three are structurally related to the α-PFT family in the soluble state, and we modeled their protomer state based on the α-PFT AhlB from A. hydrophila. We found that MakA alone is cytotoxic at micromolar concentrations. However, combining MakA with MakB and MakE is cytotoxic at nanomolar concentrations, with specificity for J774 macrophage cells. Our data suggest that MakA, -B, and -E are α-PFTs that potentially act as a tripartite pore-forming toxin with specificity for phagocytic cells. IMPORTANCE The bacterium Vibrio cholerae causes gastrointestinal, wound, and skin infections. The motility-associated killing factor A (MakA) was recently shown to be cytotoxic against colon, prostate, and other cancer cells. However, at the outset of this study, the capacity of MakA to damage cells in combination with other Mak proteins encoded in the same operon had not been elucidated. We determined the structures of three Mak proteins and established that they are structurally related to the α-PFTs. Compared to MakA alone, the combination of all three toxins was more potent specifically in mouse macrophages. This study highlights the idea that the Mak toxins are selectively cytotoxic and thus may function as a tripartite toxin with cell type specificity.


Assuntos
Vibrio cholerae , Animais , Citotoxinas/genética , Citotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ilhas Genômicas , Camundongos , Proteínas Citotóxicas Formadoras de Poros , Subunidades Proteicas/metabolismo , Vibrio cholerae/metabolismo , Fatores de Virulência/metabolismo
19.
Biosci Rep ; 42(3)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35258077

RESUMO

Bacterial virulence factors are often located in their genomic islands (GIs). Helicobacter pylori, a highly diverse organism is reported to be associated with several gastrointestinal diseases like, gastritis, gastric cancer (GC), peptic ulcer, duodenal ulcer (DU) etc. A novel similarity score (Sm)-based comparative analysis with GIs of 50 H. pylori strains revealed clear idea of the various factors which promote disease progression. Two putative pathogenic GIs in some of the H. pylori strains were identified. One GI, having a putative labile enterotoxin and other dynamin-like proteins (DLPs), is predicted to increase the release of toxin by membrane vesicular formation. Another island contains a virulence-associated protein D (vapD) which is a component of a type-II toxin-antitoxin system (TAs), leads to enhance the severity of the H. pylori infection. Besides the well-known virulence factors like Cytotoxin-associated gene A (CagA) and vacA, several GIs have been identified which showed to have direct or indirect impact on H. pylori clinical outcomes. One such GI, containing lipopolysaccharide (LPS) biosynthesis genes was revealed to be directly connected with disease development by inhibiting the immune response. Another collagenase-containing GI worsens ulcers by slowing down the healing process. GI consisted of fliD operon was found to be connected to flagellar assembly and biofilm production. By residing in biofilms, bacteria can avoid antibiotic therapy, resulting in chronic infection. Along with well-studied CagA and vacuolating toxin A (vacA) virulent genes, it is equally important to study these identified virulence factors for better understanding H. pylori-induced disease prognosis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ilhas Genômicas/genética , Genômica , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Humanos , Fatores de Virulência/genética
20.
Protein Sci ; 31(4): 835-849, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997791

RESUMO

Enteric microbial pathogenesis, remarkably a complex process, is achieved by virulence factors encoded by genes located within regions of the bacterial genome termed pathogenicity islands. Salmonella pathogenicity islands (SPI) encodes proteins, that are essential virulence determinants for pathogen colonization and virulence. In addition to the well-characterized SPI-1 and SPI-2 proteins, which are required for bacterial invasion and intracellular replication, respectively, SPI-6 (formerly known as Salmonella enterica centisome 7 island [SCI]) encoding proteins are also known to play pivotal role in Salmonella pathogenesis. However, the underlying molecular mechanism of these proteins remained elusive. To gain molecular insights into SPI-6-associated proteins, in this study, a SPI-6 Salmonella typhimurium VirG-like protein (STV) is characterized using interdisciplinary experimental approaches including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and infection assays. The high-resolution crystal structure, determined by the single-wavelength anomalous dispersion (SAD) method, reveals that STV belongs to the LTxxQ motif family. Solution-state NMR spectroscopy studies reveal that STV form a dimer involving interconnected helices. Interestingly, functional studies show that STV influence pathogen persistence inside macrophages in vitro at later stages of infection. Altogether, our findings suggest that STV, a member of the LTxxQ stress protein family, modulates bacterial survival mechanism in macrophages through SPI-1 and SPI-2 genes, respectively.


Assuntos
Proteínas de Bactérias , Ilhas Genômicas , Macrófagos , Salmonella typhimurium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA