RESUMO
Idiopathic pulmonary fibrosis, an idiopathic interstitial lung disease with high mortality, remains challenging to treat due to the lack of clinically approved lung-targeting drugs. Herein, we present PDIC-DPC, a perylenediimide derivative that exhibits superior lung-selective enrichment. PDIC-DPC forms nanocomposites with plasma proteins, including fibrinogen beta chain and vitronectin, which bind to pulmonary endothelial receptors for lung-specific accumulation. Moreover, PDIC-DPC significantly suppresses transforming growth factor beta1 and activates adenosine monophosphate-activated protein kinase. As a result, compared to existing therapeutic drugs, PDIC-DPC achieves superior therapeutic outcomes, evidenced by the lowest Ashcroft score, significantly improved pulmonary function, and an extended survival rate in a bleomycin-induced pulmonary fibrosis model. This study elucidates the lung-selective enrichment of assembled prodrug from biological perspectives and affords a platform enabling therapeutic efficiency on idiopathic pulmonary fibrosis.
Assuntos
Fibrose Pulmonar Idiopática , Imidas , Pulmão , Nanocompostos , Perileno , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Imidas/química , Imidas/farmacologia , Animais , Perileno/análogos & derivados , Perileno/química , Perileno/farmacologia , Perileno/uso terapêutico , Camundongos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Nanocompostos/química , Nanocompostos/uso terapêutico , Humanos , Bleomicina , Fator de Crescimento Transformador beta1/metabolismoRESUMO
G-quadruplex (G4) sequences, which can fold into higher-order G4 structures, are abundant in the human genome and are over-represented in the promoter regions of many genes involved in human cancer initiation, progression, and metastasis. They are plausible targets for G4-binding small molecules, which would, in the case of promoter G4s, result in the transcriptional downregulation of these genes. However, structural information is currently available on only a very small number of G4s and their ligand complexes. This limitation, coupled with the currently restricted information on the G4-containing genes involved in most complex human cancers, has led to the development of a phenotypic-led approach to G4 ligand drug discovery. This approach was illustrated by the discovery of several generations of tri- and tetra-substituted naphthalene diimide (ND) ligands that were found to show potent growth inhibition in pancreatic cancer cell lines and are active in in vivo models for this hard-to-treat disease. The cycles of discovery have culminated in a highly potent tetra-substituted ND derivative, QN-302, which is currently being evaluated in a Phase 1 clinical trial. The major genes whose expression has been down-regulated by QN-302 are presented here: all contain G4 propensity and have been found to be up-regulated in human pancreatic cancer. Some of these genes are also upregulated in other human cancers, supporting the hypothesis that QN-302 is a pan-G4 drug of potential utility beyond pancreatic cancer.
Assuntos
Antineoplásicos , Descoberta de Drogas , Quadruplex G , Quadruplex G/efeitos dos fármacos , Humanos , Descoberta de Drogas/métodos , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Fenótipo , Linhagem Celular Tumoral , Naftalenos/farmacologia , Naftalenos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Animais , Imidas/química , Imidas/farmacologia , Regiões Promotoras GenéticasRESUMO
BRCA1 gene and carcinoembryonic antigen (CEA) are important markers of breast cancer, so accurate detection of them is significant for early detection and diagnosis of breast cancer. In this study, a potential-resolved ratio electrochemiluminescence (ECL) biosensor using perylene diimide (PDI)-metal-organic framework and DNA nanoflowers (NFs)-CdS quantum dots (QDs) was constructed for detection of BRCA1 and CEA. Specifically, PDI-MOF and CdS QDs can generate potential-resolved intense ECL signals only using one coreactant, so the detection procedure can be effectively simplified. PDI-MOF was first attached to the electrode by graphene oxide, and the dopamine (DA) probe was linked to quench the ECL signal by DNA hybridization. In the presence of target BRCA1, it can form a bipedal DNA walker, so the quenching molecules (DA) were detached from the electrode via the walker amplification process aided by Mg2+, so that the PDI signal at -0.25 V was restored for the BRCA1 assay. Moreover, CdS QDs@DNA NFs as amplified signal probes were formed by self-assembly, and the target CEA-amplified product introduced the CdS QDs@DNA NFs to the electrode, so the QD ECL signal at -1.42 V was enhanced, while the ECL signal of PDI is unchanged; thus, CEA detection was achieved by the ratio value between them. Therefore, the detection accuracy is guaranteed by detection of two cancer markers and a ratio value. This biosensor has a great contribution to the development of new ECL materials and a novel ECL technique for fast and efficient multitarget assays, showing great significance for the early monitoring and diagnosis of breast cancer.
Assuntos
Proteína BRCA1 , Técnicas Biossensoriais , Compostos de Cádmio , Antígeno Carcinoembrionário , DNA , Técnicas Eletroquímicas , Imidas , Medições Luminescentes , Perileno , Pontos Quânticos , Sulfetos , Perileno/química , Perileno/análogos & derivados , Pontos Quânticos/química , Compostos de Cádmio/química , Técnicas Biossensoriais/métodos , Sulfetos/química , Técnicas Eletroquímicas/métodos , Imidas/química , DNA/química , Humanos , Proteína BRCA1/genética , Proteína BRCA1/análise , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/sangue , Estruturas Metalorgânicas/químicaRESUMO
The complex and harsh tumor microenvironment imped the efficacy of single-modality tumor therapy. With the advantages of biosafety, organic/inorganic nanohybrids have attracted more and more interest of researchers, and it is critical to investigate the development of highly efficient nanohybrids for multimodality combination therapy of cancers. Herein, a naphthalene diimide-based polycyclic conjugated molecule (NDI-S) is designed and synthesized, which has broader light absorption in the near infrared (NIR) region, outstanding photothermal conversion ability, and excellent photostability. Inorganic CoFe2O4 is synthesized via a solvothermal technique, which can produce much more reactive oxygen species (ROS) as a sonosensitizer when activated by ultrasonic (US). NDI-S and CoFe2O4 are then nanoprecipitated to create the organic/inorganic nanohybrids, NDI-S@CoFe2O4. According to the results of in vitro and in vivo experiments, NDI-S@CoFe2O4 can serve as a multifunctional nanoplatform for multimodal treatment of tumors in combination with photothermal/photodynamic/sonodynamic- therapy under the guidance of photoacoustic imaging, which provides a new vision of the development of organic/inorganic nanohybrids for cancer theranostics.
Assuntos
Imidas , Naftalenos , Técnicas Fotoacústicas , Imidas/química , Animais , Técnicas Fotoacústicas/métodos , Humanos , Camundongos , Naftalenos/química , Naftalenos/farmacologia , Linhagem Celular Tumoral , Cobalto/química , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom/métodos , Feminino , Camundongos Endogâmicos BALB C , Fototerapia/métodos , Compostos Férricos/química , Camundongos NusRESUMO
Nitrobenzoxadiazole (NBD)-incorporated naphthalene diimide derivatives were designed and synthesized as candidates of antitumor agents with cytotoxicity against human pancreatic cancer cell MIA PaCa-2. Among these, compounds 1NND and 3NND exhibited fluorescent "turn-off" property toward human telomeric G-quadruplex (G4), which allows the direct measurement of dissociation constant (Kd) of ligands against G4 by fluorescence titration method. Notably, the compound 1NND not only exhibited great cytotoxic activity against MIA PaCa-2 with a half maximal inhibitory concentration (IC50) of 77.9 nM, but also exhibited high affinity against G4 with Kd of 1.72 µM. Furthermore, the target binding properties were investigated by circular dichroism (CD) spectra and further studied by molecular docking methods.
Assuntos
Antineoplásicos , Desenho de Fármacos , Quadruplex G , Imidas , Naftalenos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Quadruplex G/efeitos dos fármacos , Imidas/química , Imidas/farmacologia , Imidas/síntese química , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Naftalenos/química , Naftalenos/farmacologia , Naftalenos/síntese química , Relação Estrutura-AtividadeRESUMO
Nature employs sophisticated mechanisms to precisely regulate self-assembly and functions within biological systems, exemplified by the formation of cytoskeletal filaments. Various enzymatic reactions and auxiliary proteins couple with the self-assembly process, meticulously regulating the length and functions of resulting macromolecular structures. In this context, we present a bioinspired, reaction-coupled approach for the controlled supramolecular polymerization in synthetic systems. To achieve this, we employ an enzymatic reaction that interfaces with the adenosine triphosphate (ATP)-templated supramolecular polymerization of naphthalene diimide monomers (NSG). Notably, the enzymatic production of ATP (template) plays a pivotal role in facilitating reaction-controlled, cooperative growth of the NSG monomers. This growth process, in turn, provides positive feedback to the enzymatic production of ATP, creating an ideal reaction-coupled assembly process. The success of this approach is further evident in the living-growth characteristic observed during seeding experiments, marking this method as the pioneering instance where reaction-coupled self-assembly precisely controls the growth kinetics and structural aspects of supramolecular polymers in a predictive manner, akin to biological systems.
Assuntos
Trifosfato de Adenosina , Imidas , Naftalenos , Polimerização , Naftalenos/química , Naftalenos/metabolismo , Naftalenos/síntese química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Imidas/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/síntese química , Estrutura Molecular , Cinética , Polímeros/químicaRESUMO
Phototherapy has garnered significant attention in the past decade. Photothermal and photodynamic synergistic therapy combined with NIR fluorescence imaging has been one of the most attractive treatment options because of the deep tissue penetration, high selectivity and excellent therapeutic effect. Benefiting from the superb photometrics and ease of modification, perylene diimide (PDI) and its derivatives have been employed as sensing probes and therapeutic agents in the biological and biomedical research fields, and exhibiting excellent potential. Herein, we reported the development of a novel organic small-molecule phototherapeutic agent, PDI-TN. The absorption of PDI-TN extends into the NIR region, which provides feasibility for NIR phototherapy. PDI-TN overcomes the traditional Aggregation-Caused Quenching (ACQ) effect and exhibits typical characteristics of Aggregation-Induced Emission (AIE). Subsequently, PDI-TN NPs were obtained by using an amphiphilic triblock copolymer F127 to encapsulate PDI-TN. Interestingly, the PDI-TN NPs not only exhibit satisfactory photothermal effects, but also can generate O2â¢- and 1O2 through type I and type II pathways, respectively. Additionally, the PDI-TN NPs emit strong fluorescence in the NIR-II region, and show outstanding therapeutic potential for in vivo NIR-II fluorescence imaging. To our knowledge, PDI-TN is the first PDI derivative used for NIR-II fluorescence imaging-guided photodynamic and photothermal synergistic therapy, which suggests excellent potential for future biological/biomedical applications.
Assuntos
Imidas , Imagem Óptica , Perileno , Fotoquimioterapia , Perileno/análogos & derivados , Perileno/química , Perileno/farmacologia , Perileno/uso terapêutico , Imidas/química , Imidas/uso terapêutico , Fotoquimioterapia/métodos , Humanos , Imagem Óptica/métodos , Animais , Camundongos , Corantes Fluorescentes/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Terapia Fototérmica , Raios Infravermelhos , Linhagem Celular TumoralRESUMO
Anthracene carboximides (ACIs) conjugated with gluco-, galacto- and mannopyranosides are synthesized, by glycosylation of N-hydroxyethylanthracene carboximide acceptor with glycosyl donors. Glycoconjugation of anthracene carboximide increases the aq. solubility by more than 3-fold. The glycoconjugates display red-shifted absorption and emission, as compared to anthracene. Large Stokes shift (λabs/λem=445/525â nm) and high fluorescence quantum yields (Φ) of 0.86 and 0.5 occur in THF and water, respectively. The ACI-glycosides undergo facile photodimerization in aqueous solutions, leading to the formation of the head-to-tail dimer, as a mixture of syn and anti-isomers. Solution phase and solid-state characterizations by dynamic light scattering (DLS), microscopic imaging by atomic force (AFM) and transmission electron (TEM) microscopies reveal self-assembled vesicle structures of ACI glycosides. These self-assembled structures act as multivalent glycoclusters for ligand-specific lectin binding, as evidenced by the binding of Man-ACI to Con A, by fluorescence and turbidity assays. The conjugates do not show cellular cytotoxicity (IC50) till concentrations of 50â µM with HeLa and HepG2â cell lines and are cell-permeable, showing strong fluorescence inside the cells. These properties enable the glycoconjugates to be used in cell imaging. The non-selective cellular uptake of the glycoconjugates suggests a passive diffusion through the membrane.
Assuntos
Antracenos , Glicoconjugados , Antracenos/química , Humanos , Ligantes , Células Hep G2 , Células HeLa , Glicoconjugados/química , Carboidratos/química , Glicosilação , Glicosídeos/química , Imidas/químicaRESUMO
A nano-immunomodulator (R-NPT NP) comprising a tumor microenvironment (TME) activable resiquimod (R848) and a π-extended NIR-absorbing naphthophenanthrolinetetraone (NPT) has been engineered for spatiotemporal controlled photothermal immunotherapy. R-NPT NP demonstrated excellent photostability, while R848 promoted synergistic immunity as a toll-like receptor 7/8 (TLR7/8) agonist. Upon accumulation at the tumor site, R-NPT NP released R848 in response to redox metabolite glutathione (GSH), triggering dendritic cell (DC) activation. The photothermal effect endowed by R-NPT NP can ablate tumors directly and trigger immunogenic cell death to augment immunity after photoirradiation. The synergistic effect of GSH-liable TLR7/8 agonist and released immunogenic factors leads to a robust evocation of systematic immunity through promoted DC maturation and T cell infiltration. Thus, R-NPT NP with photoirradiation achieved 99.3 % and 98.2 % growth inhibition against primary and distal tumors, respectively.
Assuntos
Imidas , Fatores Imunológicos , Imunoterapia , Naftalenos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Humanos , Naftalenos/química , Naftalenos/farmacologia , Imidas/química , Imidas/farmacologia , Animais , Nanopartículas/química , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Terapia Fototérmica , Imidazóis/química , Imidazóis/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Linhagem Celular TumoralRESUMO
The emblematic perylenediimide (PDI) motif which was initially used as a simple dye has undergone incredible development in recent decades. The increasing power of synthetic organic chemistry has allowed it to decorate PDIs to achieve highly functional dyes. As these PDI derivatives combine thermal, chemical and photostability, with an additional high absorption coefficient and near-unity fluorescence quantum yield, they have been widely studied for applications in materials science, particularly in photovoltaics. Although PDIs have always been in the spotlight, their asymmetric counterparts, perylenemonoimide (PMI) analogues, are now experiencing a resurgence of interest with new efforts to create architectures with equally exciting properties. Namely, their exceptional fluorescence properties have recently been used to develop novel systems for applications in bioimaging, biosensing and photodynamic therapy. This review covers the state of the art in the synthesis, photophysical characterizations and recently reported applications demonstrating the versatility of these two sister PDI and PMI compounds. The objective is to show that after well-known applications in materials science, the emerging trends in the use of PDI- and PMI-based derivatives concern very specific biomedicinal applications including drug delivery, diagnostics and theranostics.
Assuntos
Corantes Fluorescentes , Fotoquimioterapia , Corantes Fluorescentes/química , Imidas/químicaRESUMO
As key intermediates in metal-catalyzed nitrogen-transfer chemistry, terminal imido complexes of iron have attracted significant attention for a long time. In search of versatile model compounds, the recently developed second-generation N-anchored tris-NHC chelating ligand tris-[2-(3-mesityl-imidazole-2-ylidene)-methyl]amine (TIMMNMes) was utilized to synthesize and compare two series of mid- to high-valent iron alkyl imido complexes, including a reactive Fe(V) adamantyl imido intermediate en route to an isolable Fe(V) nitrido complex. The chemistry toward the iron adamantyl imides was achieved by reacting the Fe(I) precursor [(TIMMNMes)FeI(N2)]+ (1) with 1-adamantyl azide to yield the corresponding trivalent iron imide. Stepwise chemical reduction and oxidation lead to the isostructural series of low-spin [(TIMMNMes)Fe(NAd)]0,1+,2+,3+ (2Ad-5Ad) in oxidation states II to V. The Fe(V) imide [(TIMMNMes)Fe(NAd)]3+ (5Ad) is unstable under ambient conditions and converts to the air-stable nitride [(TIMMNMes)FeV(N)]2+ (6) via N-C bond cleavage. The stability of the pentavalent imide can be increased by derivatizing the nitride [(TIMMNMes)FeIV(N)]+ (7) with an ethyl group using the triethyloxonium salt Et3OPF6. This gives access to the analogous series of ethyl imides [(TIMMNMes)Fe(NEt)]0,1+,2+,3+ (2Et-5Et), including the stable Fe(V) ethyl imide. Iron imido complexes exist in a manifold of different electronic structures, ultimately controlling their diverse reactivities. Accordingly, these complexes were characterized by single-crystal X-ray diffraction analyses, SQUID magnetization, and electrochemical methods, as well as 57Fe Mössbauer, IR vibrational, UV/vis electronic absorption, multinuclear NMR, X-band EPR, and X-ray absorption spectroscopy. Our studies are complemented with quantum chemical calculations, thus providing further insight into the electronic structures of all complexes.
Assuntos
Ferro , NAD , Ferro/química , Modelos Moleculares , Oxirredução , Imidas/químicaRESUMO
The ubiquitin E3 ligase substrate adapter cereblon (CRBN) is a target of thalidomide and lenalidomide1, therapeutic agents used in the treatment of haematopoietic malignancies2-4 and as ligands for targeted protein degradation5-7. These agents are proposed to mimic a naturally occurring degron; however, the structural motif recognized by the thalidomide-binding domain of CRBN remains unknown. Here we report that C-terminal cyclic imides, post-translational modifications that arise from intramolecular cyclization of glutamine or asparagine residues, are physiological degrons on substrates for CRBN. Dipeptides bearing the C-terminal cyclic imide degron substitute for thalidomide when embedded within bifunctional chemical degraders. Addition of the degron to the C terminus of proteins induces CRBN-dependent ubiquitination and degradation in vitro and in cells. C-terminal cyclic imides form adventitiously on physiologically relevant timescales throughout the human proteome to afford a degron that is endogenously recognized and removed by CRBN. The discovery of the C-terminal cyclic imide degron defines a regulatory process that may affect the physiological function and therapeutic engagement of CRBN.
Assuntos
Imidas , Proteólise , Complexos Ubiquitina-Proteína Ligase , Humanos , Asparagina/química , Dipeptídeos/farmacologia , Glutamina/química , Imidas/química , Imidas/metabolismo , Lenalidomida/farmacologia , Ligantes , Peptídeo Hidrolases/metabolismo , Proteólise/efeitos dos fármacos , Proteoma/metabolismo , Talidomida/farmacologia , Ubiquitinação/efeitos dos fármacos , Motivos de Aminoácidos , CiclizaçãoRESUMO
In this study, the chromophore 3,4,9,10-perylenetetracarboxylic diimide (PDI) is anchored with phenyl substituents at the imide N site, followed by thionation, yielding a series of thione products 1S-PDI-D, 2S-cis-PDI-D, 2S-trans-PDI-D, 3S-PDI-D, and 4S-PDI-D, respectively, with n = 1, 2, 3, and 4 thione. The photophysical properties are dependent on the number of anchored thiones, where the observed prominent lower-lying absorption is assigned to the S0 â S2(ππ*) transition and is red-shifted upon increasing the number of thiones; the lowest-lying excited state is ascribed to a transition-forbidden S1(nπ*) configuration. All nS-PDIs are non-emissive in solution but reveal an excellent two-photon absorption cross-section of >800 GM. Supported by the femtosecond transient absorption study, the S1(nπ*) â T1(ππ*) intersystem crossing (ISC) rate is > 1012 s-1, resulting in â¼100% triplet population. The lowest-lying T1(ππ*) energy is calculated to be in the order of 1S-PDI-D > 2S-cis-PDI-D â¼ 2S-trans-PDI-D > 3S-PDI-D > 4S-PDI-D, where the T1 energy of 1S-PDI-D (1.10 eV) is higher than that (0.97 eV) of the 1O2 1Δg state. 1S-PDI-D is further modified by either conjugation with peptide FC131 on the two terminal sides, forming 1S-FC131, or linkage with peptide FC131 and cyanine5 dye on each terminal, yielding Cy5-1S-FC131. In vitro experiments show power of 1S-FC131 and Cy5-1S-FC131 in recognizing A549 cells out of other three lung normal cells and effective photodynamic therapy. In vivo, both molecular composites demonstrate outstanding antitumor ability in A549 xenografted tumor mice, where Cy5-1S-FC131 shows superiority of simultaneous fluorescence tracking and targeted photodynamic therapy.
Assuntos
Perileno , Fotoquimioterapia , Animais , Carbocianinas , Imidas/química , Camundongos , Perileno/química , Perileno/farmacologia , TionasRESUMO
Naphthalene diimide (NDI) is a central scaffold that has been commonly used in the design of G-quadruplex (G4) ligands. Previous work revealed notable anticancer activity of a disubstituted N-methylpiperazine propyl NDI G4 ligand. Here, we explored structure-activity relationship studies around ligand bis-N,N-2,7-(3-(4-methylpiperazin-1-yl)propyl)-1,4,5,8-naphthalenetetracarboxylic diimide, maintaining the central NDI core whilst modifying the spacer and the nature of the cationic groups. We prepared new disubstituted NDI derivatives of the original compound and examined their in vitro antiproliferative and antiparasitic activity. Several N-methylpiperazine propyl NDIs showed sub-micromolar activity against Trypanosoma brucei and Leishmania major parasites with up to 30 fold selectivity versus MRC-5 cells. The best compound was a dimorpholino NDI with an IC50 of 0.17 µM against T.brucei and 40 fold selectivity versus MRC-5 cells. However, no clear correlation between G4 binding of the new NDI derivatives and antiproliferative or antiparasitic activity was observed, indicating that other mechanisms of action may be responsible for the observed biological activity.
Assuntos
Antiparasitários , Quadruplex G , Antiparasitários/química , Antiparasitários/farmacologia , Imidas/química , Imidas/farmacologia , Ligantes , Naftalenos , Relação Estrutura-AtividadeRESUMO
Glycosyl conjugation to drugs is a strategy being used to take advantage of glucose transporters (GLUT) overexpression in cancer cells in comparison with non-cancerous cells. Its extension to the conjugation of drugs to thiosugars tries to exploit their higher biostability when compared to O-glycosides. Here, we have synthesized a series of thiosugar naphthalene diimide conjugates as G-quadruplex ligands and have explored modifications of the amino sidechain comparing dimethyl amino and morpholino groups. Then, we studied their antiproliferative activity in colon cancer cells, and their antiparasitic activity in T. brucei and L. major parasites, together with their ability to bind quadruplexes and their cellular uptake and location. We observed higher toxicity for the sugar-NDI-NMe2 derivatives than for the sugar-NDI-morph compounds, both in mammalian cells and in parasites. Our experiments indicate that a less efficient binding to quadruplexes and a worse cellular uptake of the carb-NDI-morph derivatives could be the reasons for these differences. We found small variations in cytotoxicity between O-carb-NDIs and S-carb-NDIs, except against non-cancerous human fibroblasts MRC-5, where thiosugar-NDIs tend to be less toxic. This leads to a notable selectivity for ß-thiomaltosyl-NDI-NMe212 (9.8 fold), with an IC50 of 0.3 µM against HT-29 cells. Finally, the antiparasitic activity observed for the carb-NDI-NMe2 derivatives against T. brucei was in the nanomolar range with a good selectivity index in the range of 30- to 69- fold.
Assuntos
Quadruplex G , Tioaçúcares , Animais , Antiparasitários/farmacologia , Humanos , Imidas/química , Imidas/farmacologia , Ligantes , NaftalenosRESUMO
Positively charged amphiphiles hold great significance in supramolecular chemistry due to their good solubility, and physiochemical and molecular recognition properties. Herein, we report the synthesis, characterization and molecular recognition properties of the dicationic amphiphile based on perylene diimide-tyrosine alkyl amide amine (PDI 3). PDI 3 showed the formation of a nanoring architecture in the self-assembled aggregated state (90% H2O-DMSO mixture) as observed by SEM and TEM studies. The diameter of the nanoring is around 30-50 nm with a height varying from 1 to 2 nm. The self-assembled aggregates of PDI 3 are very sensitive towards nucleoside triphosphates. Upon addition of ATP, PDI 3 showed a decrease in the absorbance and emission intensity at 535 and 580 nm (due to the monomer state), respectively. The lowest detection limit for ATP is 10.8 nM (UV) and 3.06 nM (FI). Upon interaction of ATP with PDI 3, the nanoring morphology transformed into a spherical structure. These changes could be attributed to the formation of ionic self-assembled aggregates between dicationic PDI 3 and negatively charged ATP via electrostatic and H-bonding interactions. The complexation mechanism of PDI 3 and ATP was confirmed by optical, NMR, Job's plot, DLS, SEM and AFM studies. PDI 3 displays low cytotoxicity toward MG-63 cells and can be successfully used for the detection of exogenous and endogenous ATP. The resulting PDI 3 + ATP complex is successfully used as a 'turn-on' biochemical assay for monitoring phosphorylation of glucose.
Assuntos
Trifosfato de Adenosina/análise , Materiais Biocompatíveis/química , Glucose/análise , Imidas/química , Nanopartículas/química , Perileno/análogos & derivados , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Humanos , Imidas/síntese química , Imidas/farmacologia , Teste de Materiais , Tamanho da Partícula , Perileno/síntese química , Perileno/química , Perileno/farmacologia , Fosforilação , Células Tumorais CultivadasRESUMO
A series of thionated perylenediimides with modulating phototheranostic modalities have been synthesized by a one-pot method for multiple anti-cancer applications. Compared to the initial and 4-tert-butyl phenol-substituted fluorescent perylenediimide, the obtained monothionated perylenediimide became photodynamic. With the increase of thionation degree, tetrathionated perylenediimide changed into an optimal photothermal agent.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fluorescência , Imidas/farmacologia , Perileno/análogos & derivados , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Compostos de Sulfidrila/farmacologia , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Imidas/química , Camundongos , Estrutura Molecular , Perileno/química , Perileno/farmacologia , Fármacos Fotossensibilizantes/química , Compostos de Sulfidrila/químicaRESUMO
G-quadruplex existence was proved in cells by using both antibodies and small molecule fluorescent probes. However, the G-quadruplex probes designed thus far are structure- but not conformation-specific. Recently, a core-extended naphthalene diimide (cex-NDI) was designed and found to provide fluorescent signals of markedly different intensities when bound to G-quadruplexes of different conformations or duplexes. Aiming at evaluating how the fluorescence behaviour of this compound is associated with specific binding modes to the different DNA targets, cex-NDI was here studied in its interaction with hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex models by biophysical techniques, molecular docking, and biological assays. cex-NDI showed different binding modes associated with different amounts of stacking interactions with the three DNA targets. The preferential binding sites were the groove, outer quartet, or intercalative site of the hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex, respectively. Interestingly, our data show that the fluorescence intensity of DNA-bound cex-NDI correlates with the amount of stacking interactions formed by the ligand with each DNA target, thus providing the rationale behind the conformation-sensitive properties of cex-NDI and supporting its use as a fluorescent probe of G-quadruplex structures. Notably, biological assays proved that cex-NDI mainly localizes in the G-quadruplex-rich nuclei of cancer cells.
Assuntos
Adenocarcinoma/metabolismo , Neoplasias da Mama/metabolismo , DNA de Forma B/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Quadruplex G , Imidas/química , Imidas/metabolismo , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Conformação Molecular , Naftalenos/química , Naftalenos/metabolismo , Adenocarcinoma/patologia , Sítios de Ligação , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Corantes Fluorescentes/farmacologia , Humanos , Imidas/farmacologia , Concentração Inibidora 50 , Substâncias Intercalantes/farmacologia , Ligantes , Células MCF-7 , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular/métodos , Naftalenos/farmacologiaRESUMO
Integrated treatment using imaging technology to monitor biological processes for the precise treatment and diagnosis of diseases to improve treatment outcomes is becoming a hot topic. Accordingly, perylene diimide (PDI) has excellent photothermal conversion and photostability, which can be used as a good material for disease treatment and diagnosis. Herein, we review the latest research progress on the real-time diagnosis of related diseases based on perylene diimide probes in the aspects of bioimaging, detection of biomarkers and determination of the pH in living cells. Furthermore, perylene diimide-based multifunctional nano-delivery systems are particularly emphasized, showing great therapeutic potential in the field of image-guided combination therapy in tumor therapy. Finally, the great opportunities and challenges still faced by perylene diimide before entering the clinic are comprehensively analyzed.
Assuntos
Antineoplásicos/uso terapêutico , Imidas/uso terapêutico , Neoplasias/tratamento farmacológico , Perileno/análogos & derivados , Técnicas Fotoacústicas , Antineoplásicos/química , Humanos , Imidas/química , Neoplasias/diagnóstico , Tamanho da Partícula , Perileno/química , Perileno/uso terapêutico , Propriedades de SuperfícieRESUMO
Interaction of cyclic naphthalene diimide derivatives (cNDIs), 1-4, with TA-core and c-myc as G-quartet (G4) DNA was studied under dilute or molecular crowding condition. Binding study for TA-core based on an isothermal titration calorimetry showed that 1-4 has 106 M-1 order of binding affinity with the following order: 1 > 4 > 2 > 3 under both conditions. Meting temperature (Tm) of TA-core obtained from the temperature dependence of circular dichroism spectra shows that TA-core was most stabilized by 4, which is in agreement with the result of PCR stop assay and the stabilization effect for 1-3 was correlated with their binding affinity under dilute condition. 3 showed specific growth inhibition of cancer cell line Ca9-22 at <0.03 µM of IC50, with no inhibitory effect against normal bone marrow cells. 3, which has highest value of ΔH/ΔG, shows the highest inhibition ability for Ca9-22, carrying a highest expression level of telomerase mRNA.