Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 613: 41-46, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35526487

RESUMO

Varicella-zoster virus (VZV) first infects hematopoietic cells, with the infected cells then acting to distribute the virus throughout the body. Sialic acid-binding immunoglobulin-like lectin (Siglec) family molecules recognize sialic acid-containing molecules on the same cell surface, called cis-ligands, or molecules on other cells or soluble agents, called trans-ligands. Among the Siglec family molecules, Siglec-4 and Siglec-7 mediate VZV infection through association with glycoprotein B (gB). As Siglec-7, but not Siglec-4, is expressed on hematopoietic cells such as monocytes, the regulatory mechanism by which Siglec-7 associates with gB is important to our understanding of VZV infection of blood cells. Here, we found that Siglec-7 is required for VZV to infect human primary monocytes. Furthermore, treatment of primary monocytes with sialidase enhanced both VZV gB binding to monocytes and VZV infectivity. Calcium influx in primary monocytes decreased the expression of Siglec-7 cis-ligands and increased VZV infectivity. These results demonstrate that the Siglec-7 cis-ligands present on primary monocytes play an important role in VZV infection through regulation of the interaction between gB and Siglec-7.


Assuntos
Antígenos de Diferenciação Mielomonocítica , Herpesvirus Humano 3 , Lectinas , Monócitos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Herpesvirus Humano 3/fisiologia , Humanos , Lectinas/metabolismo , Ligantes , Monócitos/virologia , Ácido N-Acetilneuramínico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Infecção pelo Vírus da Varicela-Zoster/metabolismo , Infecção pelo Vírus da Varicela-Zoster/virologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-34759019

RESUMO

BACKGROUND AND OBJECTIVES: Compared with stroke controls, patients with varicella zoster virus (VZV) vasculopathy have increased amyloid in CSF, along with increased amylin (islet amyloid polypeptide [IAPP]) and anti-VZV antibodies. Thus, we examined the gene expression profiles of VZV-infected primary human brain vascular adventitial fibroblasts (HBVAFs), one of the initial arterial cells infected in VZV vasculopathy, to determine whether they are a potential source of amyloid that can disrupt vasculature and potentiate inflammation. METHODS: Mock- and VZV-infected quiescent HBVAFs were harvested at 3 days postinfection. Targeted RNA sequencing of the whole-human transcriptome (BioSpyder Technologies, TempO-Seq) was conducted followed by gene set enrichment and pathway analysis. Selected pathways unique to VZV-infected cells were confirmed by enzyme-linked immunoassays, migration assays, and immunofluorescence analysis (IFA) that included antibodies against amylin and amyloid-beta, as well as amyloid staining by Thioflavin-T. RESULTS: Compared with mock, VZV-infected HBVAFs had significantly enriched gene expression pathways involved in vascular remodeling and vascular diseases; confirmatory studies showed secretion of matrix metalloproteinase-3 and -10, as well increased migration of infected cells and uninfected cells when exposed to conditioned media from VZV-infected cells. In addition, significantly enriched pathways involved in amyloid-associated diseases (diabetes mellitus, amyloidosis, and Alzheimer disease), tauopathy, and progressive neurologic disorder were identified; predicted upstream regulators included amyloid precursor protein, apolipoprotein E, microtubule-associated protein tau, presenilin 1, and IAPP. Confirmatory IFA showed that VZV-infected HBVAFs contained amyloidogenic peptides (amyloid-beta and amylin) and intracellular amyloid. DISCUSSION: Gene expression profiles and pathway enrichment analysis of VZV-infected HBVAFs, as well as phenotypic studies, reveal features of pathologic vascular remodeling (e.g., increased cell migration and changes in the extracellular matrix) that can contribute to cerebrovascular disease. Furthermore, the discovery of amyloid-associated transcriptional pathways and intracellular amyloid deposition in HBVAFs raise the possibility that VZV vasculopathy is an amyloid disease. Amyloid deposition may contribute to cell death and loss of vascular wall integrity, as well as potentiate chronic inflammation in VZV vasculopathy, with disease severity and recurrence determined by the host's ability to clear virus infection and amyloid deposition and by the coexistence of other amyloid-associated diseases (i.e., Alzheimer disease and diabetes mellitus).


Assuntos
Túnica Adventícia , Peptídeos beta-Amiloides/metabolismo , Transtornos Cerebrovasculares , Fibroblastos , Infecção pelo Vírus da Varicela-Zoster , Remodelação Vascular , Túnica Adventícia/citologia , Túnica Adventícia/metabolismo , Túnica Adventícia/patologia , Túnica Adventícia/virologia , Células Cultivadas , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/virologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Humanos , Análise de Sequência de RNA , Transcriptoma/fisiologia , Infecção pelo Vírus da Varicela-Zoster/metabolismo , Infecção pelo Vírus da Varicela-Zoster/patologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Remodelação Vascular/fisiologia
3.
J Virol ; 94(16)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32493818

RESUMO

The literature on the egress of different herpesviruses after secondary envelopment is contradictory. In this report, we investigated varicella-zoster virus (VZV) egress in a cell line from a child with Pompe disease, a glycogen storage disease caused by a defect in the enzyme required for glycogen digestion. In Pompe cells, both the late autophagy pathway and the mannose-6-phosphate receptor (M6PR) pathway are interrupted. We have postulated that intact autophagic flux is required for higher recoveries of VZV infectivity. To test that hypothesis, we infected Pompe cells and then assessed the VZV infectious cycle. We discovered that the infectious cycle in Pompe cells was remarkably different from that of either fibroblasts or melanoma cells. No large late endosomes filled with VZV particles were observed in Pompe cells; only individual viral particles in small vacuoles were seen. The distribution of the M6PR pathway (trans-Golgi network to late endosomes) was constrained in infected Pompe cells. When cells were analyzed with two different anti-M6PR antibodies, extensive colocalization of the major VZV glycoprotein gE (known to contain M6P residues) and the M6P receptor (M6PR) was documented in the viral highways at the surfaces of non-Pompe cells after maximum-intensity projection of confocal z-stacks, but neither gE nor the M6PR was seen in abundance at the surfaces of infected Pompe cells. Taken together, our results suggested that (i) Pompe cells lack a VZV trafficking pathway within M6PR-positive large endosomes and (ii) most infectious VZV particles in conventional cell substrates are transported via large M6PR-positive vacuoles without degradative xenophagy to the plasma membrane.IMPORTANCE The long-term goal of this research has been to determine why VZV, when grown in cultured cells, invariably is more cell associated and has a lower titer than other alphaherpesviruses, such as herpes simplex virus 1 (HSV1) or pseudorabies virus (PRV). Data from both HSV1 and PRV laboratories have identified a Rab6 secretory pathway for the transport of single enveloped viral particles from the trans-Golgi network within small vacuoles to the plasma membrane. In contrast, after secondary envelopment in fibroblasts or melanoma cells, multiple infectious VZV particles accumulated within large M6PR-positive late endosomes that were not degraded en route to the plasma membrane. We propose that this M6PR pathway is most utilized in VZV infection and least utilized in HSV1 infection, with PRV's usage being closer to HSV1's usage. Supportive data from other VZV, PRV, and HSV1 laboratories about evidence for two egress pathways are included.


Assuntos
Doença de Depósito de Glicogênio Tipo II/metabolismo , Herpesvirus Humano 3/metabolismo , Infecção pelo Vírus da Varicela-Zoster/fisiopatologia , Autofagia/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Varicela/virologia , Endossomos , Exocitose/fisiologia , Herpes Zoster/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 3/patogenicidade , Humanos , Macroautofagia/fisiologia , Receptor IGF Tipo 2/metabolismo , Vacúolos , Infecção pelo Vírus da Varicela-Zoster/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírion , Rede trans-Golgi/metabolismo
4.
J Cutan Pathol ; 47(1): 6-11, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31441947

RESUMO

BACKGROUND: While usually straightforward, diagnostic features of cutaneous herpes simplex virus and varicella zoster virus infection (HSV/VZV) are not always present in biopsy specimens. Although intuitively the presence of eosinophils may lead the pathologist away from the diagnosis of cutaneous HSV/VZV infection, in our practice we have noted that eosinophils are often encountered in diagnostic specimens. METHODS: To deduce the frequency with which the inflammatory response accompanying cutaneous HSV/VZV infection includes significant numbers of eosinophils, we performed a retrospective review. We included 159 specimens from our database, diagnosed between 2009 and 2017. We determined the number of eosinophils in 10 high-power fields and noted additional histologic factors including presence of follicular involvement, ulceration, and pseudolymphomatous change. RESULTS: Of all included cases, 63% had 0-1 eosinophils, 24% had 2-10 eosinophils, and 13% had more than 10 eosinophils. Statistical analysis did not reveal a significant association between any demographic or histologic features examined and the presence of increased eosinophils. CONCLUSIONS: In this study, more than one-third of biopsy specimens diagnostic of cutaneous HSV/VZV infection had a prominent number of eosinophils. The detection of eosinophils should not be unexpected and should not lessen diagnostic suspicion for cutaneous HSV/VZV infection.


Assuntos
Eosinófilos , Herpes Simples , Herpesvirus Humano 3/metabolismo , Simplexvirus/metabolismo , Pele , Infecção pelo Vírus da Varicela-Zoster , Adolescente , Adulto , Idoso , Biópsia , Criança , Pré-Escolar , Eosinófilos/metabolismo , Eosinófilos/patologia , Eosinófilos/virologia , Feminino , Herpes Simples/metabolismo , Herpes Simples/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Pele/metabolismo , Pele/patologia , Pele/virologia , Infecção pelo Vírus da Varicela-Zoster/metabolismo , Infecção pelo Vírus da Varicela-Zoster/patologia
5.
J Infect Dis ; 221(7): 1088-1097, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31665341

RESUMO

BACKGROUND: Herpes zoster is linked to amyloid-associated diseases, including dementia, macular degeneration, and diabetes mellitus, in epidemiological studies. Thus, we examined whether varicella-zoster virus (VZV)-infected cells produce amyloid. METHODS: Production of intracellular amyloidogenic proteins (amylin, amyloid precursor protein [APP], and amyloid-ß [Aß]) and amyloid, as well as extracellular amylin, Aß, and amyloid, was compared between mock- and VZV-infected quiescent primary human spinal astrocytes (qHA-sps). The ability of supernatant from infected cells to induce amylin or Aß42 aggregation was quantitated. Finally, the amyloidogenic activity of viral peptides was examined. RESULTS: VZV-infected qHA-sps, but not mock-infected qHA-sps, contained intracellular amylin, APP, and/or Aß, and amyloid. No differences in extracellular amylin, Aß40, or Aß42 were detected, yet only supernatant from VZV-infected cells induced amylin aggregation and, to a lesser extent, Aß42 aggregation into amyloid fibrils. VZV glycoprotein B (gB) peptides assembled into fibrils and catalyzed amylin and Aß42 aggregation. CONCLUSIONS: VZV-infected qHA-sps produced intracellular amyloid and their extracellular environment promoted aggregation of cellular peptides into amyloid fibrils that may be due, in part, to VZV gB peptides. These findings suggest that together with host and other environmental factors, VZV infection may increase the toxic amyloid burden and contribute to amyloid-associated disease progression.


Assuntos
Peptídeos beta-Amiloides , Astrócitos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Infecção pelo Vírus da Varicela-Zoster/metabolismo , Aciclovir/farmacologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Antivirais/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/virologia , Células Cultivadas , Espaço Extracelular/metabolismo , Humanos , Espaço Intracelular/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
6.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404793

RESUMO

Varicella-zoster virus (VZV) is associated with viremia during primary infection that is presumed to stem from infection of circulating immune cells. While VZV has been shown to be capable of infecting a number of different subsets of circulating immune cells, such as T cells, dendritic cells, and NK cells, less is known about the interaction between VZV and monocytes. Here, we demonstrate that blood-derived human monocytes are permissive to VZV replication in vitro VZV-infected monocytes exhibited each temporal class of VZV gene expression, as evidenced by immunofluorescent staining. VZV virions were observed on the cell surface and viral nucleocapsids were observed in the nucleus of VZV-infected monocytes by scanning electron microscopy. In addition, VZV-infected monocytes were able to transfer infectious virus to human fibroblasts. Infected monocytes displayed impaired dextran-mediated endocytosis, and cell surface immunophenotyping revealed the downregulation of CD14, HLA-DR, CD11b, and the macrophage colony-stimulating factor (M-CSF) receptor. Analysis of the impact of VZV infection on M-CSF-stimulated monocyte-to-macrophage differentiation demonstrated the loss of cell viability, indicating that VZV-infected monocytes were unable to differentiate into viable macrophages. In contrast, macrophages differentiated from monocytes prior to exposure to VZV were highly permissive to infection. This study defines the permissiveness of these myeloid cell types to productive VZV infection and identifies the functional impairment of VZV-infected monocytes.IMPORTANCE Primary VZV infection results in the widespread dissemination of the virus throughout the host. Viral transportation is known to be directly influenced by susceptible immune cells in the circulation. Moreover, infection of immune cells by VZV results in attenuation of the antiviral mechanisms used to control infection and limit spread. Here, we provide evidence that human monocytes, which are highly abundant in the circulation, are permissive to productive VZV infection. Furthermore, monocyte-derived macrophages were also highly permissive to VZV infection, although VZV-infected monocytes were unable to differentiate into macrophages. Exploring the relationships between VZV and permissive immune cells, such as human monocytes and macrophages, elucidates novel immune evasion strategies and provides further insight into the control that VZV has over the immune system.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Macrófagos/citologia , Monócitos/citologia , Infecção pelo Vírus da Varicela-Zoster/patologia , Vírion , Replicação Viral , Antígenos Virais/metabolismo , Sobrevivência Celular , Células Cultivadas , Endocitose , Fibroblastos/metabolismo , Fibroblastos/virologia , Herpesvirus Humano 3/isolamento & purificação , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Monócitos/metabolismo , Monócitos/virologia , Infecção pelo Vírus da Varicela-Zoster/metabolismo , Infecção pelo Vírus da Varicela-Zoster/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA