Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.472
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cells ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920636

RESUMO

Cancer is one of the most important problems of modern societies. Recently, studies have reported the anticancer properties of rosiglitazone related to its ability to bind peroxisome proliferator receptor γ (PPARγ), which has various effects on cancer and can inhibit cell proliferation. In this study, we investigated the effect of new 4-thiazolidinone (4-TZD) hybrids Les-4369 and Les-3467 and their effect on reactive oxygen species (ROS) production, metabolic activity, lactate dehydrogenase (LDH) release, caspase-3 activity, and gene and protein expression in human foreskin fibroblast (BJ) cells and lung adenocarcinoma (A549) cells. The ROS production and caspase-3 activity were mainly increased in the micromolar concentrations of the studied compounds in both cell lines. Les-3467 and Les-4369 increased the mRNA expression of PPARG, P53 (tumor protein P53), and ATM (ATM serine/threonine kinase) in the BJ cells, while the mRNA expression of these genes (except PPARG) was mainly decreased in the A549 cells treated with both of the tested compounds. Our results indicate a decrease in the protein expression of AhR, PPARγ, and PARP-1 in the BJ cells exposed to 1 µM Les-3467 and Les-4369. In the A549 cells, the protein expression of AhR, PPARγ, and PARP-1 increased in the treatment with 1 µM Les-3467 and Les-4369. We have also shown the PPARγ modulatory properties of Les-3467 and Les-4369. However, both compounds prove weak anticancer properties evidenced by their action at high concentrations and non-selective effects against BJ and A549 cells.


Assuntos
PPAR gama , Pirazóis , Espécies Reativas de Oxigênio , Humanos , Células A549 , PPAR gama/metabolismo , PPAR gama/genética , Espécies Reativas de Oxigênio/metabolismo , Pirazóis/farmacologia , Tiazolidinas/farmacologia , Indóis/farmacologia , Caspase 3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Apoptose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
2.
Sci Rep ; 14(1): 14792, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926490

RESUMO

Idiopathic Pulmonary Fibrosis (IPF) is a debilitating and fatal lung disease characterized by the excessive formation of scar tissue and decline of lung function. Despite extensive research, only two FDA-approved drugs exist for IPF, with limited efficacy and relevant side effects. Thus, there is an urgent need for new effective therapies, whose discovery strongly relies on IPF animal models. Despite some limitations, the Bleomycin (BLM)-induced lung fibrosis mouse model is widely used for antifibrotic drug discovery and for investigating disease pathogenesis. The initial acute inflammation triggered by BLM instillation and the spontaneous fibrosis resolution that occurs after 3 weeks are the major drawbacks of this system. In the present study, we applied micro-CT technology to a longer-lasting, triple BLM administration fibrosis mouse model to define the best time-window for Nintedanib (NINT) treatment. Two different treatment regimens were examined, with a daily NINT administration from day 7 to 28 (NINT 7-28), and from day 14 to 28 (NINT 14-28). For the first time, we automatically derived both morphological and functional readouts from longitudinal micro-CT. NINT 14-28 showed significant effects on morphological parameters after just 1 week of treatment, while no modulations of these biomarkers were observed during the preceding 7-14-days period, likely due to persistent inflammation. Micro-CT morphological data evaluated on day 28 were confirmed by lung histology and bronchoalveolar lavage fluid (BALF) cells; Once again, the NINT 7-21 regimen did not provide substantial benefits over the NINT 14-28. Interestingly, both NINT treatments failed to improve micro-CT-derived functional parameters. Altogether, our findings support the need for optimized protocols in preclinical studies to expedite the drug discovery process for antifibrotic agents. This study represents a significant advancement in pulmonary fibrosis animal modeling and antifibrotic treatment understanding, with the potential for improved translatability through the concurrent structural-functional analysis offered by longitudinal micro-CT.


Assuntos
Bleomicina , Modelos Animais de Doenças , Microtomografia por Raio-X , Animais , Bleomicina/efeitos adversos , Camundongos , Indóis/farmacologia , Indóis/uso terapêutico , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/diagnóstico por imagem , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Fatores de Tempo
3.
Acta Chim Slov ; 71(2): 334-352, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38919105

RESUMO

The Re(I) organometallic compounds [(Re(CO)3L1-6 )Cl], where Ligand(L) = Tryptanthrin derivatives were prepared and characterized by various spectroscopic techniques. To assess the binding capacities and binding manner, tests of Calf thymus DNA under the impact of organometallic complexes were conducted using absorption titration and viscosity measuring techniques. Data from the research mentioned above point to an intercalation type of binding, which was verified by the docking study. Swiss ADME tools carried out an ADME study. The work focuses on computing the molecular orbital energies for the synthesized compounds using the density functional theory (DFT). The compounds were tested against the MCF-7 cell line to determine their anticancer effects. It was observed that their IC50 values were equivalent to those of the standard medication, indicating that they had a similar antiproliferative impact.


Assuntos
Antineoplásicos , Rênio , Rênio/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Simulação de Acoplamento Molecular , DNA/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Teoria da Densidade Funcional , Bovinos , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , Quinazolinonas/química , Estrutura Molecular , Animais , Indóis/farmacologia , Indóis/química , Indóis/síntese química
4.
Biomolecules ; 14(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927129

RESUMO

Abdominal aortic aneurysm (AAA) is a chronic aortic disease that lacks effective pharmacological therapies. This study was performed to determine the influence of treatment with the gasdermin D inhibitor necrosulfonamide on experimental AAAs. AAAs were induced in male apolipoprotein E-deficient mice by subcutaneous angiotensin II infusion (1000 ng/kg body weight/min), with daily administration of necrosulfonamide (5 mg/kg body weight) or vehicle starting 3 days prior to angiotensin II infusion for 30 days. Necrosulfonamide treatment remarkably suppressed AAA enlargement, as indicated by reduced suprarenal maximal external diameter and surface area, and lowered the incidence and reduced the severity of experimental AAAs. Histologically, necrosulfonamide treatment attenuated medial elastin breaks, smooth muscle cell depletion, and aortic wall collagen deposition. Macrophages, CD4+ T cells, CD8+ T cells, and neovessels were reduced in the aneurysmal aortas of necrosulfonamide- as compared to vehicle-treated angiotensin II-infused mice. Atherosclerosis and intimal macrophages were also substantially reduced in suprarenal aortas from angiotensin II-infused mice following necrosulfonamide treatment. Additionally, the levels of serum interleukin-1ß and interleukin-18 were significantly lower in necrosulfonamide- than in vehicle-treated mice without affecting body weight gain, lipid levels, or blood pressure. Our findings indicate that necrosulfonamide reduced experimental AAAs by preserving aortic structural integrity as well as reducing mural leukocyte accumulation, neovessel formation, and systemic levels of interleukin-1ß and interleukin-18. Thus, pharmacologically inhibiting gasdermin D activity may lead to the establishment of nonsurgical therapies for clinical AAA disease.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Apolipoproteínas E , Sulfonamidas , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Camundongos , Masculino , Sulfonamidas/farmacologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Proteínas de Ligação a Fosfato/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Indóis/farmacologia , Camundongos Knockout para ApoE , Gasderminas
5.
J Nanobiotechnology ; 22(1): 320, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849820

RESUMO

Simultaneously modulating the inflammatory microenvironment and promoting local bone regeneration is one of the main challenges in treating bone defects. In recent years, osteoimmunology has revealed that the immune system plays an essential regulatory role in bone regeneration and that macrophages are critical components. In this work, a mussel-inspired immunomodulatory and osteoinductive dual-functional hydroxyapatite nano platform (Gold/hydroxyapatite nanocomposites functionalized with polydopamine - PDA@Au-HA) is developed to accelerate bone tissues regeneration by regulating the immune microenvironment. PDA coating endows nanomaterials with the ability to scavenge reactive oxygen species (ROS) and anti-inflammatory properties, and it also exhibits an immunomodulatory ability to inhibit M1 macrophage polarization and activate M2 macrophage secretion of osteogenesis-related cytokines. Most importantly, this nano platform promotes the polarization of M2 macrophages and regulates the crosstalk between macrophages and pre-osteoblast cells to achieve bone regeneration. Au-HA can synergistically promote vascularized bone regeneration through sustained release of Ca and P particles and gold nanoparticles (NPs). This nano platform has a synergistic effect of good compatibility, scavenging of ROS, and anti-inflammatory and immunomodulatory capability to accelerate the bone repair process. Thus, our research offers a possible therapeutic approach by exploring PDA@Au-HA nanocomposites as a bifunctional platform for tissue regeneration.


Assuntos
Bivalves , Regeneração Óssea , Durapatita , Ouro , Indóis , Macrófagos , Osteogênese , Regeneração Óssea/efeitos dos fármacos , Durapatita/química , Durapatita/farmacologia , Animais , Camundongos , Ouro/química , Ouro/farmacologia , Bivalves/química , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Osteogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Polímeros/química , Polímeros/farmacologia , Nanocompostos/química , Nanopartículas Metálicas/química , Osteoblastos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Citocinas/metabolismo
6.
J Nanobiotechnology ; 22(1): 321, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849841

RESUMO

Acute lung injury (ALI) is a life threatening disease in critically ill patients, and characterized by excessive reactive oxygen species (ROS) and inflammatory factors levels in the lung. Multiple evidences suggest that nanozyme with diversified catalytic capabilities plays a vital role in this fatal lung injury. At present, we developed a novel class of polydopamine (PDA) coated cerium dioxide (CeO2) nanozyme (Ce@P) that acts as the potent ROS scavenger for scavenging intracellular ROS and suppressing inflammatory responses against ALI. Herein, we aimed to identify that Ce@P combining with NIR irradiation could further strengthen its ROS scavenging capacity. Specifically, NIR triggered Ce@P exhibited the most potent antioxidant and anti-inflammatory behaviors in lipopolysaccharide (LPS) induced macrophages through decreasing the intracellular ROS levels, down-regulating the levels of TNF-α, IL-1ß and IL-6, up-regulating the level of antioxidant cytokine (SOD-2), inducing M2 directional polarization (CD206 up-regulation), and increasing the expression level of HSP70. Besides, we performed intravenous (IV) injection of Ce@P in LPS induced ALI rat model, and found that it significantly accumulated in the lung tissue for 6 h after injection. It was also observed that Ce@P + NIR presented the superior behaviors of decreasing lung inflammation, alleviating diffuse alveolar damage, as well as promoting lung tissue repair. All in all, it has developed the strategy of using Ce@P combining with NIR irradiation for the synergistic enhanced treatment of ALI, which can serve as a promising therapeutic strategy for the clinical treatment of ROS derived diseases as well.


Assuntos
Lesão Pulmonar Aguda , Cério , Indóis , Polímeros , Espécies Reativas de Oxigênio , Cério/química , Cério/farmacologia , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Polímeros/química , Polímeros/farmacologia , Indóis/química , Indóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ratos , Camundongos , Masculino , Células RAW 264.7 , Pulmão/efeitos dos fármacos , Pulmão/patologia , Antioxidantes/farmacologia , Antioxidantes/química , Ratos Sprague-Dawley , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Raios Infravermelhos , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/uso terapêutico , Nanopartículas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Citocinas/metabolismo
7.
Bioorg Med Chem ; 108: 117786, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843656

RESUMO

An efficient protocol for direct coupling of maleimides and indolines at the C7-position was achieved under Rh(III) catalysis. Thirty four novel indoline-maleimide conjugates were prepared in good to excellent yields using this method. All compounds were evaluated for their anti-proliferative effect against colorectal cell lines. Among them, compound 3ab showed the most potent anti-proliferative activity against the CRC cells, and displayed low toxicity in the normal cell. Further investigation indicated that 3ab could effectively suppress the proliferation and migration of CRC cells, along with inducing cell cycle arrest and apoptosis. Mechanistic studies revealed that compound 3ab inhibited the proliferation of CRC cells via suppressing the AKT/GSK-3ß pathway. In vivo evaluation demonstrated remarkable antitumor effect of 3ab (10 mg/kg) in the HCT116 xenograft model with no obvious toxicity, which is superior to that of 5-Fluorouracil (20 mg/kg). Therefore, conjugate 3ab could be considered as a potential CRC therapy agent for further development.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Neoplasias Colorretais , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Maleimidas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Maleimidas/química , Maleimidas/síntese química , Maleimidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Animais , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Estrutura Molecular , Camundongos , Relação Dose-Resposta a Droga , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos
8.
PLoS One ; 19(6): e0301901, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870204

RESUMO

Herein we report the design and the synthesis of a library of new and more hydrophilic bisindole analogues based on our previously identified antileishmanial compound URB1483 that failed the preliminary in vivo test. The novel bisindoles were phenotypically screened for efficacy against Leishmania infantum promastigotes and simultaneously for toxicity on human macrophage-like THP-1 cells. Among the less toxic compounds, eight bisindoles showed IC50 below 10 µM. The most selective compound 1h (selectivity index = 10.1, comparable to miltefosine) and the most potent compound 2c (IC50 = 2.7 µM) were tested for their efficacy on L. infantum intracellular amastigotes. The compounds also demonstrated their efficacy in the in vitro infection model, showing IC50 of 11.1 and 6.8 µM for 1h and 2c, respectively. Moreover, 1h showed a better toxicity profile than the commercial drug miltefosine. For all these reasons, 1h could be a possible new starting point for hydrophilic antileishmanial agents with low cytotoxicity on human macrophage-like cells.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmania infantum/efeitos dos fármacos , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/química , Células THP-1 , Indóis/farmacologia , Indóis/química , Interações Hidrofóbicas e Hidrofílicas , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosforilcolina/química , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Concentração Inibidora 50
9.
ACS Appl Mater Interfaces ; 16(23): 29844-29855, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829261

RESUMO

Copper plays critical roles as a metal active site cofactor and metalloallosteric signal for enzymes involved in cell proliferation and metabolism, making it an attractive target for cancer therapy. In this study, we investigated the efficacy of polydopamine nanoparticles (PDA NPs), classically applied for metal removal from water, as a therapeutic strategy for depleting intracellular labile copper pools in triple-negative breast cancer models through the metal-chelating groups present on the PDA surface. By using the activity-based sensing probe FCP-1, we could track the PDA-induced labile copper depletion while leaving total copper levels unchanged and link it to the selective MDA-MB-231 cell death. Further mechanistic investigations revealed that PDA NPs increased reactive oxygen species (ROS) levels, potentially through the inactivation of superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Additionally, PDA NPs were found to interact with the mitochondrial membrane, resulting in an increase in the mitochondrial membrane potential, which may contribute to enhanced ROS production. We employed an in vivo tumor model to validate the therapeutic efficacy of PDA NPs. Remarkably, in the absence of any additional treatment, the presence of PDA NPs alone led to a significant reduction in tumor volume by a factor of 1.66 after 22 days of tumor growth. Our findings highlight the potential of PDA NPs as a promising therapeutic approach for selectively targeting cancer by modulating copper levels and inducing oxidative stress, leading to tumor growth inhibition as shown in these triple-negative breast cancer models.


Assuntos
Cobre , Indóis , Nanopartículas , Polímeros , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas , Cobre/química , Cobre/farmacologia , Polímeros/química , Polímeros/farmacologia , Indóis/química , Indóis/farmacologia , Humanos , Animais , Camundongos , Nanopartículas/química , Feminino , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Oxirredução , Nanomedicina , Proliferação de Células/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Superóxido Dismutase-1/metabolismo
10.
Org Biomol Chem ; 22(24): 4987-4992, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38832875

RESUMO

Few synthetic ion transporters have been reported incorporating indole as the core moiety. We have developed a novel bisindole-based transporter capable of efficient transmembrane anion antiport. This system induced cytotoxicity in MCF-7 breast cancer cells via chloride ion homeostasis disruption and the associated ROS generation, mitochondrial membrane depolarization, and lysosomal deacidification.


Assuntos
Antineoplásicos , Indóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Transporte de Íons/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade
11.
Mol Med Rep ; 30(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38904207

RESUMO

Montelukast and zafirlukast, cysteinyl leukotriene receptor antagonists (LTRAs), trigger apoptosis and inhibit cell proliferation of triple­negative breast cancer MDA­MB­231 cells. By contrast, only zafirlukast induces G0/G1 cell cycle arrest. The present study compared the effects of these drugs on proteins regulating cell proliferation, apoptosis, autophagy, and endoplasmic reticulum (ER) and oxidative stress using reverse transcription­quantitative PCR, western blotting and flow cytometry. The expression of proliferating markers, Ki­67 and proliferating cell nuclear antigen, was decreased by both drugs. Zafirlukast, but not montelukast, decreased the expression of cyclin D1 and CDK4, disrupting progression from G1 to S phase. Zafirlukast also increased the expression of p27, a cell cycle inhibitor. Both drugs decreased the expression of anti­apoptotic protein Bcl­2 and ERK1/2 phosphorylation, and increased levels of the autophagy marker LC3­II and DNA damage markers, including cleaved PARP­1, phosphorylated (p)­ATM and p­histone H2AX. The number of caspase 3/7­positive cells was greater in montelukast­treated cells compared with zafirlukast­treated cells. Montelukast induced higher levels of the ER stress marker CHOP compared with zafirlukast. Montelukast activated PERK, activating transcription factor 6 (ATF6) and inositol­requiring enzyme type 1 (IRE1) pathways, while zafirlukast only stimulated ATF6 and IRE1 pathways. GSK2606414, a PERK inhibitor, decreased apoptosis mediated by montelukast, but did not affect zafirlukast­induced cell death. The knockdown of CHOP by small interfering RNA reduced apoptosis triggered by montelukast and zafirlukast. In conclusion, the effects on cell cycle regulator proteins may contribute to cell cycle arrest caused by zafirlukast. The greater apoptotic effects of montelukast may be caused by the higher levels of activated caspase enzymes and the activation of three pathways of ER stress: PERK, ATF6, and IRE1.


Assuntos
Acetatos , Apoptose , Autofagia , Ciclopropanos , Dano ao DNA , Estresse do Retículo Endoplasmático , Indóis , Quinolinas , Sulfetos , Sulfonamidas , Humanos , Sulfetos/farmacologia , Ciclopropanos/farmacologia , Quinolinas/farmacologia , Apoptose/efeitos dos fármacos , Acetatos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Linhagem Celular Tumoral , Autofagia/efeitos dos fármacos , Sulfonamidas/farmacologia , Indóis/farmacologia , Feminino , Dano ao DNA/efeitos dos fármacos , Fenilcarbamatos/farmacologia , Compostos de Tosil/farmacologia , Proliferação de Células/efeitos dos fármacos , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Ciclo Celular/efeitos dos fármacos , Antagonistas de Leucotrienos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
12.
PLoS One ; 19(6): e0303784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905286

RESUMO

Lung cancer, a relentless and challenging disease, demands unwavering attention in drug design research. Single-target drugs have yielded limited success, unable to effectively address this malignancy's profound heterogeneity and often developed resistance. Consequently, the clarion call for lung cancer drug design echoes louder than ever, and multitargeted drug design emerges as an imperative approach in this landscape, which is done by concurrently targeting multiple proteins and pathways and offering a beacon of hope. This study is focused on the multitargeted drug designing approach by identifying drug candidates against human cyclin-dependent kinase-2, SRC-2 domains of C-ABL, epidermal growth factor and receptor extracellular domains, and insulin-like growth factor-1 receptor kinase. We performed the multitargeted molecular docking studies of Drug Bank compounds using HTVS, SP and XP algorithms and poses filter with MM\GBSA against all proteins and identified DB02504, namely [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BCMIYPPA) as multitargeted lead with docking and MM\GBSA score range from -8.242 to -6.274 and -28.2 and -44.29 Kcal/mol, respectively. Further, the QikProp-based pharmacokinetic computations and QM-based DFT showed acceptance results against standard values, and interaction fingerprinting reveals that THR, MET, GLY, VAL, LEU, GLU and ASP were among the most interacting residues. The NPT ensemble-based 100ns MD simulation in a neutralised state with an SPC water model has also shown a stable performance and produced deviation and fluctuations <2Å with huge interactions, making it a promising multitargeted drug candidate-however, experimental studies are suggested.


Assuntos
Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Desenho de Fármacos , Indóis/química , Indóis/farmacologia , Indóis/farmacocinética , Teoria da Densidade Funcional
13.
PLoS One ; 19(6): e0304782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833447

RESUMO

PURPOSE: Pathological angiogenesis and vascular instability are observed in diabetic retinopathy (DR), diabetic macular edema (DME), and wet age-related macular degeneration (wAMD). Many receptor tyrosine kinases (RTKs) including vascular endothelial growth factor receptors (VEGFRs) contribute to angiogenesis, whereas the RTK TIE2 is important for vascular stability. Pan-VEGFR tyrosine kinase inhibitors (TKIs) such as vorolanib, sunitinib, and axitinib are of therapeutic interest over current antibody treatments that target only one or two ligands. This study compared the anti-angiogenic potential of these TKIs. METHODS: A kinase HotSpot™ assay was conducted to identify TKIs inhibiting RTKs associated with angiogenesis and vascular stability. Half-maximal inhibitory concentration (IC50) for VEGFRs and TIE2 was determined for each TKI. In vitro angiogenesis inhibition was investigated using a human umbilical vein endothelial cell sprouting assay, and in vivo angiogenesis was studied using the chorioallantoic membrane assay. Melanin binding was assessed using a melanin-binding assay. Computer modeling was conducted to understand the TIE2-axitinib complex as well as interactions between vorolanib and VEGFRs. RESULTS: Vorolanib, sunitinib, and axitinib inhibited RTKs of interest in angiogenesis and exhibited pan-VEGFR inhibition. HotSpot™ assay and TIE2 IC50 values showed that only axitinib potently inhibited TIE2 (up to 89%). All three TKIs effectively inhibited angiogenesis in vitro. In vivo, TKIs were more effective at inhibiting VEGF-induced angiogenesis than the anti-VEGF antibody bevacizumab. Of the three TKIs, only sunitinib bound melanin. TKIs differ in their classification and binding to VEGFRs, which is important because type II inhibitors have greater selectivity than type I TKIs. CONCLUSIONS: Vorolanib, sunitinib, and axitinib exhibited pan-VEGFR inhibition and inhibited RTKs associated with pathological angiogenesis. Of the three TKIs, only axitinib potently inhibited TIE2 which is an undesired trait as TIE2 is essential for vascular stability. The findings support the use of vorolanib for therapeutic inhibition of angiogenesis observed in DR, DME, and wAMD.


Assuntos
Inibidores da Angiogênese , Axitinibe , Células Endoteliais da Veia Umbilical Humana , Imidazóis , Indazóis , Indóis , Inibidores de Proteínas Quinases , Pirróis , Receptores de Fatores de Crescimento do Endotélio Vascular , Sunitinibe , Axitinibe/farmacologia , Humanos , Sunitinibe/farmacologia , Inibidores da Angiogênese/farmacologia , Imidazóis/farmacologia , Pirróis/farmacologia , Indóis/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Indazóis/farmacologia , Animais , Inibidores de Proteínas Quinases/farmacologia , Receptor TIE-2/metabolismo , Receptor TIE-2/antagonistas & inibidores , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo
14.
J Med Chem ; 67(11): 9227-9259, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38833507

RESUMO

The marine metabolite diazonamide A exerts low nanomolar cytotoxicity against a range of tumor cell lines; however, its highly complex molecular architecture undermines the therapeutic potential of the natural product. We demonstrate that truncation of heteroaromatic macrocycle in natural diazonamide A, combined with the replacement of the challenging-to-synthesize tetracyclic hemiaminal subunit by oxindole moiety leads to considerably less complex analogues with improved drug-like properties and nanomolar antiproliferative potency. The structurally simplified macrocycles are accessible in 12 steps from readily available indolin-2-one and tert-leucine with excellent diastereoselectivity (99:1 dr) in the key macrocyclization step. The most potent macrocycle acts as a tubulin assembly inhibitor and exerts similar effects on A2058 cell cycle progression and induction of apoptosis as does marketed microtubule-targeting agent vinorelbine.


Assuntos
Antineoplásicos , Apoptose , Microtúbulos , Moduladores de Tubulina , Humanos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/síntese química , Linhagem Celular Tumoral , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Estereoisomerismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis , Oxazóis
15.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892288

RESUMO

This study demonstrated the anticancer efficacy of chalcones with indole moiety (MIPP, MOMIPP) in fibrosarcoma cells for the first time. The results showed that MIPP and MOMIPP reduced the viability of HT-1080 cells in a concentration-dependent manner. MOMIPP was more active than MIPP in HT-1080 cells, showing lower IC50 values (3.67 vs. 29.90 µM). Both compounds at a concentration of 1 µM induced apoptosis in HT-1080 cells, causing death strictly related to caspase activation, as cell viability was restored when the caspase inhibitor Z-VAD was added. Reactive oxygen species production was approximately 3-fold higher than in control cells, and cotreatment with the inhibitor of mitochondrial ATPase oligomycin diminished this effect. Such effects were also reflected in mitochondrial dysfunction, including decreased membrane potential. Interestingly, the compounds that were studied caused massive vacuolization in HT-1080 cells. Immunocytochemical staining and TEM analysis showed that HT-1080 cells exhibited increased expression of the LC3-II protein and the presence of autophagosomes with a double membrane, respectively. Both compounds induced apoptosis, highlighting a promising link between autophagy and apoptosis. This connection could be a new target for therapeutic strategies to overcome chemoresistance, which is a significant cause of treatment failure and tumour recurrence in fibrosarcoma following traditional chemotherapy.


Assuntos
Apoptose , Autofagia , Chalconas , Fibrossarcoma , Indóis , Espécies Reativas de Oxigênio , Humanos , Apoptose/efeitos dos fármacos , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Autofagia/efeitos dos fármacos , Indóis/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Chalconas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
16.
Ecotoxicol Environ Saf ; 280: 116520, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833985

RESUMO

Early studies have shown that the gut microbiota is a critical target during cadmium exposure. The prebiotic activity of epigallocatechin-3-gallate (EGCG) plays an essential role in treating intestinal inflammation and damage. However, the exact intestinal barrier protection mechanism of EGCG against cadmium exposure remains unclear. In this experiment, four-week-old mice were exposed to cadmium (5 mg kg-1) for four weeks. Through 16 S rDNA analysis, we found that cadmium disrupted the gut microbiota and inhibited the indole metabolism pathway of tryptophan (TRP), which serves as the principal microbial production route for endogenous ligands to activate the aryl hydrocarbon receptor (AhR). Additionally, cadmium downregulated the intestinal AhR signaling pathway and harmed the intestinal barrier function. Treatment with EGCG (20 mg kg-1) and the AhR agonist 6-Formylindolo[3,2-b] carbazole (FICZ) (1 µg/d) significantly activated the AhR pathway and alleviated intestinal barrier injury. Notably, EGCG partially restored the gut microbiota and upregulated the TRP-indole metabolism pathway to increase the level of indole-related AhR agonists. Our findings demonstrate that cadmium dysregulates common gut microbiota to disrupt TRP metabolism, impairing the AhR signaling pathway and intestinal barrier. EGCG reduces cadmium-induced intestinal functional impairment by intervening in the intestinal microbiota to metabolize AhR agonists. This study offers insights into the toxic mechanisms of environmental cadmium and a potential mechanism to protect the intestinal barrier with EGCG.


Assuntos
Cádmio , Catequina , Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Triptofano , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Triptofano/metabolismo , Triptofano/análogos & derivados , Cádmio/toxicidade , Transdução de Sinais/efeitos dos fármacos , Masculino , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Indóis/farmacologia , Carbazóis/farmacologia
17.
Eur J Med Chem ; 274: 116538, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823264

RESUMO

DNA methyltransferase 1 (DNMT1) is the primary enzyme responsible for maintaining DNA methylation patterns during cellular division, crucial for cancer development by suppressing tumor suppressor genes. In this study, we retained the phthalimide structure of N-phthaloyl-l-tryptophan (RG108) and substituted its indole ring with nitrogen-containing aromatic rings of varying sizes. We synthesized 3-(9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acids and confirmed them as DNMT1 inhibitors through protein affinity testing, radiometric method using tritium labeled SAM, and MTT assay. Preliminary structure-activity relationship analysis revealed that introducing substituents on the carbazole ring could enhance inhibitory activity, with S-configuration isomers showing greater activity than R-configuration ones. Notably, S-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7r-S) and S-3-(1,3,6-trichloro-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7t-S) exhibited significant DNMT1 enzyme inhibition activity, with IC50 values of 8.147 µM and 0.777 µM, respectively (compared to RG108 with an IC50 above 250 µM). Moreover, they demonstrated potential anti-proliferative activity on various tumor cell lines including A2780, HeLa, K562, and SiHa. Transcriptome analysis and KEGG pathway enrichment of K562 cells treated with 7r-S and 7t-S identified differentially expressed genes (DEGs) related to apoptosis and cell cycle pathways. Flow cytometry assays further indicated that 7r-S and 7t-S induce apoptosis in K562 cells and arrest them in the G0/G1 phase in a concentration-dependent manner. Molecular docking revealed that 7t-S may bind to the methyl donor S-adenosyl-l-methionine (SAM) site in DNMT1 with an orientation opposite to RG108, suggesting potential for deeper penetration into the DNMT1 pocket and laying the groundwork for further modifications.


Assuntos
Carbazóis , Proliferação de Células , DNA (Citosina-5-)-Metiltransferase 1 , Inibidores Enzimáticos , Humanos , Relação Estrutura-Atividade , Carbazóis/farmacologia , Carbazóis/química , Carbazóis/síntese química , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Ftalimidas , Triptofano/análogos & derivados
18.
ACS Appl Bio Mater ; 7(6): 3731-3745, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38842103

RESUMO

Photosensitizing agents have received increased attention from the medical community, owing to their higher photothermal efficiency, induction of hyperthermia, and sustained delivery of bioactive molecules to their targets. Micro/nanorobots can be used as ideal photosensitizing agents by utilizing various physical stimuli for the targeted killing of pathogens (e.g., bacteria) and cancer cells. Herein, we report sunflower-pollen-inspired spiky zinc oxide (s-ZnO)-based nanorobots that effectively kill bacteria and cancer cells under near-infrared (NIR) light irradiation. The as-fabricated s-ZnO was modified with a catechol-containing photothermal agent, polydopamine (PDA), to improve its NIR-responsive properties, followed by the addition of antimicrobial (e.g., tetracycline/TCN) and anticancer (e.g., doxorubicin/DOX) drugs. The fabricated s-ZnO/PDA@Drug nanobots exhibited unique locomotory behavior with an average speed ranging from 13 to 14 µm/s under 2.0 W/cm2 NIR light irradiation. Moreover, the s-ZnO/PDA@TCN nanobots exhibited superior antibacterial activity against E. coli and S. epidermidis under NIR irradiation. The s-ZnO/PDA@DOX nanobots also displayed sufficient reactive oxygen species (ROS) amplification in B16F10 melanoma cells and induced apoptosis under NIR light, indicating their therapeutic efficacy. We hope the sunflower pollen-inspired s-ZnO nanorobots have tremendous potential in biomedical engineering from the phototherapy perspective, with the hope to reduce pathogen infections.


Assuntos
Antibacterianos , Antineoplásicos , Materiais Biocompatíveis , Ensaios de Seleção de Medicamentos Antitumorais , Helianthus , Tamanho da Partícula , Fármacos Fotossensibilizantes , Óxido de Zinco , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Helianthus/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Teste de Materiais , Testes de Sensibilidade Microbiana , Pólen/química , Escherichia coli/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Indóis/química , Indóis/farmacologia , Animais , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/química , Raios Infravermelhos
19.
Int J Nanomedicine ; 19: 6145-6160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911506

RESUMO

Background: Combination therapy offers superior therapeutic results compared to monotherapy. However, the outcomes of combination therapy often fall short of expectations, mainly because of increased toxicity from drug interactions and challenges in achieving the desired spatial and temporal distribution of drug delivery. Optimizing synergistic drug combination ratios to ensure uniform targeting and distribution across space and time, particularly in vivo, is a significant challenge. In this study, cRGD-coated liposomes encapsulating optimized synergistic cepharanthine (CEP; a chemotherapy drug) and IR783 (a phototherapy agent) were developed for combined chemotherapy and photothermal therapy in vitro and in vivo. Methods: An MTT assay was used to evaluate the combination index of CEP and IR783 in five cell lines. The cRGD-encapsulated liposomes were prepared via thin-film hydration, and unencapsulated liposomes served as controls for the loading of CEP and IR783. Fluorescence and photothermal imaging were used to assess the efficacy of CEP and IR783 encapsulated in liposomes at an optimal synergistic ratio, both in vitro and in vivo. Results: The combination indices of CEP and IR783 were determined in five cell lines. As a proof-of-concept, the optimal synergistic ratio (1:2) of CEP to IR783 in 4T1 cells was evaluated in vitro and in vivo. The average diameter of the liposomes was approximately 100 nm. The liposomes effectively retained the encapsulated CEP and IR783 in vitro at the optimal synergistic molar ratio for over 7 d. In vivo fluorescence imaging revealed that the fluorescence signal from cRGD-CEP-IR783-Lip was detectable at the tumor site at 4 h post-injection and peaked at 8 h. In vivo photothermal imaging of tumor-bearing mice indicated an increase in tumor temperature by 32°C within 200 s. Concurrently, cRGD-CEP-IR783-Lip demonstrated a significant therapeutic effect and robust biosafety in the in vivo antitumor experiments. Conclusion: The combination indices of CEP and IR783 were successfully determined in vitro in five cell lines. The cRGD-coated liposomes encapsulated CEP and IR783 at an optimal synergistic ratio, exhibiting enhanced antitumor effects and targeting upon application in vitro and in vivo. This study presents a novel concept and establishes a research framework for synergistic chemotherapy and phototherapy treatment.


Assuntos
Benzilisoquinolinas , Indóis , Lipossomos , Terapia Fototérmica , Lipossomos/química , Animais , Linhagem Celular Tumoral , Humanos , Feminino , Camundongos , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Indóis/administração & dosagem , Terapia Fototérmica/métodos , Benzilisoquinolinas/química , Benzilisoquinolinas/farmacocinética , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/administração & dosagem , Camundongos Endogâmicos BALB C , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Sinergismo Farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Terapia Combinada/métodos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Benzodioxóis
20.
An Acad Bras Cienc ; 96(3): e20230811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865509

RESUMO

Cancer is a complex and multifactorial disease characterized by uncontrolled cell growth and is one of the main causes of death in the world. This work aimed to evaluate a small series of 10 different indole-thiosemicarbazone compounds as potential antitumor agents. This is a pioneering study. For this, the antioxidant and cytotoxic capacity against normal and tumor cells was evaluated. The results showed that the compounds were able to promote moderate to low antioxidant activity for the ABTS radical scavenging assay. ADMET in silico assays showed that the compounds exhibited good oral bioavailability. As for toxicity, they were able to promote low cytotoxicity against normal cells, in addition to not being hemolytic. The compounds showed promising in vitro antitumor activity against the T47D, MCF-7, Jurkat and DU-145 strains, not being able to inhibit the growth of the Hepg2 strain. Through this in vitro study, it can be concluded that the compounds are potential candidates for antitumor agents.


Assuntos
Antineoplásicos , Antioxidantes , Indóis , Tiossemicarbazonas , Humanos , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacocinética , Indóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA