Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408544

RESUMO

Zika virus (ZIKV) infection was first associated with Central Nervous System (CNS) infections in Brazil in 2015, correlated with an increased number of newborns with microcephaly, which ended up characterizing the Congenital Zika Syndrome (CZS). Here, we investigated the impact of ZIKV infection on the functionality of iPSC-derived astrocytes. Besides, we extrapolated our findings to a Brazilian cohort of 136 CZS children and validated our results using a mouse model. Interestingly, ZIKV infection in neuroprogenitor cells compromises cell migration and causes apoptosis but does not interfere in astrocyte generation. Moreover, infected astrocytes lost their ability to uptake glutamate while expressing more glutamate transporters and secreted higher levels of IL-6. Besides, infected astrocytes secreted factors that impaired neuronal synaptogenesis. Since these biological endophenotypes were already related to Autism Spectrum Disorder (ASD), we extrapolated these results to a cohort of children, now 6-7 years old, and found seven children with ASD diagnosis (5.14 %). Additionally, mice infected by ZIKV revealed autistic-like behaviors, with a significant increase of IL-6 mRNA levels in the brain. Considering these evidence, we inferred that ZIKV infection during pregnancy might lead to synaptogenesis impairment and neuroinflammation, which could increase the risk for ASD.


Assuntos
Astrócitos , Transtorno do Espectro Autista , Doenças Neuroinflamatórias , Sinapses , Infecção por Zika virus , Zika virus , Infecção por Zika virus/patologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , Infecção por Zika virus/complicações , Transtorno do Espectro Autista/virologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/patologia , Humanos , Animais , Camundongos , Zika virus/fisiologia , Feminino , Criança , Sinapses/metabolismo , Sinapses/patologia , Doenças Neuroinflamatórias/virologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/etiologia , Astrócitos/virologia , Astrócitos/metabolismo , Astrócitos/patologia , Masculino , Interleucina-6/metabolismo , Interleucina-6/genética , Gravidez , Fatores de Risco , Células-Tronco Pluripotentes Induzidas/virologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Brasil/epidemiologia , Modelos Animais de Doenças , Neurogênese
2.
Exp Neurol ; 367: 114469, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37327963

RESUMO

Prenatal Zika virus (ZIKV) infection is a serious global concern as it can lead to brain injury and many serious birth defects, collectively known as congenital Zika syndrome. Brain injury likely results from viral mediated toxicity in neural progenitor cells. Additionally, postnatal ZIKV infections have been linked to neurological complications, yet the mechanisms driving these manifestations are not well understood. Existing data suggest that the ZIKV envelope protein can persist in the central nervous system for extended periods of time, but it is unknown if this protein can independently contribute to neuronal toxicity. Here we find that the ZIKV envelope protein is neurotoxic, leading to overexpression of poly adenosine diphosphate -ribose polymerase 1, which can induce parthanatos. Together, these data suggest that neuronal toxicity resulting from the envelope protein may contribute to the pathogenesis of post-natal ZIKV-related neurologic complications.


Assuntos
Lesões Encefálicas , Doenças do Sistema Nervoso , Síndromes Neurotóxicas , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Humanos , Zika virus/metabolismo , Infecção por Zika virus/complicações , Infecção por Zika virus/patologia , Proteínas do Envelope Viral/metabolismo , Neurônios/patologia
3.
Front Immunol ; 13: 826091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251006

RESUMO

Neural stem cells (NSCs) are multipotent stem cells that reside in the fetal and adult mammalian brain, which can self-renew and differentiate into neurons and supporting cells. Intrinsic and extrinsic cues, from cells in the local niche and from distant sites, stringently orchestrates the self-renewal and differentiation competence of NSCs. Ample evidence supports the important role of NSCs in neuroplasticity, aging, disease, and repair of the nervous system. Indeed, activation of NSCs or their transplantation into injured areas of the central nervous system can lead to regeneration in animal models. Viral invasion of NSCs can negatively affect neurogenesis and synaptogenesis, with consequent cell death, impairment of cell cycle progression, early differentiation, which cause neural progenitors depletion in the cortical layer of the brain. Herein, we will review the current understanding of Zika virus (ZIKV) infection of the fetal brain and the NSCs, which are the preferential population targeted by ZIKV. Furthermore, the potential neurotropic properties of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may cause direct neurological damage, will be discussed.


Assuntos
Encéfalo/virologia , COVID-19/patologia , COVID-19/virologia , Neurogênese/fisiologia , Neurônios/virologia , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Animais , Humanos , Células-Tronco Neurais/virologia
5.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215978

RESUMO

Zika virus (ZIKV) infection during pregnancy can result in a significant impact on the brain and eye of the developing fetus, termed congenital zika syndrome (CZS). At a morphological level, the main serious presentations of CZS are microcephaly and retinal scarring. At a cellular level, many cell types of the brain may be involved, but primarily neuronal progenitor cells (NPC) and developing neurons. Vav proteins have guanine exchange activity in converting GDP to GTP on proteins such as Rac1, Cdc42 and RhoA to stimulate intracellular signaling pathways. These signaling pathways are known to play important roles in maintaining the polarity and self-renewal of NPC pools by coordinating the formation of adherens junctions with cytoskeletal rearrangements. In developing neurons, these same pathways are adopted to control the formation and growth of neurites and mediate axonal guidance and targeting in the brain and retina. This review describes the role of Vavs in these processes and highlights the points of potential ZIKV interaction, such as (i) the binding and entry of ZIKV in cells via TAM receptors, which may activate Vav/Rac/RhoA signaling; (ii) the functional convergence of ZIKV NS2A with Vav in modulating adherens junctions; (iii) ZIKV NS4A/4B protein effects on PI3K/AKT in a regulatory loop via PPI3 to influence Vav/Rac1 signaling in neurite outgrowth; and (iv) the induction of SOCS1 and USP9X following ZIKV infection to regulate Vav protein degradation or activation, respectively, and impact Vav/Rac/RhoA signaling in NPC and neurons. Experiments to define these interactions will further our understanding of the molecular basis of CZS and potentially other developmental disorders stemming from in utero infections. Additionally, Vav/Rac/RhoA signaling pathways may present tractable targets for therapeutic intervention or molecular rationale for disease severity in CZS.


Assuntos
Encéfalo/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Infecção por Zika virus/patologia , Zika virus/fisiologia , Encéfalo/embriologia , Encéfalo/virologia , Proteínas de Ciclo Celular/metabolismo , Feminino , Humanos , Microcefalia/patologia , Microcefalia/virologia , Neurônios/patologia , Neurônios/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-vav/metabolismo , Infecção por Zika virus/genética , Infecção por Zika virus/virologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Sci Rep ; 11(1): 19635, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608212

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that causes febrile illness. The recent spread of ZIKV from Asia to the Americas via the Pacific region has revealed unprecedented features of ZIKV, including transplacental congenital infection causing microcephaly. Amino acid changes have been hypothesized to underlie the spread and novel features of American ZIKV strains; however, the relationship between genetic changes and the epidemic remains controversial. A comparison of the characteristics of a Southeast Asian strain (NIID123) and an American strain (PRVABC59) revealed that the latter had a higher replication ability in cultured cells and higher virulence in mice. In this study, we aimed to identify the genetic region of ZIKV responsible for these different characteristics using reverse genetics. A chimeric NIID123 strain in which the E protein was replaced with that of PRVABC59 showed a lower growth ability than the recombinant wild-type strain. Adaptation of the chimeric NIID123 to Vero cells induced a Phe-to-Leu amino acid substitution at position 146 of the prM protein; PRVABC59 also has Leu at this position. Leu at this position was found to be responsible for the viral replication ability and partially, for the pathogenicity in mouse testes.


Assuntos
Substituição de Aminoácidos , Interações Hospedeiro-Patógeno , Mutação , Proteínas do Envelope Viral/genética , Infecção por Zika virus/virologia , Zika virus/genética , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Genoma Viral , Genômica/métodos , Camundongos , Células Vero , Virulência , Replicação Viral , Zika virus/patogenicidade , Infecção por Zika virus/patologia
7.
RNA Biol ; 18(sup1): 478-495, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34382915

RESUMO

RNA contains a wide variety of posttranscriptional modifications covalently attached to its base or sugar group. These modified nucleosides are liberated from RNA molecules as the consequence of RNA catabolism and released into extracellular space, but the molecular mechanism of extracellular transport and its pathophysiological implications have been unclear. In the present study, we discovered that RNA-derived modified nucleosides are exported to extracellular space through equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2), with ENT1 showing higher preference for modified nucleosides than ENT2. Pharmacological inhibition or genetic deletion of ENT1 and ENT2 significantly attenuated export of modified nucleosides thereby resulting in their accumulation in cytosol. Using mutagenesis strategy, we identified an amino acid residue in ENT1 that is involved in the discrimination of unmodified and modified nucleosides. In ENTs-deficient cells, the elevated levels of intracellular modified nucleosides were closely associated with an induction of autophagy response as evidenced by increased LC3-II level. Importantly, we performed a screening of modified nucleosides capable of inducing autophagy and found that 1-methylguanosine (m1G) was sufficient to induce LC3-II levels. Pathophysiologically, defective export of modified nucleosides drastically induced Zika virus replication in an autophagy-dependent manner. In addition, we also found that pharmacological inhibition of ENTs by dilazep significantly induced Zika virus replication. Collectively, our findings highlight RNA-derived modified nucleosides as important signaling modulators that activate autophagy response and indicate that defective export of these modified nucleoside can have profound consequences for pathophysiology.


Assuntos
Autofagia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Nucleosídeos/metabolismo , RNA/metabolismo , Infecção por Zika virus/virologia , Zika virus/fisiologia , Transporte Ativo do Núcleo Celular , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 2 de Nucleosídeo/genética , Humanos , Nucleosídeos/química , Nucleosídeos/genética , RNA/genética , Células Tumorais Cultivadas , Replicação Viral , Infecção por Zika virus/genética , Infecção por Zika virus/patologia
8.
Viruses ; 13(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34452505

RESUMO

Viral infection is a global public health threat causing millions of deaths. A suitable small animal model is essential for viral pathogenesis and host response studies that could be used in antiviral and vaccine development. The tree shrew (Tupaia belangeri or Tupaia belangeri chinenesis), a squirrel-like non-primate small mammal in the Tupaiidae family, has been reported to be susceptible to important human viral pathogens, including hepatitis viruses (e.g., HBV, HCV), respiratory viruses (influenza viruses, SARS-CoV-2, human adenovirus B), arboviruses (Zika virus and dengue virus), and other viruses (e.g., herpes simplex virus, etc.). The pathogenesis of these viruses is not fully understood due to the lack of an economically feasible suitable small animal model mimicking natural infection of human diseases. The tree shrew model significantly contributes towards a better understanding of the infection and pathogenesis of these important human pathogens, highlighting its potential to be used as a viable viral infection model of human viruses. Therefore, in this review, we summarize updates regarding human viral infection in the tree shrew model, which highlights the potential of the tree shrew to be utilized for human viral infection and pathogenesis studies.


Assuntos
Modelos Animais de Doenças , Tupaia , Viroses , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/virologia , Animais , COVID-19/virologia , Dengue/imunologia , Dengue/patologia , Dengue/virologia , Infecções por HIV/virologia , Hepatite B/imunologia , Hepatite B/virologia , Hepatite C/imunologia , Hepatite C/patologia , Hepatite C/virologia , Herpes Simples/patologia , Herpes Simples/virologia , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
9.
Mol Biol Rep ; 48(7): 5379-5392, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34282543

RESUMO

Resveratrol (RES) is a polyphenol with increasing interest for its inhibitory effects on a wide variety of viruses. Zika virus (ZIKV) is an arbovirus which causes a broad spectrum of ophthalmological manifestations in humans. Currently there is no certified therapy or vaccine to treat it, thus it has become a major global health threat. Retinal pigment epithelium (RPE) is highly permissive and susceptible to ZIKV. This work explored the protective effects of RES on ZIKV-infected human RPE cells. RES treatment resulted in a significant reduction of infectious viral particles in infected male ARPE-19 and female hTERT-RPE1 cells. This protection was positively influenced by the action of RES on mitochondrial dynamics. Also, docking studies predicted that RES has a high affinity for two enzymes of the rate-limiting steps of pyrimidine and purine biosynthesis and viral polymerase. This evidence suggests that RES might be a potential antiviral agent to treat ZIKV-induced ocular abnormalities.


Assuntos
Antivirais/farmacologia , Resveratrol/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/virologia , Zika virus/efeitos dos fármacos , Antivirais/química , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Desenvolvimento de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Humanos , Ligantes , Dinâmica Mitocondrial/efeitos dos fármacos , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Resveratrol/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
10.
Nat Commun ; 12(1): 4051, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193875

RESUMO

Zika virus (ZIKV) has emerged as an important global health threat, with the recently acquired capacity to cause severe neurological symptoms and to persist within host tissues. We previously demonstrated that an early Asian lineage ZIKV isolate induces a highly activated CD8 T cell response specific for an immunodominant epitope in the ZIKV envelope protein in wild-type mice. Here we show that a contemporary ZIKV isolate from the Brazilian outbreak severely limits CD8 T cell immunity in mice and blocks generation of the immunodominant CD8 T cell response. This is associated with a more sustained infection that is cleared between 7- and 14-days post-infection. Mechanistically, we demonstrate that infection with the Brazilian ZIKV isolate reduces the cross-presentation capacity of dendritic cells and fails to fully activate the immunoproteasome. Thus, our study provides an isolate-specific mechanism of host immune evasion by one Brazilian ZIKV isolate, which differs from the early Asian lineage isolate and provides potential insight into viral persistence associated with recent ZIKV outbreaks.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos Imunodominantes/imunologia , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Apresentação de Antígeno , Brasil , Células Cultivadas , Chlorocebus aethiops , Modelos Animais de Doenças , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos C57BL , Zika virus/isolamento & purificação , Zika virus/patogenicidade , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
11.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206327

RESUMO

Discovery of compound 1 as a Zika virus (ZIKV) inhibitor has prompted us to investigate its 7H-pyrrolo[2,3-d]pyrimidine scaffold, revealing structural features that elicit antiviral activity. Furthermore, we have demonstrated that 9H-purine or 1H-pyrazolo[3,4-d]pyrimidine can serve as an alternative core structure. Overall, we have identified 4,7-disubstituted 7H-pyrrolo[2,3-d]pyrimidines and their analogs including compounds 1, 8 and 11 as promising antiviral agents against flaviviruses ZIKV and dengue virus (DENV). While the molecular target of these compounds is yet to be elucidated, 4,7-disubstituted 7H-pyrrolo[2,3-d]pyrimidines and their analogs are new chemotypes in the design of small molecules against flaviviruses, an important group of human pathogens.


Assuntos
Antivirais , Pirimidinas , Replicação Viral/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico , Zika virus/fisiologia , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Humanos , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
12.
J Immunol Res ; 2021: 5317662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327243

RESUMO

Zika virus (ZIKV) has attracted the wide global attention due to its causal link to microcephaly. In this study, two amino acid (aa) mutation (E143K and R3394K) were identified at the fourth generation (named ZKC2P4) during the serial passage of ZIKV-Asian lineage ZKC2/2016 strain in the newborn mouse brain, while another seven aa deletions in envelope (E) protein were detected in ZKC2P6. ZKC2P6 is a novel nonglycosylated E protein Asian ZIKV we first identified and provides the first direct supporting evidence that glycosylation motif could be lost during the passage in neonatal mice. To study the impact of E protein glycosylation ablation, we compared the pathogenicity of ZKC2P6 with that of ZKC2P4. The results showed that the loss of E protein glycosylation accelerated the disease progression, as evidenced by an earlier weight loss and death, a thinner cerebral cortex, and more serious tissue lesions and inflammation/necrosis. Furthermore, ZKC2P6 exhibited a greater ability to replicate and caused severer cell apoptosis than that of ZKC2P4. Therefore, the ablation of E glycosylation generally enhances the neurovirulence of ZIKV and cell apoptosis in newborn mice.


Assuntos
Córtex Cerebral/patologia , Proteínas do Envelope Viral/metabolismo , Infecção por Zika virus/imunologia , Zika virus/patogenicidade , Animais , Animais Recém-Nascidos , Apoptose , Linhagem Celular Tumoral , Córtex Cerebral/imunologia , Córtex Cerebral/virologia , Chlorocebus aethiops , Modelos Animais de Doenças , Progressão da Doença , Glicosilação , Humanos , Camundongos , Deleção de Sequência , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Replicação Viral/imunologia , Zika virus/genética , Zika virus/imunologia , Zika virus/metabolismo , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
13.
Front Immunol ; 12: 680246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093581

RESUMO

Congenital Zika virus (ZIKV) infection can induce fetal brain abnormalities. Here, we investigated whether maternal ZIKV infection affects placental physiology and metabolic transport potential and impacts the fetal outcome, regardless of viral presence in the fetus at term. Low (103 PFU-ZIKVPE243; low ZIKV) and high (5x107 PFU-ZIKVPE243; high ZIKV) virus titers were injected into immunocompetent (ICompetent C57BL/6) and immunocompromised (ICompromised A129) mice at gestational day (GD) 12.5 for tissue collection at GD18.5 (term). High ZIKV elicited fetal death rates of 66% and 100%, whereas low ZIKV induced fetal death rates of 0% and 60% in C57BL/6 and A129 dams, respectively. All surviving fetuses exhibited intrauterine growth restriction (IUGR) and decreased placental efficiency. High-ZIKV infection in C57BL/6 and A129 mice resulted in virus detection in maternal spleens and placenta, but only A129 fetuses presented virus RNA in the brain. Nevertheless, pregnancies in both strains produced fetuses with decreased head sizes (p<0.05). Low-ZIKV-A129 dams had higher IL-6 and CXCL1 levels (p<0.05), and their placentas showed increased CCL-2 and CXCL-1 contents (p<0.05). In contrast, low-ZIKV-C57BL/6 dams had an elevated CCL2 serum level and increased type I and II IFN expression in the placenta. Notably, less abundant microvilli and mitochondrial degeneration were evidenced in the placental labyrinth zone (Lz) of ICompromised and high-ZIKV-ICompetent mice but not in low-ZIKV-C57BL/6 mice. In addition, decreased placental expression of the drug transporters P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and the lipid transporter Abca1 was detected in all ZIKV-infected groups, but Bcrp and Abca1 were only reduced in ICompromised and high-ZIKV ICompetent mice. Our data indicate that gestational ZIKV infection triggers specific proinflammatory responses and affects placental turnover and transporter expression in a manner dependent on virus concentration and maternal immune status. Placental damage may impair proper fetal-maternal exchange function and fetal growth/survival, likely contributing to congenital Zika syndrome.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Placenta/ultraestrutura , Placenta/virologia , Complicações Infecciosas na Gravidez , Infecção por Zika virus/genética , Infecção por Zika virus/virologia , Zika virus/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose , Biomarcadores , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade , Hospedeiro Imunocomprometido , Imuno-Histoquímica , Masculino , Camundongos , Gravidez , Infecção por Zika virus/patologia
14.
Front Immunol ; 12: 644153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968035

RESUMO

During recent Zika epidemics, adults infected with Zika virus (ZIKV) have developed organ-specific inflammatory complications. The most serious Zika-associated inflammatory eye disease is uveitis, which is commonly anterior in type, affecting both eyes and responding to corticosteroid eye drops. Mechanisms of Zika-associated anterior uveitis are unknown, but ZIKV has been identified in the aqueous humor of affected individuals. The iris pigment epithelium is a target cell population in viral anterior uveitis, and it acts to maintain immune privilege within the anterior eye. Interactions between ZIKV and human iris pigment epithelial cells were investigated with infectivity assays and RNA-sequencing. Primary cell isolates were prepared from eyes of 20 cadaveric donors, and infected for 24 hours with PRVABC59 strain ZIKV or incubated uninfected as control. Cytoimmunofluorescence, RT-qPCR on total cellular RNA, and focus-forming assays of culture supernatant showed cell isolates were permissive to infection, and supported replication and release of infectious ZIKV. To explore molecular responses of cell isolates to ZIKV infection at the whole transcriptome level, RNA was sequenced on the Illumina NextSeq 500 platform, and results were aligned to the human GRCh38 genome. Multidimensional scaling showed clear separation between transcriptomes of infected and uninfected cell isolates. Differential expression analysis indicated a vigorous molecular response of the cell to ZIKV: 7,935 genes were differentially expressed between ZIKV-infected and uninfected cells (FDR < 0.05), and 99% of 613 genes that changed at least two-fold were up-regulated. Reactome and KEGG pathway and Gene Ontology enrichment analyses indicated strong activation of viral recognition and defense, in addition to biosynthesis processes. A CHAT network included 6275 molecular nodes and 24 contextual hubs in the cell response to ZIKV infection. Receptor-interacting serine/threonine kinase 1 (RIPK1) was the most significantly connected contextual hub. Correlation of gene expression with read counts assigned to the ZIKV genome identified a negative correlation between interferon signaling and viral load across isolates. This work represents the first investigation of mechanisms of Zika-associated anterior uveitis using an in vitro human cell model. The results suggest the iris pigment epithelium mounts a molecular response that limits intraocular pathology in most individuals.


Assuntos
Células Epiteliais , Regulação Viral da Expressão Gênica/imunologia , Epitélio Pigmentado Ocular , RNA Viral/imunologia , Infecção por Zika virus , Zika virus/imunologia , Células Cultivadas , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Genoma Viral/imunologia , Humanos , Iris/imunologia , Iris/patologia , Iris/virologia , Epitélio Pigmentado Ocular/imunologia , Epitélio Pigmentado Ocular/patologia , Epitélio Pigmentado Ocular/virologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/patologia
15.
PLoS Negl Trop Dis ; 15(5): e0009425, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34048439

RESUMO

Zika virus (ZIKV) infection of neurons leads to neurological complications and congenital malformations of the brain of neonates. To date, ZIKV mechanism of infection and pathogenesis is not entirely understood and different studies on gene regulation of ZIKV-infected cells have identified a dysregulation of inflammatory and stem cell maintenance pathways. MicroRNAs (miRNAs) are post-transcriptional regulators of cellular genes and they contribute to cell development in normal function and disease. Previous reports with integrative analyses of messenger RNAs (mRNAs) and miRNAs during ZIKV infection have not identified neurological pathway defects. We hypothesized that dysregulation of pathways involved in neurological functions will be identified by RNA profiling of ZIKV-infected fetal neurons. We therefore used microarrays to analyze gene expression levels following ZIKV infection of fetal murine neurons. We observed that the expression levels of transcription factors such as neural PAS domain protein 4 (Npas4) and of three members of the orphan nuclear receptor 4 (Nr4a) were severely decreased after viral infection. We confirmed that their downregulation was at both the mRNA level and at the protein level. The dysregulation of these transcription factors has been previously linked to aberrant neural functions and development. We next examined the miRNA expression profile in infected primary murine neurons by microarray and found that various miRNAs were dysregulated upon ZIKV infection. An integrative analysis of the differentially expressed miRNAs and mRNAs indicated that miR-7013-5p targets Nr4a3 gene. Using miRmimics, we corroborated that miR-7013-5p downregulates Nr4a3 mRNA and protein levels. Our data identify a profound dysregulation of neural transcription factors with an overexpression of miR-7013-5p that results in decreased Nr4a3 expression, likely a main contributor to ZIKV-induced neuronal dysfunction.


Assuntos
Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Regulação para Baixo , Embrião de Mamíferos/virologia , Perfilação da Expressão Gênica , Camundongos , MicroRNAs/genética , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/genética
16.
JAMA Netw Open ; 4(5): e219878, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33983398

RESUMO

Importance: The Zika virus infects progenitor neuron cells, disrupts cerebral development, and, in mice, drives hypothalamic defects. Patients with microcephaly caused by congenital Zika infection present with midline cerebral defects, which may result in hypopituitarism. Objective: To analyze postnatal growth and the presence of clinical and biochemical features associated with hypopituitarism in children with congenital Zika infections. Design, Setting, and Participants: In this prospective cohort study at 2 public referral hospitals in Bahia, Brazil, specializing in the treatment of congenital Zika infection, clinical data and growth parameters of 65 patients with the infection were evaluated. Data were analyzed from April 2017 through July 2018. Exposure: Congenital Zika infection. Main Outcomes and Measures: Length, weight, and head circumference were measured at birth and during follow up (ie, at 27 months of life) for each patient. Basal levels of free thyroxine, thyrotropin, cortisol, corticotropin, prolactin, insulin-like growth factor 1, insulin-like growth factor binding protein 3, urine and plasma osmolality, electrolytes, glucose, and insulin were evaluated at the age of 26 months to 28 months. All patients underwent central nervous system computed tomography scans and ophthalmic and otoacoustic evaluations at the time of this investigation or had done so previously. Results: Among 65 patients (38 [58.4%] male; median [interquartile range] age at enrollment, 27 [26-28] months), 61 patients presented with severe brain defects (93.8%), including corpus callosum agenesis or hypoplasia (ie, midline brain defects; 25 patients [38.5%]) and optic nerve atrophy (38 patients [58.5%]). Most patients presented with severe neurodevelopmental delay (62 of 64 patients [96.9%]). Past or present clinical signs of hypopituitarism were rare, occurring in 3 patients (4.6%). Severe microcephaly, compared with mild or moderate microcephaly, was associated with a shorter length by median (interquartile range) z score at birth (-1.9 [-2.5 to -1.0] vs -0.3 [-1.0 to 0]; P < .001), but this difference did not persist at 27 months (-1.6 [-2.3 to -0.3] vs -2.9 [-4.0 to -1.2]; P = .06). Growth hormone deficiency or hypothyroidism were not observed in any patients, and glucose and insulin levels were within reference ranges for all patients. Low cortisol levels (ie, below 3.9 µg/dL) were observed in 4 patients (6.2%). These 4 patients presented with low (ie, below 7.2 pg/mL) or inappropriately low (ie, below 30 pg/mL) corticotropin levels. Low corticotropin levels (ie, below 7.2 pg/mL) were observed in 6 patients (9.2%). Diabetes insipidus was evaluated in 21 patients; it was confirmed in 1 patient (4.8%) and suggested in 3 patients (14.3%). Conclusions and Relevance: This study found that congenital Zika infection with microcephaly was associated with midline brain defects and optic nerve atrophy. Children with congenital Zika infections presented with prenatal growth impairments with a lack of postnatal catch-up, as shown by persistent short length from birth until 27 months; these impairments were not associated with growth hormone deficiency. Patients also presented with severe developmental delay that was not associated with hypothyroidism, while central adrenal insufficiency and diabetes insipidus occurred in some patients.


Assuntos
Hipopituitarismo/virologia , Microcefalia/virologia , Infecção por Zika virus/complicações , Brasil , Pré-Escolar , Feminino , Humanos , Hipopituitarismo/diagnóstico , Hipopituitarismo/etiologia , Hipopituitarismo/patologia , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/etiologia , Microcefalia/patologia , Neuroimagem , Tomografia Computadorizada por Raios X , Infecção por Zika virus/diagnóstico por imagem , Infecção por Zika virus/patologia
17.
Nat Commun ; 12(1): 2766, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986255

RESUMO

The escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.


Assuntos
Proteínas do Capsídeo/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina/metabolismo , Zika virus/metabolismo , Células A549 , Aedes/virologia , Animais , Capsídeo/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Humanos , Mapas de Interação de Proteínas , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína com Valosina/genética , Replicação Viral/fisiologia , Zika virus/genética , Infecção por Zika virus/patologia
18.
Virology ; 560: 8-16, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34020329

RESUMO

Capsid-anchor (CA) of Zika virus (ZIKV) is a small, single-pass transmembrane sequence that separates the capsid (C) protein from downstream pre-membrane (PrM) protein. During polyprotein processing, CA is cleaved-off from C and PrM and left as a membrane-embedded peptide. CA plays an essential role in the assembly and maturation of the virus. However, its independent folding behavior is still unknown. Therefore, in this study, we investigated the amyloid-forming propensity of CA at physiological conditions. We observed the aggregation behavior of CA peptide using dye-binding assays and ThT kinetics. The morphological analysis of CA aggregates explored by high-resolution microscopy (TEM, AFM) and Far-UV CD spectroscopy revealed characteristic amyloid-like fibrils rich in ß-sheet secondary structure. Further, the effect on mammalian cells exhibited the cytotoxic nature of the CA amyloid-fibrils. Our findings collectively shed light on the amyloidogenic phenomenon of flaviviral protein, which may contribute to their infection.


Assuntos
Amiloide/química , Proteínas do Capsídeo/metabolismo , Agregados Proteicos/fisiologia , Infecção por Zika virus/patologia , Capsídeo/metabolismo , Simulação por Computador , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Ligação Proteica/fisiologia , Dobramento de Proteína , Proteínas do Envelope Viral/metabolismo , Zika virus/metabolismo
19.
Virology ; 560: 17-33, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34020328

RESUMO

Envelope phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtr) have been shown to mediate binding of enveloped viruses. However, commonly used PtdSer binding molecules such as Annexin V cannot block PtdSer-mediated viral infection. Lack of reagents that can conceal envelope PtdSer and PtdEtr and subsequently inhibit infection hinders elucidation of the roles of the envelope phospholipids in viral infection. Here, we developed sTIM1dMLDR801, a reagent capable of blocking PtdSer- and PtdEtr-dependent infection of enveloped viruses. Using sTIM1dMLDR801, we found that envelope PtdSer and/or PtdEtr can support ZIKV infection of not only human but also mosquito cells. In a mouse model for ZIKV infection, sTIM1dMLDR801 reduced ZIKV load in serum and the spleen, indicating envelope PtdSer and/or PtdEtr support in viral infection in vivo. sTIM1dMLDR801 will enable elucidation of the roles of envelope PtdSer and PtdEtr in infection of various virus species, thereby facilitating identification of their receptors and transmission mechanisms.


Assuntos
Antivirais/farmacologia , Fosfatidiletanolaminas/antagonistas & inibidores , Fosfatidilserinas/antagonistas & inibidores , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Células A549 , Animais , Linhagem Celular , Chlorocebus aethiops , Culicidae/virologia , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor de Interferon alfa e beta/genética , Células Vero , Envelope Viral/metabolismo , Carga Viral/efeitos dos fármacos , Zika virus/crescimento & desenvolvimento , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/patologia , Infecção por Zika virus/transmissão , Receptor Tirosina Quinase Axl
20.
Nat Microbiol ; 6(4): 455-466, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33510473

RESUMO

The most frequent fetal birth defect associated with prenatal Zika virus (ZIKV) infection is brain calcification, which in turn may potentially affect neurological development in infants. Understanding the mechanism could inform the development of potential therapies against prenatal ZIKV brain calcification. In perivascular cells, bone morphogenetic protein (BMP) is an osteogenic factor that undergoes maturation to activate osteogenesis and calcification. Here, we show that ZIKV infection of cultivated primary human brain pericytes triggers BMP2 maturation, leading to osteogenic gene expression and calcification. We observed extensive calcification near ZIKV+ pericytes of fetal human brain specimens and in vertically transmitted ZIKV+ human signal transducer and activator of transcription 2-knockin mouse pup brains. ZIKV infection of primary pericytes stimulated BMP2 maturation, inducing osteogenic gene expression and calcification that were completely blocked by anti-BMP2/4 neutralizing antibody. Not only did ZIKV NS3 expression alone induce BMP2 maturation, osteogenic gene expression and calcification, but purified NS3 protease also effectively cleaved pro-BMP2 in vitro to generate biologically active mature BMP2. These findings highlight ZIKV-induced calcification where the NS3 protease subverts the BMP2-mediated osteogenic signalling pathway to trigger brain calcification.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Encéfalo/patologia , Calcinose/patologia , Feto/patologia , Serina Endopeptidases/metabolismo , Proteínas Virais/metabolismo , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Proteína Morfogenética Óssea 2/metabolismo , Encéfalo/metabolismo , Encéfalo/virologia , Calcinose/metabolismo , Calcinose/virologia , Cálcio/metabolismo , Células Cultivadas , Feto/virologia , Humanos , Transmissão Vertical de Doenças Infecciosas , Camundongos , Camundongos Transgênicos , Osteogênese/genética , Pericitos , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Zika virus/enzimologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA