Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35131901

RESUMO

In this article, we describe the development of the plant immunity field, starting with efforts to understand the genetic basis for disease resistance, which ∼30 y ago led to the discovery of diverse classes of immune receptors that recognize and respond to infectious microbes. We focus on knowledge gained from studies of the rice XA21 immune receptor that recognizes RaxX (required for activation of XA21 mediated immunity X), a sulfated microbial peptide secreted by the gram-negative bacterium Xanthomonas oryzae pv. oryzae. XA21 is representative of a large class of plant and animal immune receptors that recognize and respond to conserved microbial molecules. We highlight the complexity of this large class of receptors in plants, discuss a possible role for RaxX in Xanthomonas biology, and draw attention to the important role of sulfotyrosine in mediating receptor-ligand interactions.


Assuntos
Resistência à Doença/imunologia , Oryza/imunologia , Proteínas de Plantas/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Agricultura/história , Alergia e Imunologia/história , Alergia e Imunologia/tendências , Infecções Bacterianas/genética , Proteínas de Bactérias/genética , Resistência à Doença/genética , História do Século XIX , História do Século XX , História do Século XXI , Peptídeos/química , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
2.
PLoS One ; 16(8): e0256217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411175

RESUMO

The pepper resistance gene Bs3 triggers a hypersensitive response (HR) upon transcriptional activation by the corresponding effector protein AvrBs3 from the bacterial pathogen Xanthomonas. Expression of Bs3 in yeast inhibited proliferation, demonstrating that Bs3 function is not restricted to the plant kingdom. The Bs3 sequence shows striking similarity to flavin monooxygenases (FMOs), an FAD- and NADPH-containing enzyme class that is known for the oxygenation of a wide range of substrates and their potential to produce H2O2. Since H2O2 is a hallmark metabolite in plant immunity, we analyzed the role of H2O2 during Bs3 HR. We purified recombinant Bs3 protein from E. coli and confirmed the FMO function of Bs3 with FAD binding and NADPH oxidase activity in vitro. Translational fusion of Bs3 to the redox reporter roGFP2 indicated that the Bs3-dependent HR induces an increase of the intracellular oxidation state in planta. To test if the NADPH oxidation and putative H2O2 production of Bs3 is sufficient to induce HR, we adapted previous studies which have uncovered mutations in the NADPH binding site of FMOs that result in higher NADPH oxidase activity. In vitro studies demonstrated that recombinant Bs3S211A protein has twofold higher NADPH oxidase activity than wildtype Bs3. Translational fusions to roGFP2 showed that Bs3S211A also increased the intracellular oxidation state in planta. Interestingly, while the mutant derivative Bs3S211A had an increase in NADPH oxidase capacity, it did not trigger HR in planta, ultimately revealing that H2O2 produced by Bs3 on its own is not sufficient to trigger HR.


Assuntos
Proteínas de Bactérias/genética , Capsicum/genética , Oxigenases de Função Mista/genética , Doenças das Plantas/genética , Capsicum/crescimento & desenvolvimento , Morte Celular/genética , Dinitrocresóis/química , Escherichia coli/enzimologia , Regulação da Expressão Gênica de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Oxigenases de Função Mista/química , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Nicotiana/genética , Xanthomonas/enzimologia , Xanthomonas/patogenicidade
3.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417294

RESUMO

Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors and activate immune responses. Yet, the subcellular localization of NLRs pre- and postactivation during pathogen infection remains poorly understood. Here, we show that NRC4, from the "NRC" solanaceous helper NLR family, undergoes dynamic changes in subcellular localization by shuttling to and from the plant-pathogen haustorium interface established during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, prior to activation, NRC4 accumulates at the extrahaustorial membrane (EHM), presumably to mediate response to perihaustorial effectors that are recognized by NRC4-dependent sensor NLRs. However, not all NLRs accumulate at the EHM, as the closely related helper NRC2 and the distantly related ZAR1 did not accumulate at the EHM. NRC4 required an intact N-terminal coiled-coil domain to accumulate at the EHM, whereas the functionally conserved MADA motif implicated in cell death activation and membrane insertion was dispensable for this process. Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the EHM and showed punctate distribution that mainly associated with the plasma membrane, suggesting that postactivation, NRC4 may undergo a conformation switch to form clusters that do not preferentially associate with the EHM. When NRC4 is activated by a sensor NLR during infection, however, NRC4 forms puncta mainly at the EHM and, to a lesser extent, at the plasma membrane. We conclude that following activation at the EHM, NRC4 may spread to other cellular membranes from its primary site of activation to trigger immune responses.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas NLR/metabolismo , Nicotiana/metabolismo , Phytophthora infestans/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Resistência à Doença/imunologia , Proteínas NLR/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Receptores Imunológicos/metabolismo , Nicotiana/imunologia , Nicotiana/parasitologia
4.
PLoS Pathog ; 17(7): e1009757, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34320034

RESUMO

Antiviral RNA silencing/interference (RNAi) of negative-strand (-) RNA plant viruses (NSVs) has been studied less than for single-stranded, positive-sense (+)RNA plant viruses. From the latter, genomic and subgenomic mRNA molecules are targeted by RNAi. However, genomic RNA strands from plant NSVs are generally wrapped tightly within viral nucleocapsid (N) protein to form ribonucleoproteins (RNPs), the core unit for viral replication, transcription and movement. In this study, the targeting of the NSV tospoviral genomic RNA and mRNA molecules by antiviral RNA-induced silencing complexes (RISC) was investigated, in vitro and in planta. RISC fractions isolated from tospovirus-infected N. benthamiana plants specifically cleaved naked, purified tospoviral genomic RNAs in vitro, but not genomic RNAs complexed with viral N protein. In planta RISC complexes, activated by a tobacco rattle virus (TRV) carrying tospovirus NSs or Gn gene fragments, mainly targeted the corresponding viral mRNAs and hardly genomic (viral and viral-complementary strands) RNA assembled into RNPs. In contrast, for the (+)ssRNA cucumber mosaic virus (CMV), RISC complexes, activated by TRV carrying CMV 2a or 2b gene fragments, targeted CMV genomic RNA. Altogether, the results indicated that antiviral RNAi primarily targets tospoviral mRNAs whilst their genomic RNA is well protected in RNPs against RISC-mediated cleavage. Considering the important role of RNPs in the replication cycle of all NSVs, the findings made in this study are likely applicable to all viruses belonging to this group.


Assuntos
Imunidade Vegetal/imunologia , RNA Viral/imunologia , Complexo de Inativação Induzido por RNA/imunologia , Tospovirus/imunologia , RNA Mensageiro/imunologia , Nicotiana/virologia
5.
Sci Rep ; 11(1): 930, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441599

RESUMO

Microalgal polysaccharides (PSs) may be an effective elicitor agent that can efficiently protect plants against biotic stresses. In this study, wee investigates, the effect of PS obtained from microalgae and cyanobacteria (D. salina MS002, P. tricorontum MS023, Porphyridium sp. MS081, Desmodesmus sp., D. salina MS067 and A. platensis MS001) on the biochemical and metabolomics markers linked to defense pathways in tomato plants. The phenylalanine ammonia lyase (PAL), chitinase, 1,3-beta-glucanase and peroxidase (POX) activities have been improved in tomato plants leaves treated by polysaccharides extracted from P. triocnutum (238.26%); Desmodesmus sp. (19.95%); P. triocnutum (137.50%) and Porphyridium sp. (47.28%) respectively. For proteins, polyphenols and H2O2, the maximum effect was induced by D. salina 067 (55.01%), Porphyridium sp. (3.97%) and A. platensis (35.08%) respectively. On the other hand, Gas Chromatography-mass spectrometry (GC-MS) metabolomics analysis showed that PSs induced the modification of metabolite profile involved in the wax construction of tomato leaves, such as fatty acids, alkanes, alkenes and phytosterol. PS treatments improved the accumulation of fatty acids C16:3, C18:2 and C18:3 released from the membrane lipids as precursors of oxylipin biosynthesis which are signaling molecules of plant defense. In addition, PS treatment induced the accumulation of C18:0 and Azelaic acid which is a regulator of salicylic acid-dependent systemic acquired resistance. However, molecular and metabolic studies can determine more precisely the mode of action of microalgal polysaccharides as biostimulants/elicitors plant defense.


Assuntos
Imunidade Vegetal/imunologia , Polissacarídeos Bacterianos/farmacologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Antioxidantes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Peróxido de Hidrogênio/metabolismo , Metabolômica/métodos , Microalgas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Estresse Fisiológico/fisiologia
6.
Gene ; 768: 145280, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33186613

RESUMO

PevD1, a fungal effector secreted by Verticillium dahliae, could induce hypersensitive responses-like necrosis and systemic acquired resistance (SAR) in cotton and tobacco plants. PevD1 could drastically induce the expression of Nbnrp1, which is an asparagine-rich protein (NRP) of Nicotiana benthamiana. Our previous research indicated that Nbnrp1 positively regulated PevD1-induced cell necrosis and disease resistance. In this study, we further investigated PevD1-induced immune responses in both wild-type (WT) and Nbnrp1-RNAi lines through RNA-seq, in order to reveal the underlying mechanism of Nbnrp1-modulated PevD1-induced disease resistance in N. benthamiana. Results showed that Nbnrp1-RNAi lines exhibited reduced PevD1-induced immune responses, like inhibiting H2O2 accumulation and MAPK phosphorylation. To silence Nbnrp1 inhibited the expression of PevD1-induced differential expression genes (DEGs) involved in pathways associated with sesquiterpenoid and triterpenoid biosynthesis, flavone and flavonol biosynthesis, plant-pathogen interaction and phenylpropanoid biosynthesis, etc. It is worth noting that sesquiterpene phytoalexin capsidiol accumulation were obviously decreased in Nbnrp1-RNAi plants after PevD1 treatment, accompanied with the down-expression of EAS and EAH, which were two key genes related to capsidiol biosynthesis. These results suggested that Nbnrp1 mediates PevD1-induced defense responses by regulating sesquiterpenoid phytoalexins biosynthesis pathway.


Assuntos
Ascomicetos/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiologia , Imunidade Vegetal/imunologia , Sesquiterpenos/metabolismo , Ascomicetos/genética , Resistência à Doença/genética , Flavonas/biossíntese , Flavonóis/biossíntese , Necrose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Triterpenos/metabolismo , Fitoalexinas
7.
PLoS Pathog ; 16(9): e1008933, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976518

RESUMO

Nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as sensors that perceive pathogen molecules and activate immunity. In plants, the accumulation and activation of NLRs is regulated by SUPPRESSOR OF G2 ALLELE OF skp1 (SGT1). In this work, we found that an effector protein named RipAC, secreted by the plant pathogen Ralstonia solanacearum, associates with SGT1 to suppress NLR-mediated SGT1-dependent immune responses, including those triggered by another R. solanacearum effector, RipE1. RipAC does not affect the accumulation of SGT1 or NLRs, or their interaction. However, RipAC inhibits the interaction between SGT1 and MAP kinases, and the phosphorylation of a MAPK target motif in the C-terminal domain of SGT1. Such phosphorylation is enhanced upon activation of immune signaling and contributes to the activation of immune responses mediated by the NLR RPS2. Additionally, SGT1 phosphorylation contributes to resistance against R. solanacearum. Our results shed light onto the mechanism of activation of NLR-mediated immunity, and suggest a positive feedback loop between MAPK activation and SGT1-dependent NLR activation.


Assuntos
Proteínas de Bactérias/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas de Plantas/imunologia , Ralstonia solanacearum/imunologia , Ralstonia solanacearum/metabolismo , Nicotiana/metabolismo
8.
Plant Physiol ; 184(3): 1532-1548, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943465

RESUMO

Iron-sulfur (Fe-S) clusters are inorganic cofactors that are present in all kingdoms of life as part of a large number of proteins involved in several cellular processes, including DNA replication and metabolism. In this work, we demonstrate an additional role for two Fe-S cluster genes in biotic stress responses in plants. Eleven Fe-S cluster genes, including the NITROGEN FIXATION S-LIKE1 (NFS1) and its interactor FRATAXIN (FH), when silenced in Nicotiana benthamiana, compromised nonhost resistance to Pseudomonas syringae pv. tomato T1. NbNFS1 expression was induced by pathogens and salicylic acid. Arabidopsis (Arabidopsis thaliana) atnfs and atfh mutants, with reduced AtNFS1 or AtFH gene expression, respectively, showed increased susceptibility to both host and nonhost pathogen infection. Arabidopsis AtNFS1 and AtFH overexpressor lines displayed decreased susceptibility to infection by host pathogen P syringae pv. tomato DC3000. The AtNFS1 overexpression line exhibited constitutive upregulation of several defense-related genes and enrichment of gene ontology terms related to immunity and salicylic acid responses. Our results demonstrate that NFS1 and its interactor FH are involved not only in nonhost resistance but also in basal resistance, suggesting a new role of the Fe-S cluster pathway in plant immunity.


Assuntos
Arabidopsis/imunologia , Proteínas Ferro-Enxofre/metabolismo , Nicotiana/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Pseudomonas syringae/patogenicidade , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas Ferro-Enxofre/genética , Doenças das Plantas/genética , Nicotiana/genética , Nicotiana/microbiologia
9.
J Biol Chem ; 295(39): 13444-13457, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32732287

RESUMO

Iron metabolism and the plant immune system are both critical for plant vigor in natural ecosystems and for reliable agricultural productivity. Mechanistic studies of plant iron home-ostasis and plant immunity have traditionally been carried out in isolation from each other; however, our growing understanding of both processes has uncovered significant connections. For example, iron plays a critical role in the generation of reactive oxygen intermediates during immunity and has been recently implicated as a critical factor for immune-initiated cell death via ferroptosis. Moreover, plant iron stress triggers immune activation, suggesting that sensing of iron depletion is a mechanism by which plants recognize a pathogen threat. The iron deficiency response engages hormone signaling sectors that are also utilized for plant immune signaling, providing a probable explanation for iron-immunity cross-talk. Finally, interference with iron acquisition by pathogens might be a critical component of the immune response. Efforts to address the global burden of iron deficiency-related anemia have focused on classical breeding and transgenic approaches to develop crops biofortified for iron content. However, our improved mechanistic understanding of plant iron metabolism suggests that such alterations could promote or impede plant immunity, depending on the nature of the alteration and the virulence strategy of the pathogen. Effects of iron biofortification on disease resistance should be evaluated while developing plants for iron biofortification.


Assuntos
Homeostase/imunologia , Ferro/imunologia , Imunidade Vegetal/imunologia , Animais , Humanos , Ferro/metabolismo
10.
Nat Commun ; 10(1): 5571, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804478

RESUMO

Chloroplasts are important for photosynthesis and for plant immunity against microbial pathogens. Here we identify a haustorium-specific protein (Pst_12806) from the wheat stripe rust fungus, Puccinia striiformis f. sp. tritici (Pst), that is translocated into chloroplasts and affects chloroplast function. Transient expression of Pst_12806 inhibits BAX-induced cell death in tobacco plants and reduces Pseudomonas-induced hypersensitive response in wheat. It suppresses plant basal immunity by reducing callose deposition and the expression of defense-related genes. Pst_12806 is upregulated during infection, and its knockdown (by host-induced gene silencing) reduces Pst growth and development, likely due to increased ROS accumulation. Pst_12806 interacts with the C-terminal Rieske domain of the wheat TaISP protein (a putative component of the cytochrome b6-f complex). Expression of Pst_12806 in plants reduces electron transport rate, photosynthesis, and production of chloroplast-derived ROS. Silencing TaISP by virus-induced gene silencing in a susceptible wheat cultivar reduces fungal growth and uredinium development, suggesting an increase in resistance against Pst infection.


Assuntos
Basidiomycota/metabolismo , Cloroplastos/metabolismo , Proteínas Fúngicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Basidiomycota/genética , Basidiomycota/imunologia , Cloroplastos/imunologia , Cloroplastos/microbiologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Regulação Fúngica da Expressão Gênica/imunologia , Inativação Gênica , Glucanos/imunologia , Glucanos/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Pseudomonas syringae/imunologia , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/imunologia , Triticum/genética , Triticum/microbiologia
11.
Elife ; 82019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31774397

RESUMO

The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4-a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal α1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.


Assuntos
Proteínas NLR/química , Proteínas NLR/imunologia , Imunidade Vegetal/imunologia , Receptores Imunológicos/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis , Proteínas de Transporte , Morte Celular , Técnicas de Inativação de Genes , Modelos Moleculares , Proteínas NLR/classificação , Proteínas NLR/genética , Filogenia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de Proteína , Nicotiana/genética , Nicotiana/imunologia
12.
Cell Host Microbe ; 26(2): 193-201, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31415752

RESUMO

Plant innate immunity is triggered via direct or indirect recognition of pathogen effectors by the NLR family immune receptors. Mechanistic understanding of plant NLR function has relied on structural information from individual NLR domains and inferences from studies on animal NLRs. Recent reports of the cryo-EM structures of the Arabidopsis plant immune receptor ZAR1 in monomeric inactive and transition states, as well as the active oligomeric state or the "resistosome," have afforded a quantum leap in our understanding of how plant NLRs function. In this Review, we outline the recent structural findings and examine their implications for the activation of plant immune receptors more broadly. We also discuss how NLR signaling in plants, as illustrated by the ZAR1 structure, is analogous to innate immune receptor signaling mechanisms across kingdoms, drawing particular attention to the concept of signaling by cooperative assembly formation.


Assuntos
Proteínas de Arabidopsis , Proteínas de Transporte , Imunidade Vegetal/imunologia , Receptores Imunológicos , Transdução de Sinais , Difosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Arabidopsis/imunologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Imunidade Inata , Proteínas NLR/química , Proteínas NLR/metabolismo , Imunidade Vegetal/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Receptores Imunológicos/química , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo
13.
Nat Commun ; 10(1): 3252, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324801

RESUMO

Nucleotide-binding leucine-rich repeat (NLR) immune receptors play a critical role in defence against pathogens in plants and animals. However, we know very little about NLR-interacting proteins and the mechanisms that regulate NLR levels. Here, we used proximity labeling (PL) to identify the proteome proximal to N, which is an NLR that confers resistance to Tobacco mosaic virus (TMV). Evaluation of different PL methods indicated that TurboID-based PL provides more efficient levels of biotinylation than BioID and BioID2 in plants. TurboID-based PL of N followed by quantitative proteomic analysis and genetic screening revealed multiple regulators of N-mediated immunity. Interestingly, a putative E3 ubiquitin ligase, UBR7, directly interacts with the TIR domain of N. UBR7 downregulation leads to an increased amount of N protein and enhanced TMV resistance. TMV-p50 effector disrupts the N-UBR7 interaction and relieves negative regulation of N. These findings demonstrate the utility of TurboID-based PL in plants and the N-interacting proteins we identified enhance our understanding of the mechanisms underlying NLR regulation.


Assuntos
Proteínas NLR/imunologia , Nicotiana/imunologia , Proteínas de Plantas/imunologia , Receptores Imunológicos/imunologia , Coloração e Rotulagem/métodos , Ubiquitina-Proteína Ligases/imunologia , Proteínas NLR/metabolismo , Imunidade Vegetal/imunologia , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteoma/imunologia , Proteoma/metabolismo , Receptores Imunológicos/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/imunologia , Nicotiana/metabolismo , Nicotiana/virologia , Vírus do Mosaico do Tabaco/imunologia , Vírus do Mosaico do Tabaco/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
14.
J Plant Physiol ; 240: 152996, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31352020

RESUMO

This study demonstrates the impact of lead at hormetic (0.075 mM Pb(NO3)2) and sublethal (0.5 mM Pb(NO3)2) doses on the intensity of oxidative stress in pea seedlings (Pisum sativum L. cv. 'Cysterski'). Our first objective was to determine how exposure of pea seedlings to Pb alters the plant defence responses to pea aphid (Acyrthosiphon pisum Harris), and whether these responses could indirectly affect A. pisum. The second objective was to investigate the effects of various Pb concentrations in the medium on demographic parameters of pea aphid population and the process of its feeding on edible pea. We found that the dose of Pb sublethal for pea seedlings strongly reduced net reproductive rate and limited the number of A. pisum individuals reaching the phloem. An important defence line of pea seedlings growing on Pb-supplemented medium and next during combinatory effect of the two stressors Pb and A. pisum was a high generation of superoxide anion (O2-). This was accompanied by a considerable reduction in superoxide dismutase (SOD) activity, and a decrease in the level of Mn2+ ions. A the same time, weak activity of Mn-SOD was detected in the roots of the seedlings exposed to the sublethal dose of Pb and during Pb and aphid interaction. Apart from the marked increase in O2-, an increase in semiquinone radicals occurred, especially in the roots of the seedlings treated with the sublethal dose of Pb and both infested and non-infested with aphids. Also, hydrogen peroxide (H2O2) generation markedly intensified in aphid-infested leaves. It reached the highest level 24 h post infestation (hpi), mainly in the cell wall of leaf epidermis. This may be related to the function of H2O2 as a signalling molecule that triggers defence mechanisms. The activity of peroxidase (POX), an important enzyme involved in scavenging H2O2, was also high at 24 hpi and at subsequent time points. Moreover, the contents of thiobarbituric acid reactive substances (TBARS), products of lipid peroxidation, rose but to a small degree thanks to an efficient antioxidant system. Total antioxidant capacity (TAC) dependent on the pool of fast antioxidants, both in infested and non-infested and leaves was higher than in the control. In conclusion, the reaction of pea seedlings to low and sublethal doses of Pb and then A. pisum infestation differed substantially and depended on a direct contact of the stress factor with the organ (Pb with roots and A. pisum with leaves). The probing behavior of A. pisum also depended on Pb concentration in the plant tissues.


Assuntos
Afídeos/fisiologia , Poluentes Ambientais/efeitos adversos , Herbivoria , Chumbo/efeitos adversos , Estresse Oxidativo , Pisum sativum/fisiologia , Animais , Relação Dose-Resposta a Droga , Hormese , Pisum sativum/efeitos dos fármacos , Pisum sativum/imunologia , Imunidade Vegetal/imunologia
15.
Viruses ; 11(5)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091710

RESUMO

During infection, Citrus tristeza virus (CTV) produces a non-coding subgenomic RNA referred to as low-molecular-weight tristeza 1 (LMT1), which for a long time has been considered as a by-product of the complex CTV replication machinery. In this study, we investigated the role of LMT1 in the virus infection cycle using a CTV variant that does not produce LMT1 (CTV-LMT1d). We showed that lack of LMT1 did not halt virus ability to replicate or form proper virions. However, the mutant virus demonstrated significantly reduced invasiveness and systemic spread in Nicotiana benthamiana as well as an inability to establish infection in citrus. Introduction of CTV-LMT1d into the herbaceous host resulted in elevation of the levels of salicylic acid (SA) and SA-responsive pathogenesis-related genes beyond those upon inoculation with wild-type (WT) virus (CTV-WT). Further analysis showed that the LMT1 RNA produced by CTV-WT or via ectopic expression in the N. benthamiana leaves suppressed SA accumulation and up-regulated an alternative oxidase gene, which appeared to mitigate the accumulation of reactive oxygen species. To the best of our knowledge, this is the first report of a plant viral long non-coding RNA being involved in counter-acting host response by subverting the SA-mediated plant defense.


Assuntos
Closterovirus/genética , Closterovirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Vegetal/imunologia , RNA Longo não Codificante/imunologia , RNA Viral/imunologia , Citrus/virologia , Vírus de DNA/genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Proteínas Mitocondriais , Oxirredutases , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas de Plantas , RNA Viral/genética , Ácido Salicílico , Nicotiana/virologia , Carga Viral , Replicação Viral
16.
Mol Plant Pathol ; 20(6): 765-783, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30945786

RESUMO

The grapevine downy mildew pathogen Plasmopara viticola secretes a set of RXLR effectors (PvRXLRs) to overcome host immunity and facilitate infection, but how these effectors function is unclear. Here, the biological function of PvRXLR131 was investigated via heterologous expression. Constitutive expression of PvRXLR131 in Colletotrichum gloeosporioides significantly enhanced its pathogenicity on grapevine leaves. Constitutive expression of PvRXLR131 in Arabidopsis promoted Pseudomonas syringae DC3000 and P. syringae DC3000 (hrcC- ) growth as well as suppressed defence-related callose deposition. Transient expression of PvRXLR131 in Nicotiana benthamiana leaves could also suppress different elicitor-triggered cell death and inhibit plant resistance to Phytophthora capsici. Further analysis revealed that PvRXLR131 interacted with host Vitis vinifera BRI1 kinase inhibitor 1 (VvBKI1), and its homologues in N. benthamiana (NbBKI1) and Arabidopsis (AtBKI1). Moreover, bimolecular fluorescence complementation analysis revealed that PvRXLR131 interacted with VvBKI1 in the plasma membrane. Deletion assays showed that the C-terminus of PvRXLR131 was responsible for the interaction and mutation assays showed that phosphorylation of a conserved tyrosine residue in BKI1s disrupted the interaction. BKI1 was a receptor inhibitor of growth- and defence-related brassinosteroid (BR) and ERECTA (ER) signalling. When silencing of NbBKI1 in N. benthamiana, the virulence function of PvRXLR131 was eliminated, demonstrating that the effector activity is mediated by BKI1. Moreover, PvRXLR131-transgenic plants displayed BKI1-overexpression dwarf phenotypes and suppressed BR and ER signalling. These physiological and genetic data clearly demonstrate that BKI1 is a virulence target of PvRXLR131. We propose that P. viticola secretes PvRXLR131 to target BKI1 as a strategy for promoting infection.


Assuntos
Oomicetos/imunologia , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oomicetos/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética
17.
PLoS Pathog ; 15(4): e1007720, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30978251

RESUMO

Plant pathogens, such as bacteria, fungi, oomycetes and nematodes, rely on wide range of virulent effectors delivered into host cells to suppress plant immunity. Although phytobacterial effectors have been intensively investigated, little is known about the function of effectors of plant-parasitic nematodes, such as Globodera pallida, a cyst nematode responsible for vast losses in the potato and tomato industries. Here, we demonstrate using in vivo and in vitro ubiquitination assays the potato cyst nematode (Globodera pallida) effector RHA1B is an E3 ubiquitin ligase that employs multiple host plant E2 ubiquitin conjugation enzymes to catalyze ubiquitination. RHA1B was able to suppress effector-triggered immunity (ETI), as manifested by suppression of hypersensitive response (HR) mediated by a broad range of nucleotide-binding leucine-rich repeat (NB-LRR) immune receptors, presumably via E3-dependent degradation of the NB-LRR receptors. RHA1B also blocked the flg22-triggered expression of Acre31 and WRKY22, marker genes of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), but this did not require the E3 activity of RHA1B. Moreover, transgenic potato overexpressing the RHA1B transgene exhibited enhanced susceptibility to G. pallida. Thus, our data suggest RHA1B facilitates nematode parasitism not only by triggering degradation of NB-LRR immune receptors to block ETI signaling but also by suppressing PTI signaling via an as yet unknown E3-independent mechanism.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/metabolismo , Infecções por Secernentea/imunologia , Solanum tuberosum/imunologia , Tylenchoidea/patogenicidade , Animais , Doenças das Plantas/parasitologia , Proteínas de Plantas/imunologia , Infecções por Secernentea/metabolismo , Infecções por Secernentea/parasitologia , Transdução de Sinais , Solanum tuberosum/parasitologia , Ubiquitina , Ubiquitina-Proteína Ligases , Ubiquitinação
18.
Cell Host Microbe ; 25(1): 153-165.e5, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30595554

RESUMO

RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens.


Assuntos
Arabidopsis/imunologia , Suscetibilidade a Doenças/microbiologia , Phytophthora/metabolismo , Phytophthora/patogenicidade , Doenças das Plantas/imunologia , Interferência de RNA/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes Reporter/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , MicroRNAs/genética , MicroRNAs/imunologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/efeitos dos fármacos , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Nicotiana , Verticillium , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
Mol Plant Pathol ; 20(4): 533-546, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30499216

RESUMO

Ralstonia solanacearum, one of the most destructive plant bacterial pathogens, delivers an array of effector proteins via its type III secretion system for pathogenesis. However, the biochemical functions of most of these proteins remain unclear. RipN is a type III effector with unknown function(s) from the pathogen R. solanacearum. Here, we demonstrate that RipN is a conserved type III effector found within the R. solanacearum species complex that contains a putative Nudix hydrolase domain and has ADP-ribose/NADH pyrophosphorylase activity in vitro. Further analysis shows that RipN localizes to the endoplasmic reticulum (ER) and nucleus in Nicotiana tabacum leaf cells and Arabidopsis protoplasts, and truncation of the C-terminus of RipN results in a loss of nuclear and ER targeting. Furthermore, the expression of RipN in Arabidopsis suppresses callose deposition and the transcription of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes under flg22 treatment, and promotes bacterial growth in planta. In addition, the expression of RipN in plant cells alters NADH/NAD+ , but not GSH/GSSG, ratios, and its Nudix hydrolase activity is indispensable for such biochemical function. These results suggest that RipN acts as a Nudix hydrolase, alters the NADH/NAD+ ratio of the plant and contributes to R. solanacearum virulence by suppression of PTI of the host.


Assuntos
Ralstonia solanacearum/patogenicidade , Arabidopsis/imunologia , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , NAD/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Imunidade Vegetal/fisiologia , Ralstonia solanacearum/imunologia
20.
Mol Plant Pathol ; 20(4): 599-608, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548752

RESUMO

Magnaporthe oryzae is an important fungal pathogen of both rice and wheat. However, how M. oryzae effectors modulate plant immunity is not fully understood. Previous studies have shown that the M. oryzae effector AvrPiz-t targets the host ubiquitin-proteasome system to manipulate plant defence. In return, two rice ubiquitin E3 ligases, APIP6 and APIP10, ubiquitinate AvrPiz-t for degradation. To determine how lysine residues contribute to the stability and function of AvrPiz-t, we generated double (K1,2R-AvrPiz-t), triple (K1,2,3R-AvrPiz-t) and lysine-free (LF-AvrPiz-t) mutants by mutating lysines into arginines in AvrPiz-t. LF-AvrPiz-t showed the highest protein accumulation when transiently expressed in rice protoplasts. When co-expressed with APIP10 in Nicotiana benthamiana, LF-AvrPiz-t was more stable than AvrPiz-t and was less able to degrade APIP10. The avirulence of LF-AvrPiz-t on Piz-t:HA plants was less than that of AvrPiz-t, which led to resistance reduction and lower accumulation of the Piz-t:HA protein after inoculation with the LF-AvrPiz-t-carrying isolate. Chitin- and flg22-induced production of reactive oxygen species (ROS) was higher in LF-AvrPiz-t than in AvrPiz-t transgenic plants. In addition, LF-AvrPiz-t transgenic plants were less susceptible than AvrPiz-t transgenic plants to a virulent isolate. Furthermore, both AvrPiz-t and LF-AvrPiz-t interacted with OsRac1, but the suppression of OsRac1-mediated ROS generation by LF-AvrPiz-t was significantly lower than that by AvrPiz-t. Together, these results suggest that the lysine residues of AvrPiz-t are required for its avirulence and virulence functions in rice.


Assuntos
Proteínas Fúngicas/metabolismo , Lisina/química , Magnaporthe/imunologia , Magnaporthe/patogenicidade , Oryza/metabolismo , Oryza/microbiologia , Resistência à Doença/imunologia , Proteínas Fúngicas/química , Proteínas Fúngicas/imunologia , Magnaporthe/metabolismo , Oryza/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA