Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.498
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biol Res ; 57(1): 25, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720397

RESUMO

PURPOSE: Prostate cancer (PCa) is a major urological disease that is associated with significant morbidity and mortality in men. LLGL2 is the mammalian homolog of Lgl. It acts as a tumor suppressor in breast and hepatic cancer. However, the role of LLGL2 and the underlying mechanisms in PCa have not yet been elucidated. Here, we investigate the role of LLGL2 in the regulation of epithelial-mesenchymal transition (EMT) in PCa through autophagy in vitro and in vivo. METHODS: PC3 cells were transfected with siLLGL2 or plasmid LLGL2 and autophagy was examined. Invasion, migration, and wound healing were assessed in PC3 cells under autophagy regulation. Tumor growth was evaluated using a shLLGL2 xenograft mouse model. RESULTS: In patients with PCa, LLGL2 levels were higher with defective autophagy and increased EMT. Our results showed that the knockdown of LLGL2 induced autophagy flux by upregulating Vps34 and ATG14L. LLGL2 knockdown inhibits EMT by upregulating E-cadherin and downregulating fibronectin and α-SMA. The pharmacological activation of autophagy by rapamycin suppressed EMT, and these effects were reversed by 3-methyladenine treatment. Interestingly, in a shLLGL2 xenograft mouse model, tumor size and EMT were decreased, which were improved by autophagy induction and worsened by autophagy inhibition. CONCLUSION: Defective expression of LLGL2 leads to attenuation of EMT due to the upregulation of autophagy flux in PCa. Our results suggest that LLGL2 is a novel target for alleviating PCa via the regulation of autophagy.


Assuntos
Autofagia , Transição Epitelial-Mesenquimal , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Autofagia/fisiologia , Autofagia/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Inativação Gênica , Camundongos Nus , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Cancer Immunol Immunother ; 73(7): 127, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739169

RESUMO

Lactate dehydrogenase B (LDHB) reversibly catalyzes the conversion of pyruvate to lactate or lactate to pyruvate and expressed in various malignancies. However, the role of LDHB in modulating immune responses against hepatocellular carcinoma (HCC) remains largely unknown. Here, we found that down-regulation of lactate dehydrogenase B (LDHB) was coupled with the promoter hypermethylation and knocking down the DNA methyltransferase 3A (DNMT 3A) restored LDHB expression levels in HCC cell lines. Bioinformatics analysis of the HCC cohort from The Cancer Genome Atlas revealed a significant positive correlation between LDHB expression and immune regulatory signaling pathways and immune cell infiltrations. Moreover, immune checkpoint inhibitors (ICIs) have shown considerable promise for HCC treatment and patients with higher LDHB expression responded better to ICIs. Finally, we found that overexpression of LDHB suppressed HCC growth in immunocompetent but not in immunodeficient mice, suggesting that the host immune system was involved in the LDHB-medicated tumor suppression. Our findings indicate that DNMT3A-mediated epigenetic silencing of LDHB may contribute to HCC progression through remodeling the tumor immune microenvironment, and LDHB may become a potential prognostic biomarker and therapeutic target for HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , DNA Metiltransferase 3A , Epigênese Genética , L-Lactato Desidrogenase , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/imunologia , Humanos , Animais , Camundongos , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , DNA Metiltransferase 3A/metabolismo , Regulação Neoplásica da Expressão Gênica , Metilação de DNA , Isoenzimas/genética , Isoenzimas/metabolismo , Linhagem Celular Tumoral , Inativação Gênica , Prognóstico
3.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713211

RESUMO

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Assuntos
Quitinases , Inativação Gênica , Lacase , Quitinases/genética , Quitinases/metabolismo , Quitinases/biossíntese , Lacase/genética , Lacase/metabolismo , Lacase/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Agaricales/genética , Agaricales/enzimologia , Fermentação , Interferência de RNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/enzimologia , Parede Celular/metabolismo , Parede Celular/genética
4.
Sci Rep ; 14(1): 10030, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693283

RESUMO

Ditylenchus destructor is a migratory plant-parasitic nematode that severely harms many agriculturally important crops. The control of this pest is difficult, thus efficient strategies for its management in agricultural production are urgently required. Cathepsin L-like cysteine protease (CPL) is one important protease that has been shown to participate in various physiological and pathological processes. Here we decided to characterize the CPL gene (Dd-cpl-1) from D. destructor. Analysis of Dd-cpl-1 gene showed that Dd-cpl-1 gene contains a signal peptide, an I29 inhibitor domain with ERFNIN and GNFD motifs, and a peptidase C1 domain with four conserved active residues, showing evolutionary conservation with other nematode CPLs. RT-qPCR revealed that Dd-cpl-1 gene displayed high expression in third-stage juveniles (J3s) and female adults. In situ hybridization analysis demonstrated that Dd-cpl-1 was expressed in the digestive system and reproductive organs. Silencing Dd-cpl-1 in 1-cell stage eggs of D. destructor by RNAi resulted in a severely delay in development or even in abortive morphogenesis during embryogenesis. The RNAi-mediated silencing of Dd-cpl-1 in J2s and J3s resulted in a developmental arrest phenotype in J3 stage. In addition, silencing Dd-cpl-1 gene expression in female adults led to a 57.43% decrease in egg production. Finally, Dd-cpl-1 RNAi-treated nematodes showed a significant reduction in host colonization and infection. Overall, our results indicate that Dd-CPL-1 plays multiple roles in D. destructor ontogenesis and could serve as a new potential target for controlling D. destructor.


Assuntos
Catepsina L , Animais , Catepsina L/genética , Catepsina L/metabolismo , Interferência de RNA , Feminino , Inativação Gênica , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Filogenia , Tylenchoidea/genética , Tylenchoidea/fisiologia , Sequência de Aminoácidos
5.
J Nanobiotechnology ; 22(1): 247, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741123

RESUMO

Tyrosine kinase inhibitors have been the standard treatment for patients with Philadelphia chromosome-positive (Ph+) leukemia. However, a series of issues, including drug resistance, relapse and intolerance, are still an unmet medical need. Here, we report the targeted siRNA-based lipid nanoparticles in Ph+ leukemic cell lines for gene therapy of Ph+ leukemia, which specifically targets a recently identified NEDD8 E3 ligase RAPSYN in Ph+ leukemic cells to disrupt the neddylation of oncogenic BCR-ABL. To achieve the specificity for Ph+ leukemia therapy, a single-chain fragment variable region (scFv) of anti-CD79B monoclonal antibody was covalently conjugated on the surface of OA2-siRAPSYN lipid nanoparticles to generate the targeted lipid nanoparticles (scFv-OA2-siRAPSYN). Through effectively silencing RAPSYN gene in leukemic cell lines by the nanoparticles, BCR-ABL was remarkably degraded accompanied by the inhibition of proliferation and the promotion of apoptosis. The specific targeting, therapeutic effects and systemic safety were further evaluated and demonstrated in cell line-derived mouse models. The present study has not only addressed the clinical need of Ph+ leukemia, but also enabled gene therapy against a less druggable target.


Assuntos
Proteínas de Fusão bcr-abl , Nanopartículas , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Nanopartículas/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Inativação Gênica , RNA Interferente Pequeno , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Camundongos Endogâmicos BALB C , Apoptose/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Terapia Genética/métodos , Proliferação de Células/efeitos dos fármacos , Feminino
6.
Proc Natl Acad Sci U S A ; 121(19): e2315348121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701117

RESUMO

Ovarian cancer is an aggressive gynecological tumor characterized by a high relapse rate and chemoresistance. Ovarian cancer exhibits the cancer hallmark of elevated glycolysis, yet effective strategies targeting cancer cell metabolic reprogramming to overcome therapeutic resistance in ovarian cancer remain elusive. Here, we revealed that epigenetic silencing of Otubain 2 (OTUB2) is a driving force for mitochondrial metabolic reprogramming in ovarian cancer, which promotes tumorigenesis and chemoresistance. Mechanistically, OTUB2 silencing destabilizes sorting nexin 29 pseudogene 2 (SNX29P2), which subsequently prevents hypoxia-inducible factor-1 alpha (HIF-1α) from von Hippel-Lindau tumor suppressor-mediated degradation. Elevated HIF-1α activates the transcription of carbonic anhydrase 9 (CA9) and drives ovarian cancer progression and chemoresistance by promoting glycolysis. Importantly, pharmacological inhibition of CA9 substantially suppressed tumor growth and synergized with carboplatin in the treatment of OTUB2-silenced ovarian cancer. Thus, our study highlights the pivotal role of OTUB2/SNX29P2 in suppressing ovarian cancer development and proposes that targeting CA9-mediated glycolysis is an encouraging strategy for the treatment of ovarian cancer.


Assuntos
Anidrase Carbônica IX , Mitocôndrias , Neoplasias Ovarianas , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/genética , Linhagem Celular Tumoral , Animais , Camundongos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Glicólise/efeitos dos fármacos , Inativação Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Reprogramação Metabólica
7.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612519

RESUMO

Angiopoietin-like 3 (ANGPTL3) is a hepatokine acting as a negative regulator of lipoprotein lipase (LPL). Vupanorsen, an ANGPTL3 directed antisense oligonucleotide, showed an unexpected increase in liver fat content in humans. Here, we investigated the molecular mechanism linking ANGPTL3 silencing to hepatocyte fat accumulation. Human hepatocarcinoma Huh7 cells were treated with small interfering RNA (siRNA) directed to ANGPTL3, human recombinant ANGPTL3 (recANGPTL3), or their combination. Using Western blot, Oil Red-O, biochemical assays, and ELISA, we analyzed the expression of genes and proteins involved in lipid metabolism. Oil Red-O staining demonstrated that lipid content increased after 48 h of ANGPTL3 silencing (5.89 ± 0.33 fold), incubation with recANGPTL3 (4.08 ± 0.35 fold), or their combination (8.56 ± 0.18 fold), compared to untreated cells. This effect was also confirmed in Huh7-LX2 spheroids. A total of 48 h of ANGPTL3 silencing induced the expression of genes involved in the de novo lipogenesis, such as fatty acid synthase, stearoyl-CoA desaturase, ATP citrate lyase, and Acetyl-Coenzyme A Carboxylase 1 together with the proprotein convertase subtilisin/kexin 9 (PCSK9). Time-course experiments revealed that 6 h post transfection with ANGPTL3-siRNA, the cholesterol esterification by Acyl-coenzyme A cholesterol acyltransferase (ACAT) was reduced, as well as total cholesterol content, while an opposite effect was observed at 48 h. Under the same experimental conditions, no differences in secreted apoB and PCSK9 were observed. Since PCSK9 was altered by the treatment, we tested a possible co-regulation between the two genes. The effect of ANGPTL3-siRNA on the expression of genes involved in the de novo lipogenesis was not counteracted by gene silencing of PCSK9. In conclusion, our in vitro study suggests that ANGPTL3 silencing determines lipid accumulation in Huh7 cells by inducing the de novo lipogenesis independently from PCSK9.


Assuntos
Lipogênese , Pró-Proteína Convertase 9 , Humanos , Lipogênese/genética , Subtilisinas , Inativação Gênica , RNA Interferente Pequeno/genética , Colesterol , Angiopoietinas/genética , Coenzima A , Proteína 3 Semelhante a Angiopoietina
8.
PLoS Comput Biol ; 20(4): e1012027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598558

RESUMO

Although the length and constituting sequences for pericentromeric repeats are highly variable across eukaryotes, the presence of multiple pericentromeric repeats is one of the conserved features of the eukaryotic chromosomes. Pericentromeric heterochromatin is often misregulated in human diseases, with the expansion of pericentromeric repeats in human solid cancers. In this article, we have developed a mathematical model of the RNAi-dependent methylation of H3K9 in the pericentromeric region of fission yeast. Our model, which takes copy number as an explicit parameter, predicts that the pericentromere is silenced only if there are many copies of repeats. It becomes bistable or desilenced if the copy number of repeats is reduced. This suggests that the copy number of pericentromeric repeats alone can determine the fate of heterochromatin silencing in fission yeast. Through sensitivity analysis, we identified parameters that favor bistability and desilencing. Stochastic simulation shows that faster cell division and noise favor the desilenced state. These results show the unexpected role of pericentromeric repeat copy number in gene silencing and provide a quantitative basis for how the copy number allows or protects repetitive and unique parts of the genome from heterochromatin silencing, respectively.


Assuntos
Centrômero , Heterocromatina , Schizosaccharomyces , Heterocromatina/metabolismo , Heterocromatina/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Centrômero/metabolismo , Centrômero/genética , Modelos Genéticos , Biologia Computacional , Inativação Gênica , Sequências Repetitivas de Ácido Nucleico/genética , Humanos , Histonas/metabolismo , Histonas/genética
9.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 85-89, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678624

RESUMO

We aimed to explore the effects of silencing NOD-like receptor protein 3 (NLRP3) on proliferation of psoriasis-like HaCaT cells and expressions of cytokines. HaCaT cells were treated with human keratinocyte growth factor (KGF) and were divided into KGF group, negative control group, NLRP3-RNAi group and control group. Cells proliferation was detected by CCK8, cell clone formation rate was detected by clone formation assay, distribution of cells cycle was detected by flow cytometry, expressions of cyclin B1 (Cyclin B1), cyclin-dependent kinase 2 (CDK2), Ki67 and proliferating cell nuclear antigen (PCNA) proteins were detected by Western blot, and levels of interleukin (IL)-17, IL-23, IL-6 and tumor necrosis factor α (TNF-α) were detected by enzyme-linked immunosorbent assay. Compared with control group, expressions of NLRP3 mRNA and protein, proliferation rate and clonal formation rate were increased in KGF group, percentage of cells in G0/G1 phase was decreased, percentage of cells in S phase was increased, expressions of Cyclin B1, CDK2, Ki67 and PCNA proteins were increased, and levels of IL-17, IL-23, IL-6 and TNF-α were increased. Compared with negative control group, expressions of NLRP3 mRNA and protein, proliferation rate and clonal formation rate were decreased in NLRP3-RNAi group, percentage of cells in G0/G1 phase was increased, percentage of cells in S phase was decreased, expressions of Cyclin B1, CDK2, Ki67 and PCNA proteins were decreased, and levels of IL-17, IL-23, IL-6 and TNF-α were decreased. Silencing NLRP3 gene can inhibit the proliferation of psoriasis-like HaCaT cells, arrest cell cycle, inhibit the expressions of cell proliferation-related proteins and reduce levels of pro-inflammatory factors.


Assuntos
Proliferação de Células , Citocinas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Antígeno Nuclear de Célula em Proliferação , Psoríase , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proliferação de Células/genética , Psoríase/genética , Psoríase/metabolismo , Psoríase/patologia , Citocinas/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Ciclina B1/metabolismo , Ciclina B1/genética , Inativação Gênica , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Células HaCaT , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Ciclo Celular/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Interferência de RNA , Interleucina-23/metabolismo , Interleucina-23/genética , Interleucina-6/metabolismo , Interleucina-6/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
10.
Talanta ; 274: 126052, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608633

RESUMO

Lung cancer (LC) is a leading cause of global cancer-related deaths, highlighting the development of innovative methods for biomarker detection improving the early diagnostics. microRNAs (miRs) alterations are known to be involved in the initiation and progression of human cancers and can act as biomarkers for diagnostics and treatment. Herein, we develop the application of molecular beacon (MB) technology to monitor miR-155-3p expression in human lung adenocarcinoma A549 cells without complementary DNA synthesis, amplification, or expensive reagents. Furthermore, we produced gold nanoparticles (AuNPs) for delivering antisense oligonucleotides into A549 cells to reduce miR-155-3p expression, which was subsequently detectable using the MB. The MB was designed and structural characterized by Förster Resonance Energy Transfer (FRET)-melting, Circular Dichroism (CD), Nuclear magnetic resonance (NMR), and fluorometric experiments, and then the hybridization conditions were optimized for an in vitro approach involving the detection of miR-155-3p in total RNA extracted from A549 cell line. The expression profile of miR-155-3p was obtained by RT-qPCR. The results demonstrated that MB was properly designed and showed efficacy in targeting miR-155-3p. Furthermore, a limit of detection down to nanomolar concentration was achieved and the specificity of the biosensor was proved. Moreover, the self-assembly of ASOs with AuNPs exhibited exceptional target specificity, effectively silencing miR-155-3p. Notably, compared to lipid-based transfection agent, AuNPs displayed superior silencing efficiency. We highlighted the ability of MB to detect changes in the target gene expression after gene silencing. Overall, this innovative approach represents a promising tool for detecting various biomarkers at the same time, with potential applications in clinical settings.


Assuntos
Adenocarcinoma de Pulmão , Ouro , Neoplasias Pulmonares , Nanopartículas Metálicas , MicroRNAs , Humanos , MicroRNAs/genética , Ouro/química , Nanopartículas Metálicas/química , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Células A549 , Inativação Gênica
11.
Arch Biochem Biophys ; 756: 110018, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677505

RESUMO

Rapid proliferation and metastasis of breast cancer contributed to poor clinical prognosis. Accumulating evidence revealed that the dysregulation of long noncoding RNAs (lncRNAs) was associated with breast cancer progression. However, the role of lncRNA DLG5-AS1 in breast cancer has not been established. Here, we investigated the mechanisms of DLG5-AS1 in the development of breast cancer. We found that the expression of DLG5-AS1 was significantly upregulated in breast cancer tissues and cell lines. DLG5-AS1 interference markedly restrained AU565 cell proliferation, invasion, the expression of apoptosis related (caspase3 and caspase8) and Wnt/ß-catenin pathway related proteins (wnt5a, ß-Catenin and c-Myc), as well as promoted cell apoptosis, whereas DLG5-AS1 overexpression showed an opposite effects. In addition, DLG5-AS1 could directly bind with miR-519 b-3p. We also found that enhancer of zeste homolog 2 (EZH2) is a direct target of miR-519 b-3p, and DLG5-AS1 upregulated EZH2 expression by inhibiting the expression of miR-519 b-3p. EZH2 restrained secreted frizzled related protein 1 (SFRP1) expression through inducing H3 histone methylation in its promoter. MiR-519 b-3p overexpression or SFRP1 knockdown memorably reversed the effects of DLG5-AS1 overexpression on cell functions and Wnt/ß-Catenin pathway related protein expression. Finally, in vivo experiments demonstrated that silencing of DLG5-AS1 inhibited xenograft tumor development in mice. Taken together, these findings demonstrated that DLG5-AS1 facilitated cell proliferation and invasion by promoting EZH2-mediated transcriptional silencing of SFRP1 in breast cancer.


Assuntos
Neoplasias da Mama , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas de Membrana , Invasividade Neoplásica , RNA Longo não Codificante , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proliferação de Células/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Linhagem Celular Tumoral , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Inativação Gênica , Camundongos , Via de Sinalização Wnt/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Nus , Apoptose/genética , Camundongos Endogâmicos BALB C
12.
Gene ; 913: 148385, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38493973

RESUMO

Juglans sigillata Dode is one of the important tree species in southwest China, and it has significant economic and ecological value. However, there is still a lack of effective methods to identify the functional genes of J. sigillata. By verifying the model plant tobacco, the pTRV2::JsPDS vector was able to cause photobleaching. This study showed that photobleaching occurred 24 and 30 d after the silencing vector was infected with aseptic seedlings and fruits of J. sigillata, respectively. When the OD600 was 0.6, and the injection dose was 500 µL, the gene silencing efficiency of aseptic seedlings was the highest at 16.7 %, significantly better than other treatments. Moreover, when the OD600 was 0.8, and the injection dose was 500 µL, the gene silencing efficiency in the walnut fruit was the highest (20 %). In addition, the VIGS system was successfully used to silence JsFLS2 and JsFLS4 genes in J. sigillata. This study also showed that the flavonol content and gene expression in the treatment group were decreased compared to the control group. In addition, the proteins transcribed and translated from the JsFLS4 gene may have higher catalytic activity for dihydroquercetin. The above results indicate that the TRV-mediated VIGS system can be an ideal tool for studying J. sigillata gene function.


Assuntos
Juglans , Vírus de Plantas , Juglans/genética , Inativação Gênica , Fenótipo , Frutas , Nicotiana , Plântula/genética , Regulação da Expressão Gênica de Plantas , Vírus de Plantas/genética
13.
Nat Commun ; 15(1): 2051, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448408

RESUMO

Transmembrane channels play a vital role in regulating the permeation process, and have inspired recent development of biomimetic channels. Herein, we report a class of artificial biomimetic nanochannels based on DNAzyme-functionalized glass nanopipettes to realize delicate control of channel permeability, whereby the surface wettability and charge can be tuned by metal ions and DNAzyme-substrates, allowing reversible conversion between different permeability states. We demonstrate that the nanochannels can be reversibly switched between four different permeability states showing distinct permeability to various functional molecules. By embedding the artificial nanochannels into the plasma membrane of single living cells, we achieve selective transport of dye molecules across the cell membrane. Finally, we report on the advanced functions including gene silencing of miR-21 in single cancer cells and selective transport of Ca2+ into single PC-12 cells. In this work, we provide a versatile tool for the design of rectifying artificial nanochannels with on-demand functions.


Assuntos
DNA Catalítico , Membrana Celular , Biomimética , Inativação Gênica , Permeabilidade
14.
Int J Biol Macromol ; 264(Pt 2): 130783, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471603

RESUMO

Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers.


Assuntos
Glioblastoma , Nanopartículas , Humanos , RNA Interferente Pequeno/química , Poloxâmero/química , Micelas , Glioblastoma/metabolismo , Inativação Gênica , Linhagem Celular Tumoral , Nanopartículas/química , Microambiente Tumoral
15.
J Steroid Biochem Mol Biol ; 240: 106497, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460707

RESUMO

The active form of vitamin D, 1,25-dihydroxyvitamin D3, is known to act via VDR (vitamin D receptor), affecting several physiological processes. In addition, PDIA3 (protein disulphide-isomerase A3) has been associated with some of the functions of 1,25-dihydroxyvitamin D3. In the present study we used siRNA-mediated silencing of PDIA3 in osteosarcoma and prostate carcinoma cell lines to examine the role(s) of PDIA3 for 1,25-dihydroxyvitamin D3-dependent responses. PDIA3 silencing affected VDR target genes and significantly altered the 1,25-dihydroxyvitamin D3-dependent induction of CYP24A1, essential for elimination of excess 1,25-dihydroxyvitamin D3. Also, PDIA3 silencing significantly altered migration and proliferation in prostate PC3 cells, independently of 1,25-dihydroxyvitamin D3. 1,25-Dihydroxyvitamin D3 increased thermostability of PDIA3 in cellular thermal shift assay, supporting functional interaction between PDIA3 and 1,25-dihydroxyvitamin D3-dependent pathways. In summary, our data link PDIA3 to 1,25-dihydroxyvitamin D3-mediated signalling, underline and extend its role in proliferation and reveal a novel function in maintenance of 1,25-dihydroxyvitamin D3 levels.


Assuntos
Movimento Celular , Proliferação de Células , Isomerases de Dissulfetos de Proteínas , Receptores de Calcitriol , Vitamina D3 24-Hidroxilase , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Humanos , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Linhagem Celular Tumoral , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Calcitriol/farmacologia , Calcitriol/metabolismo , Inativação Gênica , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Vitamina D/metabolismo , Vitamina D/farmacologia , Vitamina D/análogos & derivados , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
16.
Nat Commun ; 15(1): 1581, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383524

RESUMO

The high potential of siRNAs to silence oncogenic drivers remains largely untapped due to the challenges of tumor cell delivery. Here, divalent lipid-conjugated siRNAs are optimized for in situ binding to albumin to improve pharmacokinetics and tumor delivery. Systematic variation of the siRNA conjugate structure reveals that the location of the linker branching site dictates tendency toward albumin association versus self-assembly, while the lipid hydrophobicity and reversibility of albumin binding also contribute to siRNA intracellular delivery. The lead structure increases tumor siRNA accumulation 12-fold in orthotopic triple negative breast cancer (TNBC) tumors over the parent siRNA. This structure achieves approximately 80% silencing of the anti-apoptotic oncogene MCL1 and yields better survival outcomes in three TNBC models than an MCL-1 small molecule inhibitor. These studies provide new structure-function insights on siRNA-lipid conjugate structures that are intravenously injected, associate in situ with serum albumin, and improve pharmacokinetics and tumor treatment efficacy.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , RNA Interferente Pequeno , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Inativação Gênica , Lipídeos/química , Albuminas/genética
17.
In Vivo ; 38(2): 567-573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418159

RESUMO

BACKGROUND/AIM: Fabry disease (FD) is caused by α-galactosidase A (AGA) deficiency, which ultimately leads to the intracellular accumulation of globotriaosylceramide (Gb3). Exosomes play a role in maintaining cellular homeostasis by clearing damaged or toxic materials, including proteins. In the process of excessive accumulation of intracellular Gb3 in Fabry disease, it may be suggested that exosomal secretion of Gb3 increases to preserve cell homeostasis. This study sought to determine how exosomal secretion and cell signaling change in an FD cell model produced by gene silencing. MATERIALS AND METHODS: HEK293T cells were transfected with plasmids carrying shRNA against the GLA gene to produce the FD cell model. A recombinant AGA, agalsidase-beta, was used to evaluate the effect of enzyme replacement therapy (ERT) on exosomal secretion and cell signaling. RESULTS: Exosome secretion was significantly increased in the Fabry disease cell model compared to the control vector cell model, and significantly decreased after agalsidase-beta treatment. The FD cell model showed higher reactive oxygen species (ROS) production and p53 protein expression compared to the control vector cell model. CONCLUSION: Increased exosomal secretion in Fabry disease may be a cellular mechanism to avoid excessive and cytotoxic accumulation of Gb3 in lysosomes through intracellular signaling, including increased p53 expression.


Assuntos
Exossomos , Doença de Fabry , Humanos , Doença de Fabry/genética , Doença de Fabry/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Exossomos/genética , Exossomos/metabolismo , Células HEK293 , Inativação Gênica
18.
J Exp Clin Cancer Res ; 43(1): 49, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365745

RESUMO

BACKGROUND: SMC1A is a subunit of the cohesin complex that participates in many DNA- and chromosome-related biological processes. Previous studies have established that SMC1A is involved in cancer development and in particular, is overexpressed in chromosomally unstable human colorectal cancer (CRC). This study aimed to investigate whether SMC1A could serve as a therapeutic target for CRC. METHODS: At first, we studied the effects of either SMC1A overexpression or knockdown in vitro. Next, the outcome of SMC1A knocking down (alone or in combination with bevacizumab, a monoclonal antibody against vascular endothelial growth factor) was analyzed in vivo. RESULTS: We found that SMC1A knockdown affects cell proliferation and reduces the ability to grow in anchorage-independent manner. Next, we demonstrated that the silencing of SMC1A and the combo treatment were effective in increasing overall survival in a xenograft mouse model. Functional analyses indicated that both treatments lead to atypical mitotic figures and gene expression dysregulation. Differentially expressed genes were implicated in several pathways including gene transcription regulation, cellular proliferation, and other transformation-associated processes. CONCLUSIONS: These results indicate that SMC1A silencing, in combination with bevacizumab, can represent a promising therapeutic strategy for human CRC.


Assuntos
Coesinas , Neoplasias Colorretais , Animais , Humanos , Camundongos , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas Cromossômicas não Histona/genética , Coesinas/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Inativação Gênica , Fator A de Crescimento do Endotélio Vascular/genética
19.
Methods Mol Biol ; 2772: 337-351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411827

RESUMO

Simultaneous stoichiometric expression of multiple genes plays a major part in modern research and biotechnology. Traditional methods for incorporating multiple transgenes (or "gene stacking") have drawbacks such as long time frames, uneven gene expression, gene silencing, and segregation derived from the use of multiple promoters. 2A self-cleaving peptides have emerged over the last two decades as a functional gene stacking method and have been used in plants for the co-expression of multiple genes under a single promoter. Here we describe design features of multicistronic polyproteins using 2A peptides for co-expression in plant cells and targeting to the endoplasmic reticulum (ER). We designed up to quad-cistronic vectors that could target proteins in tandem to the ER. We also exemplify the incorporation of self-excising intein domains within 2A polypeptides, to remove residue additions. These features could aid in the design of stoichiometric protein co-expression strategies in plants in combination with targeting to different subcellular compartments.


Assuntos
Biotecnologia , Peptídeos , Peptídeos/genética , Transgenes , Retículo Endoplasmático , Inativação Gênica
20.
Adv Med Sci ; 69(1): 113-124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403160

RESUMO

PURPOSE: Human endogenous retroviruses (HERVs) are ubiquitous genomic sequences. Normally dormant HERVs, undergo reactivation by environmental factors. This deregulation of HERVs' transcriptional equilibrium correlates with medical conditions such as multiple sclerosis (MS). Here we sought to explore whether exposing the U-87 MG astrocytoma cells to traumatic injury deregulates the expression of HERV-W family member ERVW-1 encoding syncytin-1. We also examined the expression of FURIN gene that is crucial in syncytin-1 synthesis. MATERIAL AND METHODS: Scratch assay was used as a model of cells injury in U-87 MG cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot (WB) and migration assay using Boyden chamber were used. Phorbol 12-myristate 13-acetate (PMA) and small interfering RNA (siRNA) were used for cell stimulation and gene expression inhibition, respectively. RESULTS: Results revealed reduced ERVW-1 expression in cells exposed to injury (p â€‹< â€‹0.05) while GFAP gene - a marker of active astrocytes, was upregulated (p â€‹< â€‹0.01). These findings were confirmed by both WB and RT-qPCR. Expression of FURIN gene was not altered after injury, but cell stimulation by PMA strongly increased FURIN expression, simultaneously downregulating ERVW-1 (p â€‹< â€‹0.01). SiRNA-mediated expression inhibition of ERVW-1 and FURIN influenced the mRNA level for SLC1A5 (ASCT2) - primary syncytin-1 receptor, that was significantly lower. FURIN inhibition by siRNA caused strong upregulation of ERVW-1 expression (p â€‹< â€‹0.01). CONCLUSION: Results showed that mechanical impact affects the expression of endogenous retroviruses in U-87 MG astrocytoma cells by scratch assay. Regulation of FURIN, a crucial enzyme in ERVW-1 turnover may support the therapy of some neurological conditions.


Assuntos
Astrocitoma , Retrovirus Endógenos , Furina , RNA Interferente Pequeno , Acetato de Tetradecanoilforbol , Humanos , Furina/metabolismo , Furina/genética , Retrovirus Endógenos/genética , Astrocitoma/genética , Astrocitoma/metabolismo , Astrocitoma/patologia , Astrocitoma/virologia , Acetato de Tetradecanoilforbol/farmacologia , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Inativação Gênica , Cicatrização/efeitos dos fármacos , Produtos do Gene env/metabolismo , Produtos do Gene env/genética , Linhagem Celular Tumoral , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA