Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Int Immunopharmacol ; 113(Pt A): 109413, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461586

RESUMO

Excessive production of reactive oxygen species (ROS) leads to oxidative stress in host cells and affects the progress of disease. Mitochondria are an important source of ROS and their dysfunction is closely related to ROS production. S. uberis is a common causative agent of mastitis. The expression of key enzymes of the mitochondrial apoptotic pathway is increased in mammary epithelial cells after S. uberis stimulation, while expression of proteins related to mitochondrial function is decreased. Drp1, a key protein associated with mitochondrial function, is activated upon infection. Accompanied by mitochondria-cytosol translocation of Drp1, Fis1 expression is significantly upregulated while Mfn1 expression is downregulated implying that the balance of mitochondrial dynamics is disrupted. This leads to mitochondrial fragmentation, decreased mitochondrial membrane potential, higher levels of mROS and oxidative injury. The AMPK activator AICAR inhibits the increased phosphorylation of Drp1 and the translocation of Drp1 to mitochondria by salvaging mitochondrial function in an AMPK/Drp1 dependent manner, which has a similar effect to Drp1 inhibitor Mdivi-1. These data show that AMPK, as an upstream negative regulator of Drp1, ameliorates mitochondrial dysfunction induced by S. uberis infection.


Assuntos
Proteínas Quinases Ativadas por AMP , Dinaminas , Dinâmica Mitocondrial , Infecções Estreptocócicas , Streptococcus , Feminino , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio , Dinaminas/genética , Dinaminas/metabolismo , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/fisiopatologia , Animais , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo
2.
PLoS One ; 16(5): e0252200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038483

RESUMO

Streptococcus parauberis is an important bacterial fish pathogen that causes streptococcosis in a variety of fish species including the olive flounder. Despite its importance in the aquaculture industry, little is known about the survival strategy of S. parauberis in the host. Therefore, the objective of this study was to produce genome-wide transcriptome data and identify key factors for the survival of S. parauberis SPOF3K in its host. To this end, S. parauberis SPOF3K was incubated in olive flounder serum and nutrient-enriched media as a control. Although S. parauberis SPOF3K proliferated in both culture conditions, the transcriptomic patterns of the two groups were very different. Interestingly, the expression levels of genes responsible for the replication of an S. parauberis plasmid in the presence of olive flounder serum were higher than those in the absence of olive flounder serum, indicating that this plasmid may play an important role in the survival and proliferation of S. parauberis in the host. Several ATP-binding cassette transporters known to transport organic substrates (e.g., biotin and osmoprotectants) that are vital for bacterial survival in the host were significantly up-regulated in S. parauberis cultured in serum. In addition, groEL, dnaK operon, and members of the clp protease family, which are known to play important roles in response to various stressors, were up-regulated in S. parauberis incubated in serum, thus limiting damage and facilitating cellular recovery. Moreover, important virulence factors including the hyaluronic acid capsule (has operon), sortase A (srtA), C5a peptidase (scp), and peptidoglycan O-acetyltransferase (oatA) were significantly upregulated in S. paraubers in serum. These results indicate that S. paraubers can resist and evade the humoral immune responses of fish. The transcriptomic data obtained in this study provide a better understanding of the mode of action of S. parauberis in fish.


Assuntos
Streptococcus/genética , Adesinas Bacterianas/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , DNA Bacteriano/genética , Endopeptidases/metabolismo , Doenças dos Peixes/microbiologia , Linguado/microbiologia , Estudo de Associação Genômica Ampla , Ácido Hialurônico/metabolismo , Infecções Estreptocócicas/genética
3.
Cell Rep ; 34(9): 108766, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657368

RESUMO

Group A Streptococcus (GAS) causes diverse human diseases, including life-threatening soft-tissue infections. It is accepted that the human antimicrobial peptide LL-37 protects the host by killing GAS. Here, we show that GAS extracellular protease ScpC N-terminally cleaves LL-37 into two fragments of 8 and 29 amino acids, preserving its bactericidal activity. At sub-bactericidal concentrations, the cleavage inhibits LL-37-mediated neutrophil chemotaxis, shortens neutrophil lifespan, and eliminates P2X7 and EGF receptors' activation. Mutations at the LL-37 cleavage site protect the peptide from ScpC-mediated splitting, maintaining all its functions. The mouse LL-37 ortholog CRAMP is neither cleaved by ScpC nor does it activate P2X7 or EGF receptors. Treating wild-type or CRAMP-null mice with sub-bactericidal concentrations of the non-cleavable LL-37 analogs promotes GAS clearance that is abolished by the administration of either P2X7 or EGF receptor antagonists. We demonstrate that LL-37-mediated activation of host receptors is critical for defense against GAS soft-tissue infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Receptores ErbB/metabolismo , Neutrófilos/microbiologia , Receptores Purinérgicos P2X7/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/patogenicidade , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Catelicidinas/genética , Catelicidinas/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Especificidade por Substrato
4.
Eur Rev Med Pharmacol Sci ; 25(1): 480-486, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33506939

RESUMO

OBJECTIVE: The purpose of this paper is to contextualize the case of a patient with a synchronous diagnosis of colorectal cancer (CRC) and endocarditis from S. gallolyticus subsp. pasteuranus (former S. Bovis) within the current evidence, in order to determine if this condition is indicative of an underlying CRC and if it has any pathophysiologic significance. PATIENTS AND METHODS: First, we describe the clinical case. Then, we review the literature focused on the association between infections from the former S. Bovis group and CRC and on the possible role of certain microbiota species on the occurrence of CRC. At last, we discuss the implications of this case considering the current evidence. RESULTS: There is a strong association between all the species of the former S. Bovis group and CRC. There is initial evidence that these bacteria may contribute to CRC by a genomic passenger mechanism. CONCLUSIONS: There are two main conclusions for this paper. The first one is that CRC neoplasms and endocarditis from all species of the former S. bovis group have a strong association. Any case of infection by these subspecies should prompt to a diagnostic completion by colonoscopy. The second one is that there is an increased need for detailed reports/series and original articles based on the evaluation of gut microbiota in patients with CRC, with the aim to clarify if the association between bacteria and CRC is causative or sporadic and to better understand the possible causative mechanism of specific bacteria in initiating and promoting CRC.


Assuntos
Neoplasias Colorretais/genética , Endocardite/genética , Infecções Estreptocócicas/genética , Streptococcus gallolyticus/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/microbiologia , Endocardite/diagnóstico , Endocardite/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia
5.
Am J Reprod Immunol ; 85(5): e13363, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33098605

RESUMO

PROBLEM: Ascending placentitis is the leading cause of abortion in the horse. Interleukin (IL)-6 is considered predictive of placental infection in other species, but little is understood regarding its role in the pathophysiology of ascending placentitis. METHOD OF STUDY: Sub-acute ascending placentitis was induced via trans-cervical inoculation of S zooepidemicus, and various fluids/serum/tissues collected 8 days later. Concentrations of IL-6 were detected within fetal fluids and serum in inoculated (n = 6) and control (n = 6) mares. RNASeq was performed on the placenta (endometrium and chorioallantois) to assess transcripts relating to IL-6 pathways. IHC was performed for immunolocalization of IL-6 receptor (IL-6R) in the placenta. RESULTS: IL-6 concentrations increased in allantoic fluid following inoculation, with a trend toward an increase in amniotic fluid. Maternal serum IL-6 was increased in inoculated animals, while no changes were noted in fetal serum. mRNA expression of IL-6-related transcripts within the chorioallantois indicates that IL-6 is activating the classical JAK/STAT pathway, thereby acting as anti-inflammatory, anti-apoptotic, and pro-survival. The IL-6R was expressed within the chorioallantois, indicating a paracrine signaling pathway of maternal IL-6 to fetal IL-6R. CONCLUSION: IL-6 plays a crucial role in the placental response to induction of sub-acute equine ascending placentitis, and this could be noted in amniotic fluid, allantoic fluid, and maternal serum. Additionally, IL-6 is acting as anti-inflammatory in this disease, potentially altering disease progression, impeding abortion signals, and assisting with the production of a viable neonate.


Assuntos
Doenças dos Cavalos/imunologia , Interleucina-6/imunologia , Doenças Placentárias/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus equi , Líquido Amniótico/imunologia , Animais , Endométrio/imunologia , Feminino , Doenças dos Cavalos/sangue , Doenças dos Cavalos/genética , Cavalos , Interleucina-6/sangue , Interleucina-6/genética , Placenta/imunologia , Doenças Placentárias/sangue , Doenças Placentárias/genética , Doenças Placentárias/veterinária , Gravidez , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/imunologia , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/veterinária
6.
Fish Shellfish Immunol ; 106: 833-843, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32891790

RESUMO

Liver-expressed antimicrobial peptide-2 (LEAP-2) is a member of the antimicrobial peptides family. Research has demonstrated that LEAP-2 contains a number of cations and plays a key role in the innate immune system of organism. In this study, we cloned and identified TroLEAP-2, from the golden pompano (Trachinotus ovatus), and analyzed its functions in vivo and in vitro. Results showed that TroLEAP-2 contains a 321 bp open reading frame (ORF) that encodes 106 putative amino acids with a molecular weight of 11.65 kDa. The mature TroLEAP-2 peptide possesses four conserved cysteine residues, which can form a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 77 and Cys 88) and 2-4 (Cys 83 and Cys 93) positions. It has a high amino acid sequence similarity (38.68%-83.02%) with the liver-expressed antimicrobial peptide -2 of other teleosts. Phylogenetic analysis showed that TroLEAP-2 clustered with the LEAP-2 of Paralichthys olivaceus and Miichthy milluy. TroLEAP-2 was most abundantly expressed in the liver, spleen, and kidney, and was significantly upregulated during Edwardsiella tarda and Streptococcus agalactiae infection. Purified recombinant TroLEAP-2 (rTroLEAP-2) could significantly inhibit the in vitro growth of E. tarda and S. agalactiae. Overexpression of TroLEAP-2 in vivo was shown to significantly reduce E. tarda and S. agalactiae colonization of tissues, whereas its knockdown resulted in an increase of bacteria in fish tissues. We also saw that TroLEAP-2 overexpression significantly improved macrophage activation in vivo. Moreover, TroLEAP-2 can induce the expression of nonspecific immune-related genes. These results showed that it might play a significant role in the innate immune system of golden pompano. In conclusion, our results indicate that TroLEAP-2 plays an important role in antibacterial immunity and provides a new avenue for protection against pathogenic infections in golden pompano.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Peixes/imunologia , Peixes/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Edwardsiella tarda , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Peixes/genética , Peixes/microbiologia , Imunidade Inata/genética , Rim/imunologia , Fígado/imunologia , Baço/imunologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae
7.
EBioMedicine ; 58: 102908, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32707450

RESUMO

BACKGROUND: High-molecular-weight kininogen is a cofactor of the human contact system, an inflammatory response mechanism that is activated during sepsis. It has been shown that high-molecular-weight kininogen contributes to endotoxemia, but is not critical for local host defense during pneumonia by Gram-negative bacteria. However, some important pathogens, such as Streptococcus pyogenes, can cleave kininogen by contact system activation. Whether kininogen causally affects antibacterial host defense in S. pyogenes infection, remains unknown. METHODS: Kininogen concentration was determined in course plasma samples from septic patients. mRNA expression and degradation of kininogen was determined in liver or plasma of septic mice. Kininogen was depleted in mice by treatment with selective kininogen directed antisense oligonucleotides (ASOs) or a scrambled control ASO for 3 weeks prior to infection. 24 h after infection, infection parameters were determined. FINDINGS: Data from human and mice samples indicate that kininogen is a positive acute phase protein. Lower kininogen concentration in plasma correlate with a higher APACHE II score in septic patients. We show that ASO-mediated depletion of kininogen in mice indeed restrains streptococcal spreading, reduces levels of proinflammatory cytokines such as IL-1ß and IFNγ, but increased intravascular tissue factor and fibrin deposition in kidneys of septic animals. INTERPRETATION: Mechanistically, kininogen depletion results in reduced plasma kallikrein levels and, during sepsis, in increased intravascular tissue factor that may reinforce immunothrombosis, and thus reduce streptococcal spreading. These novel findings point to an anticoagulant and profibrinolytic role of kininogens during streptococcal sepsis. FUNDING: Full details are provided in the Acknowledgements section.


Assuntos
Bacteriemia/microbiologia , Cininogênios/sangue , Cininogênios/genética , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/patogenicidade , Animais , Bacteriemia/tratamento farmacológico , Bacteriemia/genética , Bacteriemia/metabolismo , Estudos de Casos e Controles , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Cininogênios/química , Fígado/metabolismo , Camundongos , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacologia , Proteólise , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/genética
8.
Fish Shellfish Immunol ; 104: 654-662, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32561456

RESUMO

In aquaculture, the incidence of enteritis due to Streptococcus iniae infection in Siberian sturgeon (Acipenser baerii) has increased in recent years. The pathogenesis of S. iniae is largely unknown due to the paucity of experimental studies on fish intestinal inflammation. In this study, S. iniae infection of A. baerii juveniles was induced by anal intubation of 0.15 mL at a low lethal dose (2 × 107 CFU/mL). Intestinal pathology and gene expression studies were conducted within 10 days of the experiment. Histopathological examination showed severe intestinal lesions, inflammatory cell infiltration, intestinal submucosa edema, epithelial cell shedding and necrosis. Predominant symptoms of exudative inflammation, metamorphic inflammation and proliferative inflammation on days 1-3, 4-6, and 7-10 post infection were shown, respectively. Ultrastructural observations also revealed fractured microvilli and shedding on days 4-6. Intestinal villi gradually repaired during the subsequent 7-10 days post infection. Expression of the pro-inflammatory cytokines, tumor necrosis factor and interleukin 1ß were up-regulated on days 1-3 followed by a significant decrease on day 5, ultimately reaching control levels on day 10 post infection. A similar pattern was shown in mucus cells, involving mucin secretion and expression of the mucin encoding gene, Mucin-2. These results showed the cellular response to S. iniae infection associated with inflammatory genes expression in the Siberian sturgeon.


Assuntos
Enterite/veterinária , Doenças dos Peixes/imunologia , Peixes , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia , Animais , Aquicultura , Enterite/genética , Enterite/imunologia , Enterite/microbiologia , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia
9.
J Innate Immun ; 12(4): 333-343, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31805552

RESUMO

Pathogenic microorganisms are sensed by the inflammasome, resulting in the release of the pro-immune and proinflammatory cytokine interleukin-1ß (IL-1ß). In humans, the paired sialic acid-binding Ig-like lectin receptors Siglec-5 (inhibitory) and Siglec-14 (activating) have been shown to have reciprocal roles in regulating macrophage immune responses, but their interaction with IL-1ß signaling and the inflammasome has not been characterized. Here we show that in response to known inflammasome activators (ATP, nigericin) or the sialic acid-expressing human bacterial pathogen group B Streptococcus (GBS), the presence of Siglec-14 enhances, whereas Siglec-5 reduces, inflammasome activation and macrophage IL-1ß release. Human THP-1 macrophages stably transfected with Siglec-14 exhibited increased caspase-1 activation, IL-1ß release and pyroptosis after GBS infection, in a manner blocked by a specific inhibitor of nucleotide-binding domain leucine-rich repeat protein 3 (NLRP3), a protein involved in inflammasome assembly. Another leading pathogen, Streptococcus pneumoniae, lacks sialic acid but rather prominently expresses a sialidase, which cleaves sialic acid from macrophages, eliminating cis- interactions with the lectin receptor, thus attenuating Siglec-14 induced IL-1ß secretion. Vimentin, a cytoskeletal protein released during macrophage inflammatory activation is known to induce the inflammasome. We found that vimentin has increased interaction with Siglec-14 compared to Siglec-5, and this interaction heightened IL-1ß production by Siglec-14-expressing cells. Siglec-14 is absent from some humans because of a SIGLEC5/14 fusion polymorphism, and we found increased IL-1ß expression in primary macrophages from SIGLEC14+/+ individuals compared to those with the SIGLEC14-/+ and SIGLEC14-/- genotypes. Collectively, our results identify a new immunoregulatory role of Siglec-14 as a positive regulator of NLRP3 inflammasome activation.


Assuntos
Inflamassomos/imunologia , Lectinas/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Receptores de Superfície Celular/imunologia , Humanos , Inflamassomos/genética , Lectinas/genética , Macrófagos/microbiologia , Macrófagos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores de Superfície Celular/genética , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/imunologia , Células THP-1
10.
J Innate Immun ; 12(4): 291-303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31743913

RESUMO

A prominent feature of severe streptococcal infections is the profound inflammatory response that contributes to systemic toxicity. In sepsis the dysregulated host response involves both immunological and nonimmunological pathways. Here, we report a fatal case of an immunocompetent healthy female presenting with toxic shock and purpura fulminans caused by group B streptococcus (GBS; serotype III, CC19). The strain (LUMC16) was pigmented and hyperhemolytic. Stimulation of human primary cells with hyperhemolytic LUMC16 and STSS/NF-HH strains and pigment toxin resulted in a release of proinflammatory mediators, including tumor necrosis factor, interleukin (IL)-1ß, and IL-6. In addition, LUMC16 induced blood clotting and showed factor XII activity on its surface, which was linked to the presence of the pigment. The expression of pigment was not linked to a mutation within the CovR/S region. In conclusion, our study shows that the hemolytic lipid toxin contributes to the ability of GBS to cause systemic hyperinflammation and interferes with the coagulation system.


Assuntos
Toxinas Bacterianas/toxicidade , Leucócitos/imunologia , Pigmentos Biológicos/toxicidade , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/patogenicidade , Trombose/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Hemólise/imunologia , Humanos , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Leucócitos/microbiologia , Leucócitos/patologia , Pigmentos Biológicos/genética , Pigmentos Biológicos/imunologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/genética , Trombose/genética , Trombose/microbiologia , Trombose/patologia
11.
Fish Shellfish Immunol ; 83: 373-385, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30227255

RESUMO

Interleukins are critical cytokines that are ubiquitously present in both vertebrates and invertebrates and constitute the front line of host innate immunity. Here, we identified and analyzed IL-12p40 from the Chinese sea bass Lateolabrax maculatus (LmIL-12p40). The LmIL-12p40 gene is expressed as a 1386-base pair transcript that encodes a polypeptide of 321 amino acids. Transcriptional expression analysis indicated that LmIL-12p40 mRNA was ubiquitously expressed in all tested tissues and had a comparatively high expression level in immune-associated tissues (head-kidney and intestines). Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) experiments showed that, after Vibro harveyi and Streptococus agalactiae infection, LmIL-12p40 mRNA expression was significantly up-regulated in the spleen, liver and head-kidney. To further clarify the immune function of LmIL-12p40 after bacterial challenge, the recombinant LmIL-12p40 protein was acquired using a prokaryotic expression method. Furthermore, the LmIL-12p40 dimer (LmIL-12p80) could be produced via protein-protein interactions by incubating p40 monomer expressed from the pET28a vector (pET28a-LmIL-12p40) with p40 monomer expressed from the pGEX4T-1 vector (pGEX4T-1-LmIL-12p40). The antimicrobial activity of the purified LmIL-12p40 and LmIL-12p80 proteins were further studied in vitro using a bacterial growth inhibition test (for both liquid and solid cultures) and in vivo (using a bacterial growth inhibition test with the head-kidney tissues). Furthermore, BL21 (DE3) E. coli cells transformed with the recombinant pET28a-LmIL-12p40 vector were dramatically protected in response to metal toxicity and H2O2-related oxidative stress. In summary, this study will provide foundational information regarding the role of LmIL-12p40 in defending against various biotic and abiotic stresses in fishes, which should help to further clarify the functional mechanism of interleukins.


Assuntos
Bass/fisiologia , Proteínas de Peixes/fisiologia , Subunidade p40 da Interleucina-12/fisiologia , Animais , Bactérias/crescimento & desenvolvimento , Movimento Celular , Escherichia coli/genética , Doenças dos Peixes/genética , Células HEK293 , Humanos , Peróxido de Hidrogênio/toxicidade , Metais Pesados/toxicidade , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/veterinária , Estresse Fisiológico , Vibrioses/genética , Vibrioses/veterinária
12.
Fish Shellfish Immunol ; 81: 297-303, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29964196

RESUMO

The peroxiredoxins (Prxs) belong to a novel and evolutionarily conserved superfamily, which can protect cells from oxidative damage caused by ROS and play a vital role in immune responses. In the present study, a 995 base pairs (bp) Prx1 cDNA sequence (LjPrx1) with an open reading frame of 594 bp, which encoding 197 amino acid polypeptides was obtained from L. japonicus. Transcriptional expression analysis indicated that the LjPrx1 mRNA was ubiquitously expressed in all tissues tested, while a comparatively high expression level was detected in head-kidney and blood. After the recombinant LjPrx1 protein was acquired using a prokaryotic expression method, the antioxidant activity was assessed by the catalyzing hydrogen peroxide assay method, and the results showed that the recombinant LjPrx1 possessed an antioxidant activity in a temperature-dependent manner. To further study the function roles of LjPrx1 related to biotic and abiotic stresses, the head-kidney and blood were chosen for the following experiments, and a positive correlation between the expression of LjPrx1 and the different stresses was detected using qRT-PCR. In conclusion, this study provides useful information about the role of the LjPrx1 gene in defense against a variety of toxic factors in L. japonicus, which would broaden our current knowledge of Prx1.


Assuntos
Proteínas de Peixes/genética , Peixes/genética , Peroxirredoxinas/genética , Estresse Fisiológico/genética , Animais , Doenças dos Peixes/genética , Proteínas de Peixes/sangue , Rim Cefálico/metabolismo , Peróxido de Hidrogênio/metabolismo , Metais Pesados/toxicidade , Peroxirredoxinas/sangue , RNA Mensageiro/metabolismo , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/veterinária , Vibrioses/genética , Vibrioses/veterinária
13.
Microb Pathog ; 118: 322-329, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29614370

RESUMO

The oligopeptide permease (Opp) cassette, an oligopeptide transport system belongs to the superfamily of ATP-binding cassette (ABC) transporter, is widely distributed in bacteria, including Streptococcus suis (S. suis). It is encoded by the opp operon containing oppA, oppB, oppC, oppD, and oppF. In addition to the uptake of peptide, the oppA gene also plays an important role in virulence of many pathogens. In this study, an oppA homologue from the highly virulent S. suis serotype 2 (S. suis 2) strain 05ZYH33 was identified. Flow cytometry and Western blot confirmed that OppA is a surface immunogenic protein and is expressed during S. suis 2 infection. To explore the role of oppA in S. suis 2 growth and pathogenicity, an isogenic 05ZYH33 mutant of oppA (△oppA) was obtained by homologous recombination. Although the complementary strain was not obtained due to the △oppA strain is not transformable, the current data revealed that deletion of the oppA gene in S. suis 2 has greatly affected its growth and virulence. Our data revealed that the growth rate is significantly slow for the △oppA. Adherence of the △oppA strain to human epithelial cells is greatly reduced comparing to the wild strain. Mouse infection experiment showed that inactivation of oppA greatly attenuated the high pathogenicity of S. suis 2. The observed results suggest that OppA is a surface-exposed protein and plays important roles in the growth and pathogenicity of S. suis 2.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Lipoproteínas/genética , Lipoproteínas/fisiologia , Streptococcus suis/genética , Streptococcus suis/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/fisiologia , Sequência de Aminoácidos , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/isolamento & purificação , Células Epiteliais/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Recombinação Homóloga , Humanos , Lipoproteínas/isolamento & purificação , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Óperon , Alinhamento de Sequência , Infecções Estreptocócicas/genética , Streptococcus suis/crescimento & desenvolvimento , Streptococcus suis/patogenicidade , Fatores de Virulência/isolamento & purificação
14.
PLoS Pathog ; 14(3): e1006969, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29579113

RESUMO

From an evolutionary point of view a pathogen might benefit from regulating the inflammatory response, both in order to facilitate establishment of colonization and to avoid life-threatening host manifestations, such as septic shock. In agreement with this notion Streptococcus pyogenes exploits type I IFN-signaling to limit detrimental inflammation in infected mice, but the host-pathogen interactions and mechanisms responsible for induction of the type I IFN response have remained unknown. Here we used a macrophage infection model and report that S. pyogenes induces anti-inflammatory IL-10 in an M protein-dependent manner, a function that was mapped to the B- and C-repeat regions of the M5 protein. Intriguingly, IL-10 was produced downstream of type I IFN-signaling, and production of type I IFN occurred via M protein-dependent activation of the STING signaling pathway. Activation of STING was independent of the cytosolic double stranded DNA sensor cGAS, and infection did not induce detectable release into the cytosol of either mitochondrial, nuclear or bacterial DNA-indicating DNA-independent activation of the STING pathway in S. pyogenes infected macrophages. These findings provide mechanistic insight concerning how S. pyogenes induces the type I IFN response and identify a previously unrecognized macrophage-modulating role for the streptococcal M protein that may contribute to curb the inflammatory response to infection.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Interações Hospedeiro-Patógeno , Interleucina-10/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/fisiologia , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Células Cultivadas , Imunidade Inata , Interferon Tipo I/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/genética , Transdução de Sinais , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia
15.
J Infect Dis ; 216(11): 1460-1470, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029143

RESUMO

Background: Rheumatic heart disease (RHD) after group A streptococcus (GAS) infections is heritable and prevalent in Indigenous populations. Molecular mimicry between human and GAS proteins triggers proinflammatory cardiac valve-reactive T cells. Methods: Genome-wide genetic analysis was undertaken in 1263 Aboriginal Australians (398 RHD cases; 865 controls). Single-nucleotide polymorphisms were genotyped using Illumina HumanCoreExome BeadChips. Direct typing and imputation was used to fine-map the human leukocyte antigen (HLA) region. Epitope binding affinities were mapped for human cross-reactive GAS proteins, including M5 and M6. Results: The strongest genetic association was intronic to HLA-DQA1 (rs9272622; P = 1.86 × 10-7). Conditional analyses showed rs9272622 and/or DQA1*AA16 account for the HLA signal. HLA-DQA1*0101_DQB1*0503 (odds ratio [OR], 1.44; 95% confidence interval [CI], 1.09-1.90; P = 9.56 × 10-3) and HLA-DQA1*0103_DQB1*0601 (OR, 1.27; 95% CI, 1.07-1.52; P = 7.15 × 10-3) were risk haplotypes; HLA_DQA1*0301-DQB1*0402 (OR 0.30, 95%CI 0.14-0.65, P = 2.36 × 10-3) was protective. Human myosin cross-reactive N-terminal and B repeat epitopes of GAS M5/M6 bind with higher affinity to DQA1/DQB1 alpha/beta dimers for the 2-risk haplotypes than the protective haplotype. Conclusions: Variation at HLA_DQA1-DQB1 is the major genetic risk factor for RHD in Aboriginal Australians studied here. Cross-reactive epitopes bind with higher affinity to alpha/beta dimers formed by risk haplotypes, supporting molecular mimicry as the key mechanism of RHD pathogenesis.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA/genética , Mimetismo Molecular , Cardiopatia Reumática/genética , Cardiopatia Reumática/imunologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Austrália , Proteínas da Membrana Bacteriana Externa/imunologia , Reações Cruzadas/imunologia , Epitopos/imunologia , Genótipo , Antígenos HLA/imunologia , Antígenos HLA-DQ/química , Antígenos HLA-DQ/classificação , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/imunologia , Cadeias alfa de HLA-DQ/química , Cadeias alfa de HLA-DQ/classificação , Cadeias alfa de HLA-DQ/genética , Cadeias alfa de HLA-DQ/imunologia , Haplótipos , Humanos , Miosinas/imunologia , Razão de Chances , Polimorfismo de Nucleotídeo Único/genética , Cardiopatia Reumática/microbiologia , Fatores de Risco , Streptococcus/patogenicidade
16.
Proc Natl Acad Sci U S A ; 114(40): E8498-E8507, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923955

RESUMO

Successful pathogens use complex signaling mechanisms to monitor their environment and reprogram global gene expression during specific stages of infection. Group A Streptococcus (GAS) is a major human pathogen that causes significant disease burden worldwide. A secreted cysteine protease known as streptococcal pyrogenic exotoxin B (SpeB) is a key virulence factor that is produced abundantly during infection and is critical for GAS pathogenesis. Although identified nearly a century ago, the molecular basis for growth phase control of speB gene expression remains unknown. We have discovered that GAS uses a previously unknown peptide-mediated intercellular signaling system to control SpeB production, alter global gene expression, and enhance virulence. GAS produces an eight-amino acid leaderless peptide [SpeB-inducing peptide (SIP)] during high cell density and uses the secreted peptide for cell-to-cell signaling to induce population-wide speB expression. The SIP signaling pathway includes peptide secretion, reimportation into the cytosol, and interaction with the intracellular global gene regulator Regulator of Protease B (RopB), resulting in SIP-dependent modulation of DNA binding and regulatory activity of RopB. Notably, SIP signaling causes differential expression of ∼14% of GAS core genes. Several genes that encode toxins and other virulence genes that enhance pathogen dissemination and infection are significantly up-regulated. Using three mouse infection models, we show that the SIP signaling pathway is active during infection and contributes significantly to GAS pathogenesis at multiple host anatomic sites. Together, our results delineate the molecular mechanisms involved in a previously undescribed virulence regulatory pathway of an important human pathogen and suggest new therapeutic strategies.


Assuntos
Proteínas de Bactérias/metabolismo , Exotoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/patogenicidade , Virulência , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Exotoxinas/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Homologia de Sequência , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/isolamento & purificação
17.
Food Funct ; 8(10): 3601-3609, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28891576

RESUMO

Group A streptococci (GAS) cause 20-30% of pediatric pharyngitis episodes, which are a major cause of ambulatory care visits. Therefore, a strategy to prevent GAS dissemination in children could significantly benefit public healthcare. Contextually, we assessed the possibility of employing alternative food-grade strategies to be used with the oral probiotic L. helveticus MIMLh5 for the prevention of pharyngeal infections. First, we demonstrated through an antagonism-by-exclusion assay that guaran may potentially prevent S. pyogenes adhesion on pharyngeal cells. Subsequently, we showed that an anthocyanin-rich fraction extracted from wild blueberry (BbE) exerts anti-inflammatory effects on the human macrophage cell line U937. Finally, we showed that BbE reduces interferon-ß expression in MIMLh5-stimulated murine dendritic cells, resulting in a reduction in the pro-inflammatory cytokines IL-12 and TNF-α. In conclusion, this proof-of-concept study indicates that different food-grade strategies may be concomitantly adopted to potentially prevent GAS colonization and modulate local immune defences.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Mirtilos Azuis (Planta)/química , Carboidratos/farmacologia , Faringite/prevenção & controle , Extratos Vegetais/farmacologia , Probióticos/farmacologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus pyogenes/efeitos dos fármacos , Antocianinas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos , Interleucina-12/genética , Interleucina-12/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Faringite/genética , Faringite/imunologia , Faringite/microbiologia , Faringe/imunologia , Faringe/microbiologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
18.
Fish Shellfish Immunol ; 68: 386-394, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28732765

RESUMO

Fetuin B (FETUB), a recently described cysteine proteinase inhibitor, has numerous conserved N-glycosylation sites, species-specific O-glycosylation sites, and two cystatin (CY) domains. FETUB is likely to play regulatory roles in acute inflammation, female infertility, fish organogenesis and tumor suppression. In the present study, transcript of turbot FETUB gene was captured, its protein structure and expression patterns in different tissues with emphasis on mucosal barriers following different bacterial infection were characterized. Turbot FETUB gene showed the closest relationship with Takifugu rubripes in phylogenetic analysis. In addition, FETUB was ubiquitously expressed in all examined tissues with the highest expression level in skin. Finally, FETUB gene showed different expression patterns following both bacterial challenge. The rapidly and significantly differential expression patterns of FETUB in mucosal surfaces against bacterial infections might indicate its key roles to prevent pathogen attachment and entry in turbot mucosal immunity. Functional studies should be carried out to further characterize the FETUB and avail utilization of its function to increase the disease resistance of turbot in maintaining the integrity of the mucosal barriers against infections and to facilitate selection of the fine family/varieties of disease resistance in turbot.


Assuntos
Fetuína-B/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Linguados , Regulação da Expressão Gênica/imunologia , Infecções Estreptocócicas/veterinária , Vibrioses/veterinária , Sequência de Aminoácidos , Animais , Fetuína-B/química , Fetuína-B/imunologia , Doenças dos Peixes/genética , Proteínas de Peixes/química , Proteínas de Peixes/imunologia , Linguados/classificação , Linguados/genética , Mucosa/imunologia , Filogenia , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Streptococcus iniae/fisiologia , Vibrio/fisiologia , Vibrioses/genética , Vibrioses/imunologia
19.
PLoS Pathog ; 13(7): e1006440, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704539

RESUMO

Streptococcus gallolyticus subsp. gallolyticus (Sg) has long been known to have a strong association with colorectal cancer (CRC). This knowledge has important clinical implications, and yet little is known about the role of Sg in the development of CRC. Here we demonstrate that Sg promotes human colon cancer cell proliferation in a manner that depends on cell context, bacterial growth phase and direct contact between bacteria and colon cancer cells. In addition, we observed increased level of ß-catenin, c-Myc and PCNA in colon cancer cells following incubation with Sg. Knockdown or inhibition of ß-catenin abolished the effect of Sg. Furthermore, mice administered with Sg had significantly more tumors, higher tumor burden and dysplasia grade, and increased cell proliferation and ß-catenin staining in colonic crypts compared to mice receiving control bacteria. Finally, we showed that Sg is present in the majority of CRC patients and is preferentially associated with tumor compared to normal tissues obtained from CRC patients. These results taken together establish for the first time a tumor-promoting role of Sg that involves specific bacterial and host factors and have important clinical implications.


Assuntos
Neoplasias Colorretais/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus gallolyticus subspecies gallolyticus/fisiologia , Animais , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Humanos , Camundongos , Transdução de Sinais , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/patologia , beta Catenina/genética , beta Catenina/metabolismo
20.
Fish Shellfish Immunol ; 66: 270-279, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28501446

RESUMO

Cathepsin F (CTSF) is a recently described papain-like cysteine protease and unique among cathepsins due to an elongated N-terminal pro-region, which contains a cystatin domain. CTSF likely plays a regulatory role in processing the invariant chain which is associated with the major histocompatibility complex (MHC) class II. In this regard, we identified the CTSF gene of turbot as well as its protein structure, phylogenetic relationships, and expression patterns in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge. We also determined the expression patterns of CTSF in mucosal tissues after vaccinated with the formalin-inactivated V. vulnificus whole-cell vaccine. Briefly, turbot CTSF gene showed the closest relationship with that of Paralichthys olivaceus in phylogenetic analysis. And CTSF was ubiquitously expressed in all tested tissues with the highest expression level in gill. In addition, CTSF gene showed different expression patterns following different bacterial challenge. The significant quick regulation of CTSF in mucosal surfaces against infection indicated its roles in mucosal immunity. Functional studies should further characterize avail utilization of CTSF function to increase the disease resistance of turbot in maintaining the integrity of the mucosal barriers against infection and to facilitate selection of the disease resistant family/strain in turbot.


Assuntos
Catepsina F/genética , Catepsina F/imunologia , Doenças dos Peixes/imunologia , Linguados , Imunidade nas Mucosas/genética , Infecções Estreptocócicas/veterinária , Vibrioses/veterinária , Sequência de Aminoácidos , Animais , Catepsina F/química , DNA Complementar/genética , DNA Complementar/metabolismo , Doenças dos Peixes/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Linguados/classificação , Linguados/genética , Linguados/imunologia , Conformação Molecular , Mucosa/imunologia , Filogenia , Estrutura Secundária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Streptococcus iniae/fisiologia , Vibrio/fisiologia , Vibrioses/genética , Vibrioses/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA