Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Virol ; 98(1): e0110223, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38169294

RESUMO

Mayaro virus (MAYV) is an emerging arbovirus member of the Togaviridae family and Alphavirus genus. MAYV infection causes an acute febrile illness accompanied by persistent polyarthralgia and myalgia. Understanding the mechanisms involved in arthritis caused by alphaviruses is necessary to develop specific therapies. In this work, we investigated the role of the CCL2/CCR2 axis in the pathogenesis of MAYV-induced disease. For this, wild-type (WT) C57BL/6J and CCR2-/- mice were infected with MAYV subcutaneously and evaluated for disease development. MAYV infection induced an acute inflammatory disease in WT mice. The immune response profile was characterized by an increase in the production of inflammatory mediators, such as IL-6, TNF, and CCL2. Higher levels of CCL2 at the local and systemic levels were followed by the significant recruitment of CCR2+ macrophages and a cellular response orchestrated by these cells. CCR2-/- mice showed an increase in CXCL-1 levels, followed by a replacement of the macrophage inflammatory infiltrate by neutrophils. Additionally, the absence of the CCR2 receptor protected mice from bone loss induced by MAYV. Accordingly, the silencing of CCL2 chemokine expression in vivo and the pharmacological blockade of CCR2 promoted a partial improvement in disease. Cell culture data support the mechanism underlying the bone pathology of MAYV, in which MAYV infection promotes a pro-osteoclastogenic microenvironment mediated by CCL2, IL-6, and TNF, which induces the migration and differentiation of osteoclast precursor cells. Overall, these data contribute to the understanding of the pathophysiology of MAYV infection and the identification future of specific therapeutic targets in MAYV-induced disease.IMPORTANCEThis work demonstrates the role of the CCL2/CCR2 axis in MAYV-induced disease. The infection of wild-type (WT) C57BL/6J and CCR2-/- mice was associated with high levels of CCL2, an important chemoattractant involved in the recruitment of macrophages, the main precursor of osteoclasts. In the absence of the CCR2 receptor, there is a mitigation of macrophage migration to the target organs of infection and protection of these mice against bone loss induced by MAYV infection. Much evidence has shown that host immune response factors contribute significantly to the tissue damage associated with alphavirus infections. Thus, this work highlights molecular and cellular targets involved in the pathogenesis of arthritis triggered by MAYV and identifies novel therapeutic possibilities directed to the host inflammatory response unleashed by MAYV.


Assuntos
Infecções por Alphavirus , Artrite , Quimiocina CCL2 , Receptores CCR2 , Animais , Camundongos , Alphavirus , Infecções por Alphavirus/imunologia , Artrite/imunologia , Artrite/virologia , Quimiocina CCL2/imunologia , Interleucina-6/imunologia , Camundongos Endogâmicos C57BL , Receptores CCR2/imunologia , Camundongos Knockout , Masculino , Doenças Ósseas/virologia
2.
J Virol ; 96(17): e0099922, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000846

RESUMO

Arthritogenic alphaviruses are mosquito-borne arboviruses that include several re-emerging human pathogens, including the chikungunya (CHIKV), Ross River (RRV), Mayaro (MAYV), and o'nyong-nyong (ONNV) virus. Arboviruses are transmitted via a mosquito bite to the skin. Herein, we describe intradermal RRV infection in a mouse model that replicates the arthritis and myositis seen in humans with Ross River virus disease (RRVD). We show that skin infection with RRV results in the recruitment of inflammatory monocytes and neutrophils, which together with dendritic cells migrate to draining lymph nodes (LN) of the skin. Neutrophils and monocytes are productively infected and traffic virus from the skin to LN. We show that viral envelope N-linked glycosylation is a key determinant of skin immune responses and disease severity. RRV grown in mammalian cells elicited robust early antiviral responses in the skin, while RRV grown in mosquito cells stimulated poorer early antiviral responses. We used glycan mass spectrometry to characterize the glycan profile of mosquito and mammalian cell-derived RRV, showing deglycosylation of the RRV E2 glycoprotein is associated with curtailed skin immune responses and reduced disease following intradermal infection. Altogether, our findings demonstrate skin infection with an arthritogenic alphavirus leads to musculoskeletal disease and envelope glycoprotein glycosylation shapes disease outcome. IMPORTANCE Arthritogenic alphaviruses are transmitted via mosquito bites through the skin, potentially causing debilitating diseases. Our understanding of how viral infection starts in the skin and how virus systemically disseminates to cause disease remains limited. Intradermal arbovirus infection described herein results in musculoskeletal pathology, which is dependent on viral envelope N-linked glycosylation. As such, intradermal infection route provides new insights into how arboviruses cause disease and could be extended to future investigations of skin immune responses following infection with other re-emerging arboviruses.


Assuntos
Infecções por Alphavirus , Artrite , Miosite , Polissacarídeos , Ross River virus , Pele , Infecções por Alphavirus/complicações , Infecções por Alphavirus/imunologia , Animais , Antivirais/imunologia , Artrite/complicações , Artrite/imunologia , Culicidae/virologia , Células Dendríticas , Modelos Animais de Doenças , Glicosilação , Humanos , Espectrometria de Massas , Camundongos , Monócitos , Miosite/complicações , Miosite/imunologia , Neutrófilos , Polissacarídeos/química , Polissacarídeos/imunologia , Ross River virus/imunologia , Pele/imunologia , Pele/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
3.
Virology ; 565: 13-21, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34626907

RESUMO

Eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV) and Venezuelan equine encephalitis virus (VEEV) can cause fatal encephalitis in humans and equids. Some MAbs to the E1 glycoprotein are known to be cross-reactive, weakly neutralizing in vitro but can protect from disease in animal models. We investigated the mechanism of neutralization of VEEV infection by the broadly cross-reactive E1-specific MAb 1A4B-6. 1A4B-6 protected 3-week-old Swiss Webster mice prophylactically from lethal VEEV challenge. Likewise, 1A4B-6 inhibited virus growth in vitro at a pre-attachment step after virions were incubated at 37 °C and inhibited virus-mediated cell fusion. Amino acid residue N100 in the fusion loop of E1 protein was identified as critical for binding. The potential to elicit broadly cross-reactive MAbs with limited virus neutralizing activity in vitro but that can inhibit virus entry and protect animals from infection merits further exploration for vaccine and therapeutic developmental research.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Encefalite Equina Venezuelana/imunologia , Vírus da Encefalite Equina Venezuelana/metabolismo , Encefalomielite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/virologia , Proteínas do Envelope Viral/imunologia , Replicação Viral/efeitos dos fármacos , Alphavirus/imunologia , Infecções por Alphavirus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas , Encefalomielite Equina Venezuelana/terapia , Glicoproteínas/imunologia , Imunoterapia , Camundongos , Ligação Proteica , Células Vero , Proteínas do Envelope Viral/metabolismo , Vírion/imunologia , Vírion/metabolismo
4.
Virology ; 561: 117-124, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33823988

RESUMO

There is a pressing need for vaccines against mosquito-borne alphaviruses such as Venezualen and eastern equine encephalitis viruses (VEEV, EEEV). We demonstrate an approach to vaccine development based on physicochemical properties (PCP) of amino acids to design a PCP-consensus sequence of the epitope-rich B domain of the VEEV major antigenic E2 protein. The consensus "spike" domain was incorporated into a live-attenuated VEEV vaccine candidate (ZPC/IRESv1). Mice inoculated with either ZPC/IRESv1 or the same virus containing the consensus E2 protein fragment (VEEVconE2) were protected against lethal challenge with VEEV strains ZPC-738 and 3908, and Mucambo virus (MUCV, related to VEEV), and had comparable neutralizing antibody titers against each virus. Both vaccines induced partial protection against Madariaga virus (MADV), a close relative of EEEV, lowering mortality from 60% to 20%. Thus PCP-consensus sequences can be integrated into a replicating virus that could, with further optimization, provide a broad-spectrum vaccine against encephalitic alphaviruses.


Assuntos
Infecções por Alphavirus/prevenção & controle , Alphavirus/imunologia , Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/prevenção & controle , Desenvolvimento de Vacinas , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Infecções por Alphavirus/imunologia , Aminoácidos/química , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vírus da Encefalite Equina do Leste/imunologia , Encefalomielite Equina do Leste/imunologia , Encefalomielite Equina do Leste/prevenção & controle , Encefalomielite Equina Venezuelana/imunologia , Feminino , Imunogenicidade da Vacina , Camundongos , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
5.
Science ; 371(6528)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33243852

RESUMO

Inflammasomes function as intracellular sensors of pathogen infection or cellular perturbation and thereby play a central role in numerous diseases. Given the high abundance of NLRP1 in epithelial barrier tissues, we screened a diverse panel of viruses for inflammasome activation in keratinocytes. We identified Semliki Forest virus (SFV), a positive-strand RNA virus, as a potent activator of human but not murine NLRP1B. SFV replication and the associated formation of double-stranded (ds) RNA was required to engage the NLRP1 inflammasome. Moreover, delivery of long dsRNA was sufficient to trigger activation. Biochemical studies revealed that NLRP1 binds dsRNA through its leucine-rich repeat domain, resulting in its NACHT domain gaining adenosine triphosphatase activity. Altogether, these results establish human NLRP1 as a direct sensor for dsRNA and thus RNA virus infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Inflamassomos/imunologia , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Infecções por Alphavirus/imunologia , Animais , Proteínas Reguladoras de Apoptose/química , Células HEK293 , Humanos , Hidrólise , Inflamassomos/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Queratinócitos/virologia , Camundongos , Camundongos Transgênicos , Proteínas NLR , Domínios Proteicos , Vírus da Floresta de Semliki/imunologia , Vírus da Floresta de Semliki/fisiologia , Replicação Viral
6.
Viruses ; 12(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147869

RESUMO

Emerging and re-emerging arthritogenic alphaviruses, such as Chikungunya virus (CHIKV) and O'nyong nyong virus, cause acute and chronic crippling arthralgia associated with inflammatory immune responses. Approximately 50% of CHIKV-infected patients suffer from rheumatic manifestations that last 6 months to years. However, the physiological functions of individual immune signaling pathways in the pathogenesis of alphaviral arthritis remain poorly understood. Here, we report that a deficiency in CXCL10, which is a chemoattractant for monocytes/macrophages/T cells, led to the same viremia as wild-type animals, but fewer immune infiltrates and lower viral loads in footpads at the peak of arthritic disease (6-8 days post infection). Macrophages constituted the largest immune cell population in footpads following infection, and were significantly reduced in Cxcl10-/- mice. The viral RNA loads in neutrophils and macrophages were reduced in Cxcl10-/- compared to wild-type mice. In summary, our results demonstrate that CXCL10 signaling promotes the pathogenesis of alphaviral disease and suggest that CXCL10 may be a therapeutic target for mitigating alphaviral arthritis.


Assuntos
Infecções por Alphavirus/imunologia , Alphavirus/patogenicidade , Artrite Infecciosa/imunologia , Quimiocina CXCL10/imunologia , Transdução de Sinais/imunologia , Alphavirus/genética , Infecções por Alphavirus/fisiopatologia , Animais , Artrite Infecciosa/virologia , Quimiocina CXCL10/genética , Modelos Animais de Doenças , Feminino , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/virologia , Carga Viral , Viremia/imunologia
7.
Dev Comp Immunol ; 111: 103746, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32445651

RESUMO

Interferon-induced proteins with tetratricopeptide repeats (IFITs) are involved in antiviral defense. Members of this protein family contain distinctive multiple structural motifs comprising tetratricopeptides that are tandemly arrayed or dispersed along the polypeptide. IFIT-encoding genes are upregulated by type I interferons (IFNs) and other stimuli. IFIT proteins inhibit virus replication by binding to and regulating the functions of cellular and viral RNA and proteins. In teleost fish, knowledge about genes and functions of IFITs is currently limited. In the present work, we describe an IFIT5 orthologue in Atlantic salmon (SsaIFIT5) with characteristic tetratricopeptide repeat motifs. We show here that the gene encoding SsaIFIT5 (SsaIfit5) was ubiquitously expressed in various salmon tissues, while bacterial and viral challenge of live fish and in vitro stimulation of cells with recombinant IFNs and pathogen mimics triggered its transcription. The profound expression in response to various immune stimulation could be ascribed to the identified IFN response elements and binding sites for various immune-relevant transcription factors in the putative promoter of the SsaIfit5 gene. Our results establish SsaIfit5 as an IFN-stimulated gene in A. salmon and strongly suggest a phylogenetically conserved role of the IFIT5 protein in antimicrobial responses in vertebrates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Infecções por Alphavirus/imunologia , Alphavirus/fisiologia , Proteínas de Peixes/genética , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/imunologia , Salmo salar/imunologia , Animais , Células Cultivadas , Clonagem Molecular , Regulação da Expressão Gênica , Imunidade Inata , Interferons , Proteínas de Neoplasias/genética , Moléculas com Motivos Associados a Patógenos/imunologia , Filogenia , RNA Viral/imunologia , Transcriptoma
8.
PLoS Pathog ; 16(5): e1008517, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32365139

RESUMO

Ross River fever is a mosquito-transmitted viral disease that is endemic to Australia and the surrounding Pacific Islands. Ross River virus (RRV) belongs to the arthritogenic group of alphaviruses, which largely cause disease characterized by debilitating polyarthritis, rash, and fever. There is no specific treatment or licensed vaccine available, and the mechanisms of protective humoral immunity in humans are poorly understood. Here, we describe naturally occurring human mAbs specific to RRV, isolated from subjects with a prior natural infection. These mAbs potently neutralize RRV infectivity in cell culture and block infection through multiple mechanisms, including prevention of viral attachment, entry, and fusion. Some of the most potently neutralizing mAbs inhibited binding of RRV to Mxra8, a recently discovered alpahvirus receptor. Epitope mapping studies identified the A and B domains of the RRV E2 protein as the major antigenic sites for the human neutralizing antibody response. In experiments in mice, these mAbs were protective against cinical disease and reduced viral burden in multiple tissues, suggesting a potential therapeutic use for humans.


Assuntos
Infecções por Alphavirus/prevenção & controle , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas do Capsídeo/imunologia , Epitopos/imunologia , Ross River virus/imunologia , Proteínas do Envelope Viral/imunologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/patologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Chlorocebus aethiops , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Células Vero
9.
Nat Immunol ; 20(12): 1610-1620, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740798

RESUMO

The initial response to viral infection is anticipatory, with host antiviral restriction factors and pathogen sensors constantly surveying the cell to rapidly mount an antiviral response through the synthesis and downstream activity of interferons. After pathogen clearance, the host's ability to resolve this antiviral response and return to homeostasis is critical. Here, we found that isoforms of the RNA-binding protein ZAP functioned as both a direct antiviral restriction factor and an interferon-resolution factor. The short isoform of ZAP bound to and mediated the degradation of several host interferon messenger RNAs, and thus acted as a negative feedback regulator of the interferon response. In contrast, the long isoform of ZAP had antiviral functions and did not regulate interferon. The two isoforms contained identical RNA-targeting domains, but differences in their intracellular localization modulated specificity for host versus viral RNA, which resulted in disparate effects on viral replication during the innate immune response.


Assuntos
Infecções por Alphavirus/imunologia , Interferons/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Repressoras/metabolismo , Sindbis virus/fisiologia , Infecções por Alphavirus/genética , Retroalimentação Fisiológica , Células HEK293 , Células Hep G2 , Homeostase , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , RNA/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Replicação Viral
10.
Elife ; 82019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31596239

RESUMO

The magnitude and duration of vertebrate viremia is a critical determinant of arbovirus transmission, geographic spread, and disease severity. We find that multiple alphaviruses, including chikungunya (CHIKV), Ross River (RRV), and o'nyong 'nyong (ONNV) viruses, are cleared from the circulation of mice by liver Kupffer cells, impeding viral dissemination. Clearance from the circulation was independent of natural antibodies or complement factor C3, and instead relied on scavenger receptor SR-A6 (MARCO). Remarkably, lysine to arginine substitutions at distinct residues within the E2 glycoproteins of CHIKV and ONNV (E2 K200R) as well as RRV (E2 K251R) allowed for escape from clearance and enhanced viremia and dissemination. Mutational analysis revealed that viral clearance from the circulation is strictly dependent on the presence of lysine at these positions. These findings reveal a previously unrecognized innate immune pathway that controls alphavirus viremia and dissemination in vertebrate hosts, ultimately influencing disease severity and likely transmission efficiency.


Assuntos
Infecções por Alphavirus/imunologia , Vírus Chikungunya/imunologia , Células de Kupffer/imunologia , Vírus O'nyong-nyong/imunologia , Receptores Imunológicos/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Animais , Modelos Animais de Doenças , Lisina/genética , Lisina/metabolismo , Camundongos , Mutação de Sentido Incorreto
11.
PLoS Pathog ; 15(9): e1007934, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479495

RESUMO

Mayaro virus (MAYV) is an arbovirus that circulates in Latin America and is emerging as a potential threat to public health. Infected individuals develop Mayaro fever, a severe inflammatory disease characterized by high fever, rash, arthralgia, myalgia and headache. The disease is often associated with a prolonged arthralgia mediated by a chronic inflammation that can last months. Although the immune response against other arboviruses, such as chikungunya virus (CHIKV), dengue virus (DENV) and Zika virus (ZIKV), has been extensively studied, little is known about the pathogenesis of MAYV infection. In this study, we established models of MAYV infection in macrophages and in mice and found that MAYV can replicate in bone marrow-derived macrophages and robustly induce expression of inflammasome proteins, such as NLRP3, ASC, AIM2, and Caspase-1 (CASP1). Infection performed in macrophages derived from Nlrp3-/-, Aim2-/-, Asc-/-and Casp1/11-/-mice indicate that the NLRP3, but not AIM2 inflammasome is essential for production of inflammatory cytokines, such as IL-1ß. We also determined that MAYV triggers NLRP3 inflammasome activation by inducing reactive oxygen species (ROS) and potassium efflux. In vivo infections performed in inflammasome-deficient mice indicate that NLRP3 is involved with footpad swelling, inflammation and pain, establishing a role of the NLRP3 inflammasome in the MAYV pathogenesis. Accordingly, we detected higher levels of caspase1-p20, IL-1ß and IL-18 in the serum of MAYV-infected patients as compared to healthy individuals, supporting the participation of the NLRP3-inflammasome during MAYV infection in humans.


Assuntos
Infecções por Alphavirus/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Adulto , Idoso , Infecções por Alphavirus/metabolismo , Animais , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Vírus Chikungunya/metabolismo , Vírus da Dengue/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamassomos/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Espécies Reativas de Oxigênio/metabolismo , Togaviridae/patogenicidade , Zika virus/metabolismo
12.
Infect Genet Evol ; 73: 390-400, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31173935

RESUMO

The Mayaro virus (MAYV) belongs to genus "Alphavirus" and family "Togaviridae". MAYV has distribution in the Amazonia, Central and Northeastern regions of Brazil. The abundance of mosquito vector Haemagogus janthinomys has major role in the outbreaks of arthralgia disease in Brazil. Vaccination or immunization is an alternative approach for the protection against this disease. To search the effective candidate for vaccine against Mayaro virus, various immunoinformatics tools were used to predict both the B and T cell epitopes from five structural polyproteins (capsid, E2, 6K, E3and E1). A multi subunit vaccine was designed and the final sequence was modeled for docking with TLR-3. Human b defensin based on previous studies was used as linker. The docked complexes of vaccine-TLR-3 were then subjected to dynamics stability and RMSD and RMSF results suggested that the complexes are stable. Further, to validate our final vaccine construct, in silico cloning was carried out using E. coli as host. The CAI value of 0.96 suggests that the vaccine construct properly expresses in the host. The current findings will be useful for the future experimental validations to ratify the immunogenicity and safety of the supposed structure of vaccine, and ultimately to treat the Mayaro virus, associated infections.


Assuntos
Infecções por Alphavirus/imunologia , Alphavirus/imunologia , Formação de Anticorpos/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Brasil , Biologia Computacional , Simulação por Computador , Escherichia coli/imunologia , Humanos , Modelos Moleculares , Poliproteínas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinologia/métodos
13.
J Clin Microbiol ; 57(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787146

RESUMO

Mayaro virus (MAYV) is a neglected arthropod-borne virus (arbovirus) antigenically clustered into the Semliki Forest complex group of Alphavirus genus (Togaviridae family), maintained in an unclear zoonotic cycle involving mosquitoes from Haemagogus genus as the main vector. The genome is composed of a positive single-stranded RNA of 11.5 kb in length, which contains two genes that encode four nonstructural (nsP1 to nsP4) and five structural (C, E3, E2, 6K, and E1) proteins. In the present study, we have developed an enzyme-linked immunosorbent assay (ELISA) using as antigen the recombinant envelope protein 2 of MAYV produced in an Escherichia coli system (rE2-MAYV ELISAs). A panel of 68 human serum samples from suspected arboviral cases was analyzed and titrated for anti-MAYV IgM and IgG antibody detection. The rE2-MAYV ELISA detected 33.8% (23/68) IgG-positive samples, demonstrating 100% sensitivity and 78.95% specificity compared to the MAYV-specific 50% plaque reduction neutralization assay. In addition, the positive MAYV-neutralizing samples showed high titers of detection by rE2-MAYV ELISA, suggesting a highly sensitive test. The rE2-MAYV ELISA also detected 42.5% (29/68) IgM-positive samples, of which 13.8% (4/29) presented high-avidity interactions with rE2-MAYV. Cross-reactivity was observed with Chikungunya virus (CHIKV)-specific murine antibody sample but not with CHIKV-specific human and other Alphavirus murine antibodies. In short, we have developed a rapid, simple, specific, and sensitive MAYV rE2-ELISA, and our preliminary results show its potential applicability to diagnosis of MAYV infections.


Assuntos
Infecções por Alphavirus/imunologia , Alphavirus/imunologia , Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas do Envelope Viral/imunologia , Animais , Afinidade de Anticorpos , Vírus Chikungunya/imunologia , Reações Cruzadas , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Testes Sorológicos , Proteínas do Envelope Viral/genética
14.
Virology ; 515: 250-260, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29324290

RESUMO

Mannose binding lectin (MBL) generally plays a protective role during viral infection, yet MBL-mediated complement activation promotes Ross River virus (RRV)-induced inflammatory tissue destruction, contributing to arthritis and myositis. As MBL binds to carbohydrates, we hypothesized that N-linked glycans on the RRV envelope glycoproteins act as ligands for MBL. Using a panel of RRV mutants lacking the envelope N-linked glycans, we found that MBL deposition onto infected cells was dependent on the E2 glycans. Moreover, the glycan-deficient viruses exhibited reduced disease and tissue damage in a mouse model of RRV-induced myositis compared to wild-type RRV, despite similar viral load and inflammatory infiltrates within the skeletal muscle. Instead, the reduced disease induced by glycan-deficient viruses was linked to decreased MBL deposition and complement activation within inflamed tissues. These results demonstrate that the viral N-linked glycans promote MBL deposition and complement activation onto RRV-infected cells, contributing to the development of RRV-induced myositis.


Assuntos
Infecções por Alphavirus/imunologia , Proteínas do Sistema Complemento/imunologia , Polissacarídeos/imunologia , Ross River virus/imunologia , Proteínas do Envelope Viral/imunologia , Infecções por Alphavirus/virologia , Animais , Ativação do Complemento , Modelos Animais de Doenças , Humanos , Lectina de Ligação a Manose/imunologia , Camundongos Endogâmicos C57BL , Polissacarídeos/química , Ross River virus/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
15.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321331

RESUMO

Sindbis virus (SINV) infection of neurons in the brain and spinal cord in mice provides a model system for investigating recovery from encephalomyelitis and antibody-mediated clearance of virus from the central nervous system (CNS). To determine the roles of IgM and IgG in recovery, we compared the responses of immunoglobulin-deficient activation-induced adenosine deaminase-deficient (AID-/-), secretory IgM-deficient (sIgM-/-), and AID-/- sIgM-/- double-knockout (DKO) mice with those of wild-type (WT) C57BL/6 mice for disease, clearance of infectious virus and viral RNA from brain and spinal cord, antibody responses, and B cell infiltration into the CNS. Because AID is essential for immunoglobulin class switch recombination and somatic hypermutation, AID-/- mice produce only germ line IgM, while sIgM-/- mice secrete IgG but no IgM and DKO mice produce no secreted immunoglobulin. After intracerebral infection with the TE strain of SINV, most mice recovered. Development of neurologic disease occurred slightly later in sIgM-/- mice, but disease severity, weight loss, and survival were similar between the groups. AID-/- mice produced high levels of SINV-specific IgM, while sIgM-/- mice produced no IgM and high levels of IgG2a compared to WT mice. All mice cleared infectious virus from the spinal cord, but DKO mice failed to clear infectious virus from brain and had higher levels of viral RNA in the CNS late after infection. The numbers of infected cells and the amount of cell death in brain were comparable. We conclude that antibody is required and that either germ line IgM or IgG is sufficient for clearance of virus from the CNS.IMPORTANCE Mosquito-borne alphaviruses that infect neurons can cause fatal encephalomyelitis. Recovery requires a mechanism for the immune system to clear virus from infected neurons without harming the infected cells. Antiviral antibody has previously been shown to be a noncytolytic means for alphavirus clearance. Antibody-secreting cells enter the nervous system after infection and produce antiviral IgM before IgG. Clinical studies of human viral encephalomyelitis suggest that prompt production of IgM is associated with recovery, but it was not known whether IgM is effective for clearance. Our studies used mice deficient in production of IgM, IgG, or both to characterize the antibody necessary for alphavirus clearance. All mice developed similar signs of neurologic disease and recovered from infection. Antibody was necessary for virus clearance from the brain, and either early germ line IgM or IgG was sufficient. These studies support the clinical observation that prompt production of antiviral antibody is a determinant of outcome.


Assuntos
Infecções por Alphavirus/imunologia , Anticorpos Antivirais/imunologia , Encéfalo/imunologia , Infecções do Sistema Nervoso Central/imunologia , Imunoglobulina M/imunologia , Sindbis virus/imunologia , Infecções por Alphavirus/genética , Infecções por Alphavirus/patologia , Animais , Anticorpos Antivirais/genética , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular , Infecções do Sistema Nervoso Central/genética , Infecções do Sistema Nervoso Central/patologia , Cricetinae , Citidina Desaminase/deficiência , Feminino , Imunoglobulina M/genética , Camundongos , Camundongos Knockout , Sindbis virus/genética
16.
PLoS Pathog ; 13(12): e1006748, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29244871

RESUMO

Chikungunya virus (CHIKV) and Ross River virus (RRV) are mosquito-transmitted alphaviruses that cause debilitating acute and chronic musculoskeletal disease. Monocytes are implicated in the pathogenesis of these infections; however, their specific roles are not well defined. To investigate the role of inflammatory Ly6ChiCCR2+ monocytes in alphavirus pathogenesis, we used CCR2-DTR transgenic mice, enabling depletion of these cells by administration of diptheria toxin (DT). DT-treated CCR2-DTR mice displayed more severe disease following CHIKV and RRV infection and had fewer Ly6Chi monocytes and NK cells in circulation and muscle tissue compared with DT-treated WT mice. Furthermore, depletion of CCR2+ or Gr1+ cells, but not NK cells or neutrophils alone, restored virulence and increased viral loads in mice infected with an RRV strain encoding attenuating mutations in nsP1 to levels detected in monocyte-depleted mice infected with fully virulent RRV. Disease severity and viral loads also were increased in DT-treated CCR2-DTR+;Rag1-/- mice infected with the nsP1 mutant virus, confirming that these effects are independent of adaptive immunity. Monocytes and macrophages sorted from muscle tissue of RRV-infected mice were viral RNA positive and had elevated expression of Irf7, and co-culture of Ly6Chi monocytes with RRV-infected cells resulted in induction of type I IFN gene expression in monocytes that was Irf3;Irf7 and Mavs-dependent. Consistent with these data, viral loads of the attenuated nsP1 mutant virus were equivalent to those of WT RRV in Mavs-/- mice. Finally, reconstitution of Irf3-/-;Irf7-/- mice with CCR2-DTR bone marrow rescued mice from severe infection, and this effect was reversed by depletion of CCR2+ cells, indicating that CCR2+ hematopoietic cells are capable of inducing an antiviral response. Collectively, these data suggest that MAVS-dependent production of type I IFN by monocytes is critical for control of acute alphavirus infection and that determinants in nsP1, the viral RNA capping protein, counteract this response.


Assuntos
Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Monócitos/imunologia , Monócitos/virologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Antígenos Ly/metabolismo , Vírus Chikungunya/imunologia , Vírus Chikungunya/patogenicidade , Toxina Diftérica/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/imunologia , Humanos , Inflamação/virologia , Fator Regulador 3 de Interferon/deficiência , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 7 de Interferon/deficiência , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/efeitos dos fármacos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Ross River virus/genética , Ross River virus/imunologia , Ross River virus/patogenicidade , Carga Viral , Virulência/genética , Virulência/imunologia
17.
J Fish Dis ; 40(11): 1529-1544, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28429853

RESUMO

The RIG-I receptors RIG-I, MDA5 and LGP2 are involved in viral recognition, and they have different ligand specificity and recognize different viruses. Activation of RIG-I-like receptors (RLRs) leads to production of cytokines essential for antiviral immunity. In fish, most research has focused on interferons, and less is known about the production of proinflammatory cytokines during viral infections. In this study, we have cloned the full-length MDA5 sequence in Atlantic salmon, and compared it with RIG-I and LGP2. Further, the salmonid cell line TO was infected with three fish pathogenic viruses, infectious pancreatic necrosis virus (IPNV), infectious salmon anaemia virus (ISAV) and salmonid alphavirus (SAV), and differential gene expression (DEG) analyses of RLRs, interferons (IFNa-d) and proinflammatory cytokines (TNF-α1, TNF-α2, IL-1ß, IL-6, IL-12 p40s) were performed. The DEG analyses showed that the responses of proinflammatory cytokines in TO cells infected with IPNV and ISAV were profoundly different from SAV-infected cells. In the two aforementioned, TNF-α1 and TNF-α2 were highly upregulated, while in SAV-infected cells these cytokines were downregulated. Knowledge of virus recognition by the host and the immune responses during infection may help elucidate why and how some viruses can escape the immune system. Such knowledge is useful for the development of immune prophylactic measures.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Salmo salar , Alphavirus/fisiologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/veterinária , Animais , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Vírus da Necrose Pancreática Infecciosa/fisiologia , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Isavirus/fisiologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Filogenia
18.
J Virol ; 90(19): 8780-94, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440901

RESUMO

UNLABELLED: Host cells respond to viral infections by producing type I interferon (IFN), which induces the expression of hundreds of interferon-stimulated genes (ISGs). Although ISGs mediate a protective state against many pathogens, the antiviral functions of the majority of these genes have not been identified. IFITM3 is a small transmembrane ISG that restricts a broad range of viruses, including orthomyxoviruses, flaviviruses, filoviruses, and coronaviruses. Here, we show that alphavirus infection is increased in Ifitm3(-/-) and Ifitm locus deletion (Ifitm-del) fibroblasts and, reciprocally, reduced in fibroblasts transcomplemented with Ifitm3. Mechanistic studies showed that Ifitm3 did not affect viral binding or entry but inhibited pH-dependent fusion. In a murine model of chikungunya virus arthritis, Ifitm3(-/-) mice sustained greater joint swelling in the ipsilateral ankle at days 3 and 7 postinfection, and this correlated with higher levels of proinflammatory cytokines and viral burden. Flow cytometric analysis suggested that Ifitm3(-/-) macrophages from the spleen were infected at greater levels than observed in wild-type (WT) mice, results that were supported by experiments with Ifitm3(-/-) bone marrow-derived macrophages. Ifitm3(-/-) mice also were more susceptible than WT mice to lethal alphavirus infection with Venezuelan equine encephalitis virus, and this was associated with greater viral burden in multiple organs. Collectively, our data define an antiviral role for Ifitm3 in restricting infection of multiple alphaviruses. IMPORTANCE: The interferon-induced transmembrane protein 3 (IFITM3) inhibits infection of multiple families of viruses in cell culture. Compared to other viruses, much less is known about the antiviral effect of IFITM3 on alphaviruses. In this study, we characterized the antiviral activity of mouse Ifitm3 against arthritogenic and encephalitic alphaviruses using cells and animals with a targeted gene deletion of Ifitm3 as well as deficient cells transcomplemented with Ifitm3. Based on extensive virological analysis, we demonstrate greater levels of alphavirus infection and disease pathogenesis when Ifitm3 expression is absent. Our data establish an inhibitory role for Ifitm3 in controlling infection of alphaviruses.


Assuntos
Infecções por Alphavirus/imunologia , Vírus Chikungunya/imunologia , Vírus da Encefalite Equina Venezuelana/imunologia , Fatores Imunológicos/metabolismo , Proteínas de Membrana/metabolismo , Infecções por Alphavirus/patologia , Infecções por Alphavirus/virologia , Animais , Vírus Chikungunya/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Vírus da Encefalite Equina Venezuelana/fisiologia , Fibroblastos/imunologia , Fibroblastos/virologia , Deleção de Genes , Teste de Complementação Genética , Fatores Imunológicos/deficiência , Macrófagos/virologia , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Carga Viral , Internalização do Vírus/efeitos dos fármacos
19.
J Virol ; 90(8): 4150-4159, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865723

RESUMO

UNLABELLED: The alphaviral6kgene region encodes the two structural proteins 6K protein and, due to a ribosomal frameshift event, the transframe protein (TF). Here, we characterized the role of the6kproteins in the arthritogenic alphavirus Ross River virus (RRV) in infected cells and in mice, using a novel6kin-frame deletion mutant. Comprehensive microscopic analysis revealed that the6kproteins were predominantly localized at the endoplasmic reticulum of RRV-infected cells. RRV virions that lack the6kproteins 6K and TF [RRV-(Δ6K)] were more vulnerable to changes in pH, and the corresponding virus had increased sensitivity to a higher temperature. While the6kdeletion did not reduce RRV particle production in BHK-21 cells, it affected virion release from the host cell. Subsequentin vivostudies demonstrated that RRV-(Δ6K) caused a milder disease than wild-type virus, with viral titers being reduced in infected mice. Immunization of mice with RRV-(Δ6K) resulted in a reduced viral load and accelerated viral elimination upon secondary infection with wild-type RRV or another alphavirus, chikungunya virus (CHIKV). Our results show that the6kproteins may contribute to alphaviral disease manifestations and suggest that manipulation of the6kgene may be a potential strategy to facilitate viral vaccine development. IMPORTANCE: Arthritogenic alphaviruses, such as chikungunya virus (CHIKV) and Ross River virus (RRV), cause epidemics of debilitating rheumatic disease in areas where they are endemic and can emerge in new regions worldwide. RRV is of considerable medical significance in Australia, where it is the leading cause of arboviral disease. The mechanisms by which alphaviruses persist and cause disease in the host are ill defined. This paper describes the phenotypic properties of an RRV6kdeletion mutant. The absence of the6kgene reduced virion release from infected cells and also reduced the severity of disease and viral titers in infected mice. Immunization with the mutant virus protected mice against viremia not only upon exposure to RRV but also upon challenge with CHIKV. These findings could lead to the development of safer and more immunogenic alphavirus vectors for vaccine delivery.


Assuntos
Infecções por Alphavirus/virologia , Ross River virus/genética , Ross River virus/imunologia , Proteínas Estruturais Virais/genética , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/fisiopatologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Vírus Chikungunya/imunologia , Chlorocebus aethiops , Cricetinae , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Mutação , Fases de Leitura , Ross River virus/patogenicidade , Deleção de Sequência , Células Vero , Carga Viral , Proteínas Estruturais Virais/análise , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral
20.
J Gen Virol ; 97(4): 893-900, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26801972

RESUMO

In this study, we aimed to characterize the epitope recognized by the neutralizing 17H23 mAb directed against the E2 glycoprotein of most of salmonid alphavirus (SAV) subtypes and widely used in several laboratories to routinely diagnose SAV. We hypothesized that the 17H23 epitope was located in the major domain B, previously identified in the E2 of mammalian alphaviruses as the domain recognized by most of the E2 neutralizing mAbs. Indeed, the SAV E2 domain B counterpart is contained in the protein domain previously characterized as being recognized by mAb 17H23. Thus, to precisely characterize the 17H23 epitope, we developed an alanine scanning mutagenesis approach coupled with the generation of the respective recombinant SAV (rSAV) by using the available infectious cDNA. Ten mutant rSAVs termed A-J from E2 aa 223-236 were produced and characterized in vitro using indirect immunofluorescence assays on virus-infected cells with mAbs 17H23, 51B8 (another non-neutralizing anti-E2 mAb) and 19F3 directed against the non-structural protein nsp1. Two of the mutant rSAVs (G and H) escaped neutralization by mAb 17H23. In addition, we showed that when juvenile trout were infected by bath immersion with the rSAV mutants, some of them were either totally (D, E and G) or partially (H) attenuated. Together, the data from the in vitro and in vivo experiments indicated that the putative 17H23 amino acid sequence epitope comprised the short amino acid sequence (227)FTSDS(231).


Assuntos
Infecções por Alphavirus/imunologia , Alphavirus/imunologia , Anticorpos Antivirais/imunologia , Epitopos/química , Doenças dos Peixes/imunologia , Proteínas do Envelope Viral/imunologia , Alphavirus/genética , Infecções por Alphavirus/genética , Infecções por Alphavirus/virologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Linhagem Celular , Mapeamento de Epitopos , Epitopos/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Testes de Neutralização , Oncorhynchus mykiss/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA