Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.987
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722309

RESUMO

SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.


Assuntos
Linfócitos B , Linfócitos T CD4-Positivos , Proteínas Qa-SNARE , Animais , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Camundongos , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Feminino , Masculino , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunidade Humoral , Exocitose
2.
Science ; 384(6695): eadj4857, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696569

RESUMO

B lymphocytes are essential mediators of humoral immunity and play multiple roles in human cancer. To decode the functions of tumor-infiltrating B cells, we generated a B cell blueprint encompassing single-cell transcriptome, B cell-receptor repertoire, and chromatin accessibility data across 20 different cancer types (477 samples, 269 patients). B cells harbored extraordinary heterogeneity and comprised 15 subsets, which could be grouped into two independent developmental paths (extrafollicular versus germinal center). Tumor types grouped into the extrafollicular pathway were linked with worse clinical outcomes and resistance to immunotherapy. The dysfunctional extrafollicular program was associated with glutamine-derived metabolites through epigenetic-metabolic cross-talk, which promoted a T cell-driven immunosuppressive program. These data suggest an intratumor B cell balance between extrafollicular and germinal-center responses and suggest that humoral immunity could possibly be harnessed for B cell-targeting immunotherapy.


Assuntos
Linfócitos B , Centro Germinativo , Linfócitos do Interstício Tumoral , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunoterapia , Transcriptoma , Análise de Célula Única , Epigênese Genética , Imunidade Humoral , Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia
3.
Nat Commun ; 15(1): 4182, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755157

RESUMO

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.


Assuntos
Antígenos CD19 , Medula Óssea , Interleucinas , Plasmócitos , Humanos , Plasmócitos/imunologia , Interleucinas/imunologia , Interleucinas/metabolismo , Medula Óssea/imunologia , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Imunidade Humoral/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/citologia , Análise de Célula Única , Adulto , Linfócitos B/imunologia , Células Produtoras de Anticorpos/imunologia , Feminino , Masculino , Vacinação , Pessoa de Meia-Idade , Vacina contra Difteria, Tétano e Coqueluche/imunologia
4.
Swiss Med Wkly ; 154: 3734, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38689545

RESUMO

AIMS OF THE STUDY: We aimed to assess the extent of SARS-CoV-2 humoral immunity elicited by previous infections and/or vaccination among healthcare workers, and to identify reasons why healthcare workers decided against vaccination. METHODS: This nested cross-sectional study included volunteer healthcare workers from 14 healthcare institutions in German-speaking Switzerland. In January 2021, SARS-CoV-2 vaccines were available for healthcare workers. In May and June 2022, participants answered electronic questionnaires regarding baseline characteristics including SARS-CoV-2 vaccination status (with one or more vaccine doses defined as vaccinated) and previous SARS-CoV-2 infections. Unvaccinated participants indicated their reasons for non-vaccination. Participants underwent testing for SARS-CoV-2 anti-spike (anti-S) and anti-nucleocapsid (anti-N) antibodies. Antibody prevalence was described across age groups. In addition, we performed multivariable logistic regression to identify baseline characteristics independently associated with non-vaccination and described reasons for non-vaccination. RESULTS: Among 22,438 eligible employees, 3,436 (15%) participated; the median age was 43.7 years (range 16-73), 2,794 (81.3%) were female, and 1,407 (47.7%) identified as nurses; 3,414 (99.4%) underwent serology testing, among whom 3,383 (99.0%) had detectable anti-S (3,357, 98.3%) antibodies, anti-N (2,396, 70.1%) antibodies, or both (2,370, 69.4%). A total of 296 (8.6%) healthcare workers were unvaccinated, whereas 3,140 (91.4%) were vaccinated. In multivariable analysis, age (adjusted OR [aOR] 1.02 per year, 95% CI 1.01-1.03), being a physician (aOR 3.22, 95% CI 1.75-5.92) or administrator (aOR 1.88, 95% CI 1.27-2.80), and having higher education (aOR 2.23, 95% CI 1.09-4.57) were positively associated with vaccine uptake, whereas working in non-acute care (aOR 0.58, 95% CI 0.34-0.97), active smoking (aOR 0.68, 95% CI 0.51-0.91), and taking prophylactic home remedies against SARS-CoV-2 (aOR 0.42, 95% CI 0.31-0.56) were negatively associated. Important reasons for non-vaccination were a belief that the vaccine might not have long-lasting immunity (267/291, 92.1%) and a preference for gaining naturally acquired instead of vaccine-induced immunity (241/289, 83.4%). CONCLUSIONS: Almost all healthcare workers in our cohort had specific antibodies against SARS-CoV-2 from natural infection and/or from vaccination. Young healthcare workers and those working in non-acute settings were less likely to be vaccinated, whereas physicians and administrative staff showed higher vaccination uptake. Presumed ineffectiveness of the vaccine is an important reason for non-vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Pessoal de Saúde , SARS-CoV-2 , Humanos , Suíça , Estudos Transversais , COVID-19/prevenção & controle , COVID-19/imunologia , Pessoal de Saúde/estatística & dados numéricos , Feminino , Masculino , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Vacinação/estatística & dados numéricos , Adulto Jovem , Adolescente , Imunidade Humoral , Inquéritos e Questionários , Idoso
5.
Front Immunol ; 15: 1374486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745651

RESUMO

A universal recombinant adenovirus type-5 (Ad5) vaccine against COVID19 (Ad-US) was constructed, and immunogenicity and broad-spectrum of Ad5-US were evaluated with both intranasal and intramuscular immunization routes. The humoral immune response of Ad5-US in serum and bronchoalveolar lavage fluid were evaluated by the enzyme-linked immunosorbent assay (ELISA), recombinant vesicular stomatitis virus based pseudovirus neutralization assay, and angiotensin-converting enzyme-2 (ACE2) -binding inhibition assay. The cellular immune response and Th1/Th2 biased immune response of Ad5-US were evaluated by the IFN-γ ELISpot assay, intracellular cytokine staining, and Meso Scale Discovery (MSD) profiling of Th1/Th2 cytokines. Intramuscular priming followed by an intranasal booster with Ad5-US elicited the broad-spectrum and high levels of IgG, IgA, pseudovirus neutralizing antibody (PNAb), and Th1-skewing of the T-cell response. Overall, the adenovirus type-5 vectored universal SARS-CoV-2 vaccine Ad5-US was successfully constructed, and Ad5-US was highly immunogenic and broad spectrum. Intramuscular priming followed by an intranasal booster with Ad5-US induced the high and broad spectrum systemic immune responses and local mucosal immune responses.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Vetores Genéticos , SARS-CoV-2 , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Camundongos , Humanos , Feminino , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Adenoviridae/genética , Adenoviridae/imunologia , Camundongos Endogâmicos BALB C , Administração Intranasal , Injeções Intramusculares , Imunidade Humoral , Citocinas/metabolismo , Imunidade Celular
6.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557487

RESUMO

Endothelial function and integrity are compromised after allogeneic bone marrow transplantation (BMT), but how this affects immune responses broadly remains unknown. Using a preclinical model of CMV reactivation after BMT, we found compromised antiviral humoral responses induced by IL-6 signaling. IL-6 signaling in T cells maintained Th1 cells, resulting in sustained IFN-γ secretion, which promoted endothelial cell (EC) injury, loss of the neonatal Fc receptor (FcRn) responsible for IgG recycling, and rapid IgG loss. T cell-specific deletion of IL-6R led to persistence of recipient-derived, CMV-specific IgG and inhibited CMV reactivation. Deletion of IFN-γ in donor T cells also eliminated EC injury and FcRn loss. In a phase III clinical trial, blockade of IL-6R with tocilizumab promoted CMV-specific IgG persistence and significantly attenuated early HCMV reactivation. In sum, IL-6 invoked IFN-γ-dependent EC injury and consequent IgG loss, leading to CMV reactivation. Hence, cytokine inhibition represents a logical strategy to prevent endothelial injury, thereby preserving humoral immunity after immunotherapy.


Assuntos
Transplante de Medula Óssea , Infecções por Citomegalovirus , Imunidade Humoral , Interleucina-6 , Antivirais , Transplante de Medula Óssea/efeitos adversos , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Imunoglobulina G , Interleucina-6/metabolismo , Animais , Camundongos
7.
PLoS One ; 19(4): e0299215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626093

RESUMO

Non-replicating adenovirus-based vectors have been broadly used for the development of prophylactic vaccines in humans and are licensed for COVID-19 and Ebola virus disease prevention. Adenovirus-based vectored vaccines encode for one or more disease specific transgenes with the aim to induce protective immunity against the target disease. The magnitude and duration of transgene expression of adenovirus 5- based vectors (human type C) in the host are key factors influencing antigen presentation and adaptive immune responses. Here we characterize the magnitude, duration, and organ biodistribution of transgene expression after single intramuscular administration of adenovirus 26-based vector vaccines in mice and evaluate the differences with adenovirus 5-based vector vaccine to understand if this is universally applicable across serotypes. We demonstrate a correlation between peak transgene expression early after adenovirus 26-based vaccination and transgene-specific cellular and humoral immune responses for a model antigen and SARS-CoV-2 spike protein, independent of innate immune activation. Notably, the memory immune response was similar in mice immunized with adenovirus 26-based vaccine and adenovirus 5-based vaccine, despite the latter inducing a higher peak of transgene expression early after immunization and a longer duration of transgene expression. Together these results provide further insights into the mode of action of adenovirus 26-based vector vaccines.


Assuntos
Vacinas contra Adenovirus , Glicoproteína da Espícula de Coronavírus , Vacinas , Animais , Camundongos , Humanos , Imunidade Humoral , Distribuição Tecidual , Imunização , Vacinação , Adenoviridae/genética , Transgenes , Vetores Genéticos/genética , Anticorpos Antivirais
8.
Viruses ; 16(4)2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675887

RESUMO

PRRS is a viral disease that profoundly impacts the global swine industry, causing significant economic losses. The development of a novel and effective vaccine is crucial to halt the rapid transmission of this virus. There have been several vaccination attempts against PRRSV using both traditional and alternative vaccine design development approaches. Unfortunately, there is no currently available vaccine that can completely control this disease. Thus, our study aimed to develop an mRNA vaccine using the antigens expressed by single or fused PRRSV structural proteins. In this study, the nucleotide sequence of the immunogenic mRNA was determined by considering the antigenicity of structural proteins and the stability of spatial structure. Purified GP5 protein served as the detection antigen in the immunological evaluation. Furthermore, cellular mRNA expression was detected by immunofluorescence and western blotting. In a mice experiment, the Ab titer in serum and the activation of spleen lymphocytes triggered by the antigen were detected by ELISA and ICS, respectively. Our findings demonstrated that both mRNA vaccines can significantly stimulate cellular and humoral immune responses. More specifically, the GP5-mRNA exhibited an immunological response that was similar to that of the commercially available vaccine when administered in high doses. To conclude, our vaccine may show promising results against the wild-type virus in a natural host.


Assuntos
Anticorpos Antivirais , Imunidade Celular , Imunidade Humoral , Camundongos Endogâmicos BALB C , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas do Envelope Viral , Vacinas Virais , Vacinas de mRNA , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Camundongos , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Suínos , Feminino , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/genética , RNA Mensageiro/genética
9.
J Immunol Methods ; 528: 113665, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490578

RESUMO

On March 13, 2021, Tunisia started a widespread immunization program against SARS-CoV-2 utilizing different vaccinations that had been given emergency approval. Herein, we followed prospectively a cohort of participant who received COVID-19 vaccine (Pfizer BioNTech and Sputnik-Gameleya V). The goal of this follow-up was to define the humoral and cellular immunological profile after immunization by assessing neutralizing antibodies and IFN- γ release. 26 vaccinated health care workers by Pfizer BioNTech (n=12) and Sputnik-Gameleya V (n=14) were enrolled from June to December 2021 in Military hospital of Tunis. All consenting participants were sampled for peripheral blood after three weeks of vaccination. The humoral response was investigated by the titer of anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies to S1 protein. The CD4 and CD8 T cell responses were evaluated by the QuantiFERON® SARS-CoV-2 (Qiagen® Basel, Switzerland). Regardless the type of vaccine, the assessment of humoral and cellular response following vaccination showed a strong involvement of the later with expression of IFN-γ as compared to antibodies secretion. Moreover, we showed that people with past SARS-CoV-2 infection developed high levels of antibodies than those who are not previously infected. However, no significant difference was detected concerning interferon gamma (IFN-γ) expression by CD4 and CD8 T cells in health care worker (HCW) previously infection or not with COVID-19 infection. Analysis of immune response according to the type of vaccine, we found that Pfizer BioNTech induced high level of humoral response (91.66%) followed by Sputnik-Gameleya V (64.28%). However, adenovirus vaccine gave a better cellular response (57.14%) than mRNA vaccine (41.66%). Regarding the immune response following vaccine doses, we revealed a significant increase of neutralizing antibodies and IFN-γ release by T cells in patients fully vaccinated as compared to those who have received just one vaccine. Collectively, our data revealed a similar immune response between Pfizer BioNTech and Sputnik-Gameleya V vaccine with a slight increase of humoral response by mRNA vaccine and cellular response by adenovirus vaccine. It's evident that past SARS-CoV-2 infection was a factor that contributed to the vaccination's increased immunogenicity. However, the administration of full doses of vaccines (Pfizer BioNTech or Sputnik-Gameleya V) induces better humoral and cellular responses detectable even more than three months following vaccination.


Assuntos
Vacinas contra Adenovirus , Antígenos de Grupos Sanguíneos , COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Vacinas de mRNA , Vacinação , Anticorpos Neutralizantes , Pessoal de Saúde , Interferon gama , Anticorpos Antivirais , Imunidade Humoral
10.
Nature ; 628(8008): 612-619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509366

RESUMO

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Assuntos
Dura-Máter , Imunidade Humoral , Tecido Linfoide , Veias , Administração Intranasal , Antígenos/administração & dosagem , Antígenos/imunologia , Medula Óssea/imunologia , Sistema Nervoso Central/irrigação sanguínea , Sistema Nervoso Central/imunologia , Dura-Máter/irrigação sanguínea , Dura-Máter/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Vasos Linfáticos/imunologia , Tecido Linfoide/irrigação sanguínea , Tecido Linfoide/imunologia , Plasmócitos/imunologia , Crânio/irrigação sanguínea , Linfócitos T/imunologia , Veias/fisiologia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Animais , Camundongos , Idoso de 80 Anos ou mais
11.
J Immunol ; 212(9): 1504-1518, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517294

RESUMO

Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Transplante de Rim , Linfócitos T Reguladores , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Rejeição de Enxerto/imunologia , Isoanticorpos , Transplante de Rim/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores CXCR5/imunologia , Imunidade Humoral/imunologia
12.
Vaccine ; 42(10): 2722-2728, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38514355

RESUMO

BACKGROUND: Data on SARS-CoV-2 vaccine responsiveness in adolescent/young adult (AYA) cancer patients are sparse. The present study assessed humoral and cellular immune responses post-vaccination in this population. METHODS: In this prospective study, patients aged 12-30 years undergoing cancer therapy ("on therapy") and survivors ("off therapy") were recruited. Anti-receptor binding domain (RBD) protein IgG levels were measured at baseline, four weeks post-first vaccine dose (T1), and six weeks post-second dose (T2). Cellular immunity was assessed using activation-induced markers and intracellular cytokine staining in a patient subset. The primary outcome was to quantify humoral responses in both cohorts at T2 compared to baseline. Clinical predictors of log antibody titres at T2 were identified. RESULTS: Between April-December 2022, 118 patients were recruited of median age 15.4 years. Among them, 77 (65.2 %) were in the "on therapy" group, and 77 (65.2 %) had received the BBV152 vaccine. At baseline, 108 (91.5 %) patients were seropositive for anti-RBD antibody. The log anti-RBD titre rose from baseline to T2 (p-value = 0.001) in the whole cohort; this rise was significant from baseline-T1 (p-value < 0.001), but not from T1 to T2 (p-value = 0.842). A similar pattern was seen in the "on therapy" cohort. BECOV-2 vaccine was independently associated with higher log anti-RBD titres than BBV152 (regression coefficient: 0.41; 95 % CI: 0.10-0.73; p = 0.011). Cellular immune responses were similar in the "on-" and "off therapy" groups at the three time points. CONCLUSION: Among AYA cancer patients, a single non-mRNA vaccine dose confers robust hybrid humoral immunity with limited benefit from a second dose.


Assuntos
COVID-19 , Neoplasias , Humanos , Adolescente , Adulto Jovem , Estudos Prospectivos , SARS-CoV-2 , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Vacinação , Imunidade Celular , Neoplasias/terapia , Imunidade Humoral , Anticorpos Antivirais
13.
BMC Cancer ; 24(1): 283, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431566

RESUMO

BACKGROUND: This study aims to investigate the expression of UBQLN1 in lung cancer (LC) tissue and the diagnostic capability of autoantibody to UBQLN1 (anti-UBQLN1) in the detection of LC and the discrimination of pulmonary nodules (PNs). METHODS: Sera from 798 participants were used to discover and validate the level of autoantibodies via HuProt microarray and Enzyme-linked immunosorbent assay (ELISA). Logistic regression analysis was applied to establish model. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the diagnostic potential. Immunohistochemistry was performed to detect UBQLN1 expression in 88 LC tissues and 88 para-tumor tissues. qRT-PCR and western blotting were performed to detect the expression of UBQLN1 at the mRNA and protein levels, respectively. Trans-well assay and cell counting kit-8 (CCK-8) was used to investigate the function of UBQLN1. RESULTS: Anti-UBQLN1 was identified with the highest fold change by protein microarray. The level of anti-UBQLN1 in LC patients was obviously higher than that in NC or patients with benign lung disease of validation cohort 1 (P<0.05). The area under the curve (AUC) of anti-UBQLN1 was 0.610 (95%CI: 0.508-0.713) while reached at 0.822 (95%CI: 0.784-0.897) when combining anti-UBQLN1 with CEA, CYFRA21-1, CA125 and three CT indicators (vascular notch sign, lobulation sign and mediastinal lymph node enlargement) in the discrimination of PNs. UBQLN1 protein was overexpressed in lung adenocarcinoma (LUAD) tissues compared to para-tumor tissues. UBQLN1 knockdown remarkably inhibited the migration, invasion and proliferation of LUAD cell lines. CONCLUSIONS: Anti-UBQLN1 might be a potential biomarker for the diagnosis of LC and the discrimination of PNs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/diagnóstico , Imunidade Humoral , Antígenos de Neoplasias , Queratina-19 , Biomarcadores Tumorais , Proteínas Relacionadas à Autofagia/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
14.
J Virol ; 98(4): e0191223, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501661

RESUMO

The corona virus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2) spurred a worldwide race for the development of an efficient vaccine. Various strategies were pursued; however, the first vaccines to be licensed presented the SARS-CoV-2 spike protein either in the context of a non-replicating adenoviral vector or as an mRNA construct. While short-term efficacies have extensively been characterized, the duration of protection, the need for repeated boosting, and reasonable vaccination intervals have yet to be defined. We here describe the adaptive immune response resulting from homologous and heterologous vaccination regimen at 18 months after primary vaccination. To that extent, we monitored 176 healthcare workers, the majority of whom had recovered from previous SARS-CoV-2 infection. In summary, we find that differences depending on primary immunization continue to exist 18 months after the first vaccination and these findings hold true irrespective of previous infection with the virus. Homologous primary immunization with BNT162b2 was repeatedly shown to produce higher antibody levels and slower antibody decline, leading to more effective in vitro neutralization capacities. Likewise, cellular responses resulting from in vitro re-stimulation were more pronounced after primary immunization involving BNT162b2. In contrast, IL-2 producing memory T helper and cytotoxic T cells appeared independent from the primary vaccination regimen. Despite these differences, comparable infection rates among all vaccination groups suggest comparable real-life protection.IMPORTANCEVaccination against the severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2) was shown to avert severe courses of corona virus disease 2019 (COVID-19) and to mitigate spreading of the virus. However, the duration of protection and need for repeated boosting have yet to be defined. Monitoring and comparing the immune responses resulting from various vaccine strategies are therefore important to fill knowledge gaps and prepare for future pandemics.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Imunidade Celular , Imunidade Humoral , RNA , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus
15.
J Infect Public Health ; 17(4): 704-711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479067

RESUMO

BACKGROUND: The global challenge posed by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been a major concern for the healthcare sector in recent years. Healthcare workers have a relatively high risk of encountering COVID-19 patients, making protective immunity against SARS-CoV-2 is a priority for them. This study aims to evaluate the longitudinal measurement of SARS-CoV-2 IgG spike protein antibodies in healthcare workers (HCWs) after COVID-19 infection and after receiving the first and second doses of SARS-CoV-2 vaccines, including Pfizer-BioNTech (BNT162b2) and Oxford-AstraZeneca (AZD1222). METHODS: This longitudinal cohort study involved 311 healthcare workers working in two tertiary hospitals in Saudi Arabia. All participants were followed between July 2020 and July 2022 after completing the study questionnaire. A total of 3 ml of the blood samples were collected at four intervals: before/after vaccination. RESULTS: HCWs post-infection had lower mean SARS-CoV-2 IgG levels three months post-infection than post-vaccination. 92.2% had positive IgG levels two weeks after the first dose and reached 100% after the second dose. Over 98% had positive antibodies nine months after the second dose, regardless of vaccine type. The number of neutralizing antibodies decreased and was around 50% at nine months after the second dose. CONCLUSION: The results show different antibody patterns between infected and vaccinated HCWs. A high proportion of participants had positive antibodies after vaccination, with high levels persisting nine months after the second dose. Neutralizing antibodies decreased over time, with only about 50% of participants having positive antibodies nine months after the second dose. These results contribute to our understanding of immunity in healthcare workers and highlight the need for the continuous monitoring and possible booster strategies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Imunidade Humoral , Vacina BNT162 , ChAdOx1 nCoV-19 , Estudos Longitudinais , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Pessoal de Saúde , Imunoglobulina G , Vacinação
16.
J Feline Med Surg ; 26(2): 1098612X231218643, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358295

RESUMO

OBJECTIVES: Some expert groups recommend that cats should be vaccinated with non-adjuvanted feline leukaemia virus (FeLV) and rabies vector vaccines, which, in the European Union, are currently not licensed for concurrent use and have to be administered at least 14 days apart (different from the USA) and thus at separate visits, which is associated with more stress for cats and owners. The aim of this study was to assess the anti-rabies antibody response in cats after vaccination against rabies and FeLV at concurrent vs separate (4 weeks apart) visits using two canarypox-vectored vaccines (Purevax Rabies and Purevax FeLV; Boehringer Ingelheim) and to evaluate the occurrence of vaccine-associated adverse events (VAAEs). METHODS: Healthy FeLV antigen-negative client-owned kittens (n = 106) were prospectively included in this randomised study. All kittens received primary vaccinations against rabies (week 0) and FeLV (weeks 4 and 8). After 1 year, the study group (n = 52) received booster vaccinations against rabies and FeLV concurrently at the same visit (weeks 50-52). The control group (n = 54) received booster vaccinations against rabies (weeks 50-52) and FeLV (weeks 54-56) separately. Anti-rabies virus antibodies (anti-RAV Ab) were determined by fluorescent antibody virus neutralisation assay at weeks 4, 50-52 and 54-56, and compared between both groups using a Mann-Whitney U-test. RESULTS: Four weeks after the first rabies vaccination, 87/106 (82.1%) kittens had a titre ⩾0.5 IU/ml and 19/106 (17.9%) had a titre <0.5 IU/ml. Four weeks after the 1-year rabies booster, all cats had adequate anti-RAV Ab according to the World Organisation for Animal Health (⩾0.5 IU/ml), and the titres of the study group (median = 14.30 IU/ml) and the control group (median = 21.39 IU/ml) did not differ significantly (P = 0.141). VAAEs were observed in 7/106 (6.6%) cats. CONCLUSIONS AND RELEVANCE: Concurrent administration of Purevax FeLV and Purevax Rabies vector vaccines at the 1-year booster does not interfere with the development of anti-RAV Ab or cause more adverse effects and thus represents a better option than separate vaccination visits for cats and owners.


Assuntos
Doenças do Gato , Raiva , Vacinas Virais , Animais , Gatos , Anticorpos Antivirais , Doenças do Gato/prevenção & controle , Imunidade Humoral , Vírus da Leucemia Felina , Raiva/prevenção & controle , Raiva/veterinária , Vacinação/veterinária
17.
Clin Lymphoma Myeloma Leuk ; 24(5): 305-315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336492

RESUMO

BACKGROUND: Patients with hematological cancers have increased COVID-19 morbidity and mortality, and these patients show attenuated vaccine responses. This study aimed to characterize the longitudinal humoral immune responses to COVID-19 vaccination in patients with hematological malignancies. PATIENTS AND METHODS: We conducted a prospective cohort study, collecting samples from March 2021 to July 2022, from patients seen at a cancer treatment center in London, Ontario, Canada, who met the following eligibility criteria: age ≥18 years, diagnosed with a hematological malignancy, recipient of a COVID-19 vaccine during the study period, and able to provide informed consent. RESULTS: Median anti-S titers (MST) were 0.0, 64.0, and 680.5 U/mL following first (V1), second (V2), and third (V3) vaccine doses, respectively. Patients with lymphoid malignancies' response to vaccination was attenuated compared to myeloid malignancy patients after V2 and V3 (P < .001, P < .01). Active treatment was associated with lower antibody titers (MST 10) compared to treatment 12-24 months (MST 465, P = .04367) and >24 months (MST 1660.5, P = .0025) prior to vaccination. V3 significantly increased antibody titers compared to V2 for patients less than 3 months from treatment. Increasing age was associated with smaller antibody response following V2 (P < .05), but not following V3. Patients receiving anti-CD20 therapy did not demonstrate increased antibody titer levels after V3 (V2 MST 0, V3 MST 0; P > .05). CONCLUSION: We report an attenuated serologic response to COVID-19 vaccination in our study population of patients with hematological malignancy. The immune response to vaccination was affected by patient age, diagnosis, treatment, and timing of treatment exposure.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Neoplasias Hematológicas , SARS-CoV-2 , Humanos , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/complicações , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/complicações , Idoso , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2/imunologia , Adulto , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinação , Idoso de 80 Anos ou mais , Imunidade Humoral
18.
Front Immunol ; 15: 1335446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318184

RESUMO

Introduction: Lyme disease (LD), a rapidly growing public health problem in the US, represents a formidable challenge due to the lack of detailed understanding about how the human immune system responds to its pathogen, the Borrelia burgdorferi bacterium. Despite significant advances in gaining deeper insight into mechanisms the pathogen uses to evade immune response, substantial gaps remain. As a result, molecular tools for the disease diagnosis are lacking with the currently available tests showing poor performance. High interpersonal variability in immune response combined with the ability of the pathogen to use a number of immune evasive tactics have been implicated as underlying factors for the limited test performance. Methods: This study was designed to perform a broad profiling of the entire repertoire of circulating antibodies in human sera at the single-individual level using planar arrays of short linear peptides with random sequences. The peptides sample sparsely, but uniformly the entire combinatorial sequence space of the same length peptides for profiling the humoral immune response to a B.burg. infection and compare them with other diseases with etiology similar to LD and healthy controls. Results: The study revealed substantial variability in antibody binding profiles between individual LD patients even to the same antigen (VlsE protein) and strong similarity between individuals diagnosed with Lyme disease and healthy controls from the areas endemic to LD suggesting a high prevalence of seropositivity in endemic healthy control. Discussion: This work demonstrates the utility of the approach as a valuable analytical tool for agnostic profiling of humoral immune response to a pathogen.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Humanos , Imunidade Humoral , Proteínas de Bactérias , Peptídeos/metabolismo
19.
Microbiol Spectr ; 12(3): e0205023, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38353557

RESUMO

Cancer patients are at risk for severe coronavirus disease 2019 (COVID-19) outcomes due to impaired immune responses. However, the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is inadequately characterized in this population. We hypothesized that cancer vs non-cancer individuals would mount less robust humoral and/or cellular vaccine-induced immune SARS-CoV-2 responses. Receptor binding domain (RBD) and SARS-CoV-2 spike protein antibody levels and T-cell responses were assessed in immunocompetent individuals with no underlying disorders (n = 479) and immunocompromised individuals (n = 115). All 594 individuals were vaccinated and of varying COVID-19 statuses (i.e., not known to have been infected, previously infected, or "Long-COVID"). Among immunocompromised individuals, 59% (n = 68) had an underlying hematologic malignancy; of those, 46% (n = 31) of individuals received cancer treatment <30 days prior to study blood collection. Ninety-eight percentage (n = 469) of immunocompetent and 81% (n = 93) of immunocompromised individuals had elevated RBD antibody titers (>1,000 U/mL), and of these, 60% (n = 281) and 44% (n = 41), respectively, also had elevated T-cell responses. Composite T-cell responses were higher in individuals previously infected with SARS-CoV-2 or those diagnosed with Long-COVID compared to uninfected individuals. T-cell responses varied between immunocompetent vs carcinoma (n = 12) cohorts (P < 0.01) but not in immunocompetent vs hematologic malignancy cohorts. Most SARS-CoV-2 vaccinated individuals mounted robust cellular and/or humoral responses, though higher immunogenicity was observed among the immunocompetent compared to cancer populations. The study suggests B-cell targeted therapies suppress antibody responses, but not T-cell responses, to SARS-CoV-2 vaccination. Thus, vaccination continues to be an effective way to induce humoral and cellular immune responses as a likely key preventive measure against infection and/or subsequent more severe adverse outcomes. IMPORTANCE: The study was prompted by a desire to better assess the immune status of patients among our cancer host cohort, one of the largest in the New York metropolitan region. Hackensack Meridian Health is the largest healthcare system in New Jersey and cared for more than 75,000 coronavirus disease 2019 patients in its hospitals. The John Theurer Cancer Center sees more than 35,000 new cancer patients a year and performs more than 500 hematopoietic stem cell transplants. As a result, the work was undertaken to assess the effectiveness of vaccination in inducing humoral and cellular responses within this demographic.


Assuntos
COVID-19 , Neoplasias Hematológicas , Neoplasias , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Vacinação , Imunidade Celular , Anticorpos Antivirais , Imunidade Humoral
20.
Biomater Sci ; 12(7): 1771-1787, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38385306

RESUMO

In the development of cancer vaccines, antigens are delivered to elicit potent and specific T-cell responses to eradicate tumour cells. Nonetheless, successful vaccines are often hampered by the poor immunogenicity of tumour antigens, rapid clearance by the innate immunity, and limited cross-presentation on MHC-I to activate CD8+ T-cells arm. To address these issues, we developed dextran-based nanogels to promote antigen uptake, storage, and cross-presentation on MHC-I, while directing immunogenic maturation of the antigen-presenting cells (APCs). To promote the nanocarriers interaction with cells, we modified DX with L-arginine (Arg), whose immunomodulatory activities have been well documented. The ArgDX nanogel performance was compared with the nanogel modified with L-histidine (His) and L-glutamate (Glut). Moreover, we introduced pH-sensitive hydrazone crosslinking during the nanogel formation for the conjugation and controlled release of antigen ovalbumin (OVA). The OVA-laden nanogels have an average size of 325 nm. We demonstrated that the nanogels could rapidly release cargoes upon a pH change from 7 to 5 within 8 days, indicating the controlled release of antigens in the acidic cellular compartments upon internalization. Our results revealed that the ArgDX nanogel could promote greater antigen uptake and storage in DCs in vitro and promoted a stronger immunogenic maturation of DCs and M1 polarization of the macrophages. The OVA signals were co-localized with lysosomal compartments up till 96 hours post-treatment and washing, suggesting the nanogels could facilitate prolonged antigen storage and supply from endo-lysosomal compartments. Furthermore, all the tested nanogel formulations retained antigens at the skin injection sites until day 21. Such delayed clearance could be due to the formation of micron-sized aggregates of OVA-laden nanogels, extending the interactions with the resident DCs. Amongst the amino acid modifications, ArgDX nanogels promoted the highest level of lymph node homing signal CCR7 on DCs. The nanogels also showed higher antigen presentation on both MHC-I and II than DX in vitro. In the in vivo immune studies, ArgDX nanogels were more superior in inducing cellular and humoral immunity than the other treatment groups on day 21 post-treatment. These results suggested that ArgDX nanogel is a promising self-adjuvanted nanocarrier for vaccine delivery.


Assuntos
Vacinas Anticâncer , Imunidade Humoral , Polietilenoglicóis , Polietilenoimina , Animais , Camundongos , Nanogéis , Dextranos , Linfócitos T CD8-Positivos , Preparações de Ação Retardada , Células Dendríticas , Antígenos , Adjuvantes Imunológicos/farmacologia , Ovalbumina/química , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA