Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Development ; 148(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766930

RESUMO

Stem cells self-renew or give rise to transit-amplifying cells (TACs) that differentiate into specific functional cell types. The fate determination of stem cells to TACs and their transition to fully differentiated progeny is precisely regulated to maintain tissue homeostasis. Arid1a, a core component of the switch/sucrose nonfermentable complex, performs epigenetic regulation of stage- and tissue-specific genes that is indispensable for stem cell homeostasis and differentiation. However, the functional mechanism of Arid1a in the fate commitment of mesenchymal stem cells (MSCs) and their progeny is not clear. Using the continuously growing adult mouse incisor model, we show that Arid1a maintains tissue homeostasis through limiting proliferation, promoting cell cycle exit and differentiation of TACs by inhibiting the Aurka-Cdk1 axis. Loss of Arid1a overactivates the Aurka-Cdk1 axis, leading to expansion of the mitotic TAC population but compromising their differentiation ability. Furthermore, the defective homeostasis after loss of Arid1a ultimately leads to reduction of the MSC population. These findings reveal the functional significance of Arid1a in regulating the fate of TACs and their interaction with MSCs to maintain tissue homeostasis.


Assuntos
Aurora Quinase A/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas de Ligação a DNA/metabolismo , Incisivo/embriologia , Células-Tronco Mesenquimais/metabolismo , Mitose , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Aurora Quinase A/genética , Proteína Quinase CDC2/genética , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/genética
2.
Biochem Biophys Res Commun ; 532(2): 321-328, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32873389

RESUMO

MicroRNAs (miRNAs) exhibit strong potential clinical application owing to their extensive regulation and flexible delivery properties. MicroRNA-31 (miR-31) is an evolutionarily conserved miRNA expressed during tooth development, and it is highly expressed in mouse incisor epithelium. The specific role of miR-31 in odontogenesis has not been elucidated comprehensively, and the aim of the present study was to investigate its activity. Our results showed that miR-31 suppressed LS8 cell proliferation by inhibiting the cell cycle at the G1/S transition. Mutation of Special AT-rich sequence-binding protein 2 (SATB2) gene is responsible for human SATB2-associated syndrome (SAS), which is often accompanied by dental abnormities. Here, it was identified as a direct target of miR-31 in LS8 cells and a promoter of cell proliferation. The expression and distribution of SATB2 in mouse molars and incisors were explored using immunofluorescence, which showed strong signals in the nuclei of incisor epithelial cells and weak signals in the cytoplasm of molar epithelial cells. Moreover, rescue experiments demonstrated that Satb2 could mitigate the inhibitory effect of miR-31 on cell proliferation by promoting the expression of CDK4. Collectively, our results suggested that miR-31 regulates dental epithelial cell proliferation by targeting Satb2, highlighting the biological importance of miR-31 in odontogenesis.


Assuntos
Ameloblastos/citologia , Incisivo/crescimento & desenvolvimento , Proteínas de Ligação à Região de Interação com a Matriz/genética , MicroRNAs/genética , Dente Molar/crescimento & desenvolvimento , Fatores de Transcrição/genética , Ameloblastos/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/embriologia , Incisivo/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Dente Molar/embriologia , Dente Molar/fisiologia , Gravidez , Fatores de Transcrição/metabolismo
3.
Nat Mater ; 18(6): 627-637, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31114073

RESUMO

Cells are transplanted to regenerate an organs' parenchyma, but how transplanted parenchymal cells induce stromal regeneration is elusive. Despite the common use of a decellularized matrix, little is known as to the pivotal signals that must be restored for tissue or organ regeneration. We report that Alx3, a developmentally important gene, orchestrated adult parenchymal and stromal regeneration by directly transactivating Wnt3a and vascular endothelial growth factor. In contrast to the modest parenchyma formed by native adult progenitors, Alx3-restored cells in decellularized scaffolds not only produced vascularized stroma that involved vascular endothelial growth factor signalling, but also parenchymal dentin via the Wnt/ß-catenin pathway. In an orthotopic large-animal model following parenchyma and stroma ablation, Wnt3a-recruited endogenous cells regenerated neurovascular stroma and differentiated into parenchymal odontoblast-like cells that extended the processes into newly formed dentin with a structure-mechanical equivalency to native dentin. Thus, the Alx3-Wnt3a axis enables postnatal progenitors with a modest innate regenerative capacity to regenerate adult tissues. Depleted signals in the decellularized matrix may be reinstated by a developmentally pivotal gene or corresponding protein.


Assuntos
Proteínas de Homeodomínio/metabolismo , Tecido Parenquimatoso/fisiologia , Dente/citologia , Dente/embriologia , Adolescente , Animais , Feminino , Proteínas de Homeodomínio/genética , Humanos , Incisivo/citologia , Incisivo/embriologia , Camundongos Endogâmicos , Dente Serotino/citologia , Técnicas de Cultura de Órgãos , Tecido Parenquimatoso/citologia , Gravidez , Regiões Promotoras Genéticas , Regeneração , Células Estromais/fisiologia , Suínos , Fator A de Crescimento do Endotélio Vascular/genética , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
4.
Development ; 145(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29180573

RESUMO

In mice, the incisors grow throughout the animal's life, and this continuous renewal is driven by dental epithelial and mesenchymal stem cells. Sox2 is a principal marker of the epithelial stem cells that reside in the mouse incisor stem cell niche, called the labial cervical loop, but relatively little is known about the role of the Sox2+ stem cell population. In this study, we show that conditional deletion of Sox2 in the embryonic incisor epithelium leads to growth defects and impairment of ameloblast lineage commitment. Deletion of Sox2 specifically in Sox2+ cells during incisor renewal revealed cellular plasticity that leads to the relatively rapid restoration of a Sox2-expressing cell population. Furthermore, we show that Lgr5-expressing cells are a subpopulation of dental Sox2+ cells that also arise from Sox2+ cells during tooth formation. Finally, we show that the embryonic and adult Sox2+ populations are regulated by distinct signalling pathways, which is reflected in their distinct transcriptomic signatures. Together, our findings demonstrate that a Sox2+ stem cell population can be regenerated from Sox2- cells, reinforcing its importance for incisor homeostasis.


Assuntos
Ameloblastos/metabolismo , Antígenos de Diferenciação/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/embriologia , Fatores de Transcrição SOXB1/biossíntese , Células-Tronco/metabolismo , Ameloblastos/citologia , Animais , Antígenos de Diferenciação/genética , Incisivo/citologia , Camundongos , Camundongos Transgênicos , Fatores de Transcrição SOXB1/genética , Células-Tronco/citologia
5.
Organogenesis ; 13(4): 141-155, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28933666

RESUMO

Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19INK4d. p19INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19INK4d throughout the investigated period indicates that p19INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.


Assuntos
Inibidor de Quinase Dependente de Ciclina p19/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Incisivo/embriologia , Fator de Transcrição MSX1/fisiologia , Ciclo Celular , Proliferação de Células , Ciclina A2/metabolismo , Humanos , Antígeno Ki-67/fisiologia , Domínios Proteicos , Proteína do Retinoblastoma/metabolismo , Células-Tronco/citologia
6.
Dev Biol ; 429(1): 44-55, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28746823

RESUMO

The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1-/- mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development.


Assuntos
Células Epiteliais Alveolares/citologia , Diferenciação Celular , Esmalte Dentário/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Animais Recém-Nascidos , Cruzamentos Genéticos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Incisivo/embriologia , Incisivo/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Ratos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética
7.
J Cell Biol ; 214(6): 753-67, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27621364

RESUMO

During organogenesis, cell fate specification and patterning are regulated by signaling centers, specialized clusters of morphogen-expressing cells. In many organs, initiation of development is marked by bud formation, but the cellular mechanisms involved are ill defined. Here, we use the mouse incisor tooth as a model to study budding morphogenesis. We show that a group of nonproliferative epithelial cells emerges in the early tooth primordium and identify these cells as a signaling center. Confocal live imaging of tissue explants revealed that although these cells reorganize dynamically, they do not reenter the cell cycle or contribute to the growing tooth bud. Instead, budding is driven by proliferation of the neighboring cells. We demonstrate that the activity of the ectodysplasin/Edar/nuclear factor κB pathway is restricted to the signaling center, and its inactivation leads to fewer quiescent cells and a smaller bud. These data functionally link the signaling center size to organ size and imply that the early signaling center is a prerequisite for budding morphogenesis.


Assuntos
Movimento Celular , Proliferação de Células , Células Epiteliais/fisiologia , Incisivo/embriologia , Animais , Ectodisplasinas/genética , Ectodisplasinas/metabolismo , Receptor Edar/genética , Receptor Edar/metabolismo , Células Epiteliais/metabolismo , Fase G1 , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Incisivo/metabolismo , Camundongos Transgênicos , Microscopia Confocal , Morfogênese , NF-kappa B/genética , NF-kappa B/metabolismo , Tamanho do Órgão , Fenótipo , Transdução de Sinais
8.
Dental Press J Orthod ; 20(5): 118-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26560830

RESUMO

INTRODUCTION: Cleft lip and palate are craniofacial anomalies highly prevalent in the overall population. In oral clefts involving the alveolar ridge, variations of number, shape, size and position are observed in maxillary lateral incisors. The objective of this manuscript is to elucidate the embryonic origin of maxillary lateral incisors in order to understand the etiology of these variations.Contextualization: The hypothesis that orofacial clefts would split maxillary lateral incisor buds has been previously reported. However, recent studies showed that maxillary lateral incisors have dual embryonic origin, being partially formed by both the medial nasal process and the maxillary process. In other words, the mesial half of the lateral incisor seems to come from the medial nasal process while the distal half of the lateral incisor originates from the maxillary process. In cleft patients, these processes do not fuse, which results in different numerical and positional patterns for lateral incisors relating to the alveolar cleft. In addition to these considerations, this study proposes a nomenclature for maxillary lateral incisors in patients with cleft lip and palate, based on embryology and lateral incisors position in relation to the alveolar cleft. CONCLUSION: Embryological knowledge on the dual origin of maxillary lateral incisors and the use of a proper nomenclature for their numerical and positional variations renders appropriate communication among professionals and treatment planning easier, in addition to standardizing research analysis.


Assuntos
Processo Alveolar/embriologia , Incisivo/embriologia , Anormalidades Dentárias/classificação , Anormalidades Dentárias/embriologia , Processo Alveolar/anormalidades , Fenda Labial/complicações , Fissura Palatina/complicações , Humanos , Incisivo/anormalidades , Terminologia como Assunto , Anormalidades Dentárias/etiologia
9.
Dental press j. orthod. (Impr.) ; 20(5): 118-125, tab, graf
Artigo em Inglês | LILACS | ID: lil-764539

RESUMO

Introduction:Cleft lip and palate are craniofacial anomalies highly prevalent in the overall population. In oral clefts involving the alveolar ridge, variations of number, shape, size and position are observed in maxillary lateral incisors. The objective of this manuscript is to elucidate the embryonic origin of maxillary lateral incisors in order to understand the etiology of these variations.Contextualization: The hypothesis that orofacial clefts would split maxillary lateral incisor buds has been previously reported. However, recent studies showed that maxillary lateral incisors have dual embryonic origin, being partially formed by both the medial nasal process and the maxillary process. In other words, the mesial half of the lateral incisor seems to come from the medial nasal process while the distal half of the lateral incisor originates from the maxillary process. In cleft patients, these processes do not fuse, which results in different numerical and positional patterns for lateral incisors relating to the alveolar cleft. In addition to these considerations, this study proposes a nomenclature for maxillary lateral incisors in patients with cleft lip and palate, based on embryology and lateral incisors position in relation to the alveolar cleft.Conclusion:Embryological knowledge on the dual origin of maxillary lateral incisors and the use of a proper nomenclature for their numerical and positional variations renders appropriate communication among professionals and treatment planning easier, in addition to standardizing research analysis.


Introdução:as fissuras de lábio e palato são malformações de alta prevalência na população. Nas fissuras que envolvem o rebordo alveolar, o incisivo lateral superior mostra variações de número, forma, tamanho e posição, o que o torna objeto de estudo, na tentativa de elucidar sua origem embrionária para compreender a etiologia dessas alterações.Contextualização:existia a hipótese de que a fissura orofacial seria capaz de segmentar o botão embrionário do incisivo lateral. No entanto, estudos recentes evidenciaram que o incisivo lateral superior possui dupla origem embrionária, sendo formado parcialmente pelo processo nasal medial e pelo processo maxilar. Em outras palavras, a metade mesial do incisivo lateral provém do processo nasal medial, enquanto a metade distal do incisivo lateral origina-se do processo maxilar. No paciente com fissura, não há fusão desses processos, o que resulta nos diferentes padrões numéricos e posicionais do incisivo lateral em relação à fissura. Além dessas considerações, propõe-se também uma nomenclatura para o incisivo lateral em pacientes com fissura labiopalatina, com embasamento na Embriologia, considerando-se sua posição em relação à fissura alveolar.Conclusão:o conhecimento embriológico da dupla origem do incisivo lateral superior e o emprego de uma nomenclatura adequada para as suas variações numéricas e posicionais facilita a comunicação entre profissionais, o planejamento dos casos e possibilita a realização de estudos clínicos comparativos.


Assuntos
Humanos , Anormalidades Dentárias/classificação , Anormalidades Dentárias/embriologia , Processo Alveolar/embriologia , Incisivo/embriologia , Anormalidades Dentárias/etiologia , Fenda Labial/complicações , Fissura Palatina/complicações , Processo Alveolar/anormalidades , Incisivo/anormalidades , Terminologia como Assunto
10.
Cell Tissue Res ; 362(3): 633-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26246398

RESUMO

Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche.


Assuntos
Movimento Celular , Quimiocina CXCL12/metabolismo , Esmalte Dentário/citologia , Receptores CXCR4/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Células-Tronco/citologia , Animais , Agregação Celular , Linhagem Celular , Proliferação de Células , Forma Celular , Quimiocina CXCL12/deficiência , Quimiocina CXCL12/genética , Células Epiteliais , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Incisivo/citologia , Incisivo/embriologia , Camundongos Knockout , Mutação , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR4/deficiência , Receptores CXCR4/genética , Células-Tronco/metabolismo
11.
Dev Cell ; 33(2): 125-35, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25865348

RESUMO

During embryogenesis, ectodermal stem cells adopt different fates and form diverse ectodermal organs, such as teeth, hair follicles, mammary glands, and salivary glands. Interestingly, these ectodermal organs differ in their tissue homeostasis, which leads to differential abilities for continuous growth postnatally. Mouse molars lose the ability to grow continuously, whereas incisors retain this ability. In this study, we found that a BMP-Smad4-SHH-Gli1 signaling network may provide a niche supporting transient Sox2+ dental epithelial stem cells in mouse molars. This mechanism also plays a role in continuously growing mouse incisors. The differential fate of epithelial stem cells in mouse molars and incisors is controlled by this BMP/SHH signaling network, which partially accounts for the different postnatal growth potential of molars and incisors. Collectively, our study highlights the importance of crosstalk between two signaling pathways, BMP and SHH, in regulating the fate of epithelial stem cells during organogenesis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Hedgehog/metabolismo , Incisivo/crescimento & desenvolvimento , Dente Molar/crescimento & desenvolvimento , Odontogênese , Proteína Smad4/metabolismo , Animais , Proliferação de Células , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Glicosiltransferases/biossíntese , Incisivo/embriologia , Incisivo/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Dente Molar/embriologia , Dente Molar/metabolismo , Receptor Notch1/biossíntese , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Proteína Smad4/genética , Células-Tronco/citologia , Proteína GLI1 em Dedos de Zinco
12.
Anat Histol Embryol ; 44(5): 338-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25182175

RESUMO

Dental hard tissues are formed particularly by odontoblasts (dentin) and ameloblasts (enamel). Whereas the reparation of dentin is often observed, enamel does not regenerate in most species. However, in mouse incisor, a population of somatic stem cells in the cervical loop is responsible for the incisor regeneration. Understanding of the specificities of these cells is therefore of an interest in basic research as well as regenerative therapies. The Myb transcription factors are involved in essential cellular processes. B-Myb is often linked to the stem cell phenotype, and c-Myb expression marks undifferentiated and proliferating cells such as the stem cells. In the presented study, temporo-spatial expression of B-Myb and c-Myb proteins was correlated with localisation of putative somatic stem cells in the mouse incisor cervical loop by immunohistochemistry. B-Myb expression was localised mostly in the zone of transit-amplifying cells, and c-Myb was found in the inner enamel epithelium, the surrounding mesenchyme and in differentiated cells. Taken together, neither B-Myb nor c-Myb was exclusively present or abundant in the area of the incisor stem cell niche. Their distribution, however, supports recently reported novel functions of c-Myb in differentiation of hard tissue cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Incisivo/anatomia & histologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Nicho de Células-Tronco/fisiologia , Células-Tronco/citologia , Transativadores/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Esmalte Dentário/citologia , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/embriologia , Mesoderma/citologia , Camundongos
13.
J Dent Res ; 94(1): 121-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25376721

RESUMO

Nuclear factor kappa B (NF-κB) signaling plays critical roles in many physiological and pathological processes, including regulating organogenesis. Down-regulation of NF-κB signaling during development results in hypohidrotic ectodermal dysplasia. The roles of NF-κB signaling in tooth development, however, are not fully understood. We examined mice overexpressing IKKß, an essential component of the NF-κB pathway, under keratin 5 promoter (K5-Ikkß). K5-Ikkß mice showed supernumerary incisors whose formation was accompanied by up-regulation of canonical Wnt signaling. Apoptosis that is normally observed in wild-type incisor epithelium was reduced in K5-Ikkß mice. The supernumerary incisors in K5-Ikkß mice were found to phenocopy extra incisors in mice with mutations of Wnt inhibitor, Wise. Excess NF-κB activity thus induces an ectopic odontogenesis program that is usually suppressed under physiological conditions.


Assuntos
Incisivo/embriologia , NF-kappa B/fisiologia , Odontogênese/fisiologia , Germe de Dente/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Ameloblastos/citologia , Amelogenina/análise , Animais , Apoptose/fisiologia , Proteínas Morfogenéticas Ósseas/genética , Esmalte Dentário/citologia , Epitélio/embriologia , Proteínas Hedgehog/fisiologia , Quinase I-kappa B/fisiologia , Imageamento Tridimensional/métodos , Incisivo/anormalidades , Queratina-15/genética , Camundongos , Camundongos Mutantes , Microrradiografia/métodos , Mutação/genética , Receptores Patched , Fenótipo , Regiões Promotoras Genéticas/genética , Receptores de Superfície Celular/fisiologia , Germe de Dente/anormalidades , Dente Supranumerário/etiologia , Dente Supranumerário/genética , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Microtomografia por Raio-X/métodos
14.
Nature ; 513(7519): 551-4, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25079316

RESUMO

Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells form mesenchymal stem cells in most tissues. The continuously growing mouse incisor tooth offers an excellent model to address the origin of mesenchymal stem cells. These stem cells dwell in a niche at the tooth apex where they produce a variety of differentiated derivatives. Cells constituting the tooth are mostly derived from two embryonic sources: neural crest ectomesenchyme and ectodermal epithelium. It has been thought for decades that the dental mesenchymal stem cells giving rise to pulp cells and odontoblasts derive from neural crest cells after their migration in the early head and formation of ectomesenchymal tissue. Here we show that a significant population of mesenchymal stem cells during development, self-renewal and repair of a tooth are derived from peripheral nerve-associated glia. Glial cells generate multipotent mesenchymal stem cells that produce pulp cells and odontoblasts. By combining a clonal colour-coding technique with tracing of peripheral glia, we provide new insights into the dynamics of tooth organogenesis and growth.


Assuntos
Diferenciação Celular , Linhagem da Célula , Incisivo/citologia , Células-Tronco Mesenquimais/citologia , Neuroglia/citologia , Animais , Rastreamento de Células , Células Clonais/citologia , Polpa Dentária/citologia , Feminino , Incisivo/embriologia , Masculino , Camundongos , Modelos Biológicos , Crista Neural/citologia , Odontoblastos/citologia , Regeneração , Células de Schwann/citologia
15.
PLoS One ; 9(5): e96938, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24816837

RESUMO

Bone morphogenetic proteins (BMPs) are highly conserved signaling molecules that are part of the transforming growth factor (TGF)-beta superfamily, and function in the patterning and morphogenesis of many organs including development of the dentition. The functions of the BMPs are controlled by certain classes of molecules that are recognized as BMP antagonists that inhibit BMP binding to their cognate receptors. In this study we tested the hypothesis that USAG-1 (uterine sensitization-associated gene-1) suppresses deciduous incisors by inhibition of BMP-7 function. We learned that USAG-1 and BMP-7 were expressed within odontogenic epithelium as well as mesenchyme during the late bud and early cap stages of tooth development. USAG-1 is a BMP antagonist, and also modulates Wnt signaling. USAG-1 abrogation rescued apoptotic elimination of odontogenic mesenchymal cells. BMP signaling in the rudimentary maxillary incisor, assessed by expressions of Msx1 and Dlx2 and the phosphorylation of Smad protein, was significantly enhanced. Using explant culture and subsequent subrenal capsule transplantation of E15 USAG-1 mutant maxillary incisor tooth primordia supplemented with BMP-7 demonstrated in USAG-1+/- as well as USAG-1-/- rescue and supernumerary tooth development. Based upon these results, we conclude that USAG-1 functions as an antagonist of BMP-7 in this model system. These results further suggest that the phenotypes of USAG-1 and BMP-7 mutant mice reported provide opportunities for regenerative medicine and dentistry.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Organogênese , Dente Supranumerário/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteína Morfogenética Óssea 7/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/deficiência , Células Epiteliais/metabolismo , Incisivo/embriologia , Mesoderma/metabolismo , Camundongos , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Dente Supranumerário/metabolismo , Dente Supranumerário/patologia
16.
J Mol Histol ; 45(5): 487-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24647585

RESUMO

The WNT/ß-CATENIN signaling has been demonstrated to play critical roles in mouse tooth development, but little is known about the status of these molecules in human embryonic tooth. In this study, expression patterns of WNT/ß-CATENIN signaling components, including WNT ligands (WNT3, WNT5A), receptors (FZD4, FZD6, LRP5), transducers (ß-CATENIN), transcription factors (TCF4, LEF1) and antagonists (DKK1, SOSTDC1) were investigated in human tooth germ at the bud, cap and bell stages by in situ hybridization. All these genes exhibited similar but slightly distinct expression patterns in human tooth germ in comparison with mouse. Furthermore the mRNA expression of these genes in incisors and molars at the bell stage was also examined by real-time PCR. Our results reveal the status of active WNT/ß-CATENIN signaling in the human tooth germ and suggest these components may also play an essential role in the regulation of human tooth development.


Assuntos
Perfilação da Expressão Gênica , Proteínas Proto-Oncogênicas/genética , Dente/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Proteína Wnt3/genética , beta Catenina/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Incisivo/embriologia , Incisivo/metabolismo , Camundongos , Dente Molar/embriologia , Dente Molar/metabolismo , Odontogênese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Dente/embriologia , Proteína Wnt-5a
17.
Eur J Oral Sci ; 122(1): 21-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24313748

RESUMO

The sodium pump Na(+)/K(+)-ATPase, expressed in virtually all cells of higher organisms, is involved in establishing a resting membrane potential and in creating a sodium gradient to facilitate a number of membrane-associated transport activities. Na(+)/K(+)-ATPase is an oligomer of α, ß, and γ subunits. Four unique genes encode each of the α and ß subunits. In dental enamel cells, the spatiotemporal expression of Na(+)/K(+)-ATPase is poorly characterized. Using the rat incisor as a model, this study provides a comprehensive expression profile of all four α and all four ß Na(+)/K(+)-ATPase subunits throughout all stages of amelogenesis. Real-time PCR, western blot analysis, and immunolocalization revealed that α1, ß1, and ß3 are expressed in the enamel organ and that all three are most highly expressed during late-maturation-stage amelogenesis. Expression of ß3 was significantly higher than expression of ß1, suggesting that the dominant Na(+)/K(+)-ATPase consists of an α1ß3 dimer. Localization of α1, ß1, and ß3 subunits in ameloblasts was primarily to the cytoplasm and occasionally along the basolateral membranes. Weaker expression was also noted in papillary layer cells during early maturation. Our data support that Na(+)/K(+)-ATPase is functional in maturation-stage ameloblasts.


Assuntos
Órgão do Esmalte/enzimologia , ATPase Trocadora de Sódio-Potássio/genética , Ameloblastos/enzimologia , Amelogênese/genética , Animais , Western Blotting/métodos , Membrana Celular/enzimologia , Citoplasma/enzimologia , Proteínas do Esmalte Dentário/genética , Perfilação da Expressão Gênica/métodos , Incisivo/embriologia , Masculino , Modelos Animais , Multimerização Proteica , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
18.
Gene Expr Patterns ; 13(8): 293-302, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23722005

RESUMO

Signals of perlecan, an extracellular matrix molecule, which accumulates within the intercellular spaces of the stellate reticulum of the enamel organ, are mediated by at least two receptors, dystroglycan (DG) and integrin ß1, in a case-dependent manner in various events in embryogenesis and pathogenesis. This study aims to understand the expression profiles of these two perlecan receptors at both protein and gene levels in murine enamel organ development. Before birth, α-DG was immunolocalized in stellate reticulum cells, in which perlecan was colocalized, while integrin ß1 was mainly distributed in the peripheral enamel organ cells as well as the dental mesenchymal cells. On and after postnatal Day 1, the expression of α-DG was dramatically decreased in the stellate reticulum, while integrin ß1 was enhanced around blood vessels within the enamel organ. Furthermore, biosyntheses of α-DG and integrin ß1 by dental epithelial and pulp mesenchymal cells were confirmed in vitro by using immunofluorescence and reverse-transcriptase polymerase chain reaction. The results suggest that DG is a perlecan receptor that specifically functions in the stellate reticulum of the embryonic stage, but that dental epithelial and mesenchymal cells are maturated by capturing perlecan signals differentially through integrin ß1.


Assuntos
Distroglicanas/metabolismo , Órgão do Esmalte/metabolismo , Expressão Gênica , Integrina beta1/metabolismo , Animais , Linhagem Celular , Distroglicanas/genética , Órgão do Esmalte/citologia , Órgão do Esmalte/embriologia , Órgão do Esmalte/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/citologia , Incisivo/embriologia , Incisivo/crescimento & desenvolvimento , Incisivo/metabolismo , Integrina beta1/genética , Mesoderma/citologia , Camundongos Endogâmicos ICR , Dente Molar/citologia , Dente Molar/embriologia , Dente Molar/crescimento & desenvolvimento , Dente Molar/metabolismo , Especificidade de Órgãos
19.
Arch Oral Biol ; 58(2): 151-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22609173

RESUMO

OBJECTIVES: The rodent incisor cervical loop and molar Hertwig's epithelial root sheath (HERS) are common models used for investigating tooth root generation. The purpose of the present study was to gain a better understanding of the molecular mechanisms mediating root development by determining the distinctive gene and protein expression profiles of each during different stages of development. METHODS: In this study, we used quantitative real time reverse transcription-PCR and immunohistochemistry to analyse the expression levels of high mobility group AT-hook 2, ameloblastin, amelogenin, dentine sialoprotein, dentine matrix protein 1, osteocalcin, and bone sialoprotein in rat epithelial and mesenchymal cells isolated at postnatal days 4 and 8. RESULTS: Results showed that the expression of these genes and proteins was up-regulated in cervical loop epithelial cells, but decreased or unchanged in other cells during development. This increase in expression in the incisor cervical loop may be due to the interaction of the inner incisor dental papilla cells, which are the niche cells of cervical loop epithelial cells and demonstrated up-regulated expression of the corresponding proteins, revealing a complex and dynamic interplay of these molecules during neonatal tooth development. CONCLUSION: These findings provide novel insights into the molecular processes underlying crown development of rodent incisors, and contribute to our overall understanding of the pathogenic processes of tooth root dysontogenesis.


Assuntos
Incisivo/embriologia , Odontogênese/genética , Amelogenina/metabolismo , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Proteínas do Esmalte Dentário/metabolismo , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Expressão Gênica , Proteína HMGA2/metabolismo , Técnicas Imunoenzimáticas , Incisivo/citologia , Sialoproteína de Ligação à Integrina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/metabolismo , Osteopontina/metabolismo , Fosfoproteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
20.
J Mol Histol ; 43(3): 281-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22476877

RESUMO

Retinoblastoma protein (pRb) phosphorylation plays a central role in mediating cell cycle G1/S stage transition, together with E2F transcription factors. The binding of pRb to E2F is thought to be controlled by the sequential and cumulative phosphorylation of pRb at various amino acids. In addition to well characterized roles as a tumor suppressor, pRb has more recently been implicated in osteoprogenitor and other types of stem cell maintenance, proliferation and differentiation, thereby influencing the morphogenesis of developing organs. In this study, we present data characterizing the expression of pRb and three phosphorylated pRb (ppRb) isoforms-ppRbS780, ppRbS795, ppRbS807/811-in developmentally staged mouse molar and incisor teeth. Our results reveal distinct developmental expression patterns for individual ppRb isoforms in dental epithelial and dental mesenchymal cell differentiation, suggesting discrete functions in tooth development.


Assuntos
Fatores de Transcrição E2F/genética , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/metabolismo , Dente Molar/metabolismo , Fosfoproteínas/genética , Proteína do Retinoblastoma/genética , Animais , Diferenciação Celular , Fatores de Transcrição E2F/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Incisivo/citologia , Incisivo/embriologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Dente Molar/citologia , Dente Molar/embriologia , Odontogênese/genética , Fosfoproteínas/metabolismo , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína do Retinoblastoma/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA