Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
BMC Vet Res ; 20(1): 407, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261948

RESUMO

BACKGROUND: Rabbit hemorrhagic disease (RHD) is an acute infectious disease that damages the rabbit industry by producing significant mortality rates in young and adult rabbits. RHD is better controlled by vaccination. OBJECTIVE: The current study's goal was to prepare and evaluate the immuno-enhancing effect of montanide ISA70 and aluminum hydroxide (Al(OH)3) gel incorporated within the inactivated RHDV2 vaccine and assess the vaccine's protective efficacy against the homologous and heterologous local RHDV2 strains in rabbits. METHODS: Inactivated RHDV vaccines were prepared using Montanide ISA70 oil or Al(OH)3 gel adjuvants and submitted to sterility, safety, and potency tests. 200 rabbits were equally divided into 4 groups: G1 (control), G2 (vaccinated with gel-incorporated vaccine), G3 (vaccinated with montanide-incorporated vaccine), and G4 (vaccinated with gel- and montanide-incorporated vaccines). Individual blood samples were collected from one week to six months from all groups. The vaccine's potency was measured by the HI test and protection percentage post challenge. RESULTS: Data revealed slightly increasing HI titer means reaching the 1st peak at 4 weeks post-vaccination (7.33, 7.67, and 7.33 log2 in the 2nd, 3rd, and 4th groups, respectively), then slightly decreasing and peaked again, giving 9.33 log2 for the2nd group at 3 months post-vaccination (MPV), 10.67 log2 for 3rd the group, and 10.33 log2 for the 4th group at 5 months post-vaccination. Titer gradually decreased but remained protective. The protection rate ranged from 80-100% and 80-90% for homologous and heterologous local RHDV2 vaccines, respectively, within 3 weeks and 6 months post-challenge. The montanide oil RHDV2 vaccine induced better protection than the aluminum gel RHDV2 vaccine. CONCLUSION: The results demonstrated evidence of cross-protection between RHDV2 strains. The oil emulsion vaccine induced higher and longer-lasting antibody titers than those obtained with the RHDV2 aluminum gel vaccine.


Assuntos
Hidróxido de Alumínio , Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Vacinas Virais , Animais , Coelhos , Hidróxido de Alumínio/farmacologia , Hidróxido de Alumínio/administração & dosagem , Vírus da Doença Hemorrágica de Coelhos/imunologia , Vacinas Virais/imunologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/prevenção & controle , Géis , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Ácidos Oleicos/farmacologia , Ácidos Oleicos/administração & dosagem
2.
J Feline Med Surg ; 26(8): 1098612X241264731, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39212546

RESUMO

OBJECTIVES: Vaccinations should only be given to healthy cats, and deworming before vaccination is generally recommended; however, so far, no study has investigated the influence of intestinal parasitic infection on the immune response in kittens. The aim of this prospective study was to compare the antibody response to feline panleukopenia virus (FPV) vaccination in kittens with and without intestinal parasites. METHODS: Overall, 74 healthy kittens were included. Of these, 17 had intestinal parasites (12/17 Toxocara cati, 6/17 Cystoisospora felis, 1/17 Capillaria species). Both kittens with and without (n = 57) parasites received two primary kitten vaccinations with modified live FPV vaccines in a 4-week interval starting at the age of 8-12 weeks. Anti-FPV antibodies were determined at the beginning of the study (week 0) and at week 8 (4 weeks after the second vaccination) by haemagglutination inhibition. A ⩾four-fold titre increase (week 8 vs week 0) was defined as a response to vaccination. Comparison of the immune response in the kittens with and without intestinal parasites was performed using Pearson's χ2 test. RESULTS: Pre-vaccination antibodies were present in 4/17 (23.5%) kittens with intestinal parasites and in 24/57 (42.1%) without parasites. A ⩾four-fold titre increase was seen in 13/17 (76.5%) kittens with parasites compared with 32/57 (56.1%) kittens without parasites. There was neither a significant difference in pre-vaccination antibodies (P = 0.17), nor in vaccination response (P = 0.13) between kittens with and without parasites. CONCLUSIONS AND RELEVANCE: The results indicate that asymptomatic intestinal infections with endoparasites do not interfere with the immune response to kitten vaccination series. Parasitic infection (at least with T cati, C felis and Capillaria species) is therefore not a reason to postpone important vaccinations.


Assuntos
Anticorpos Antivirais , Vírus da Panleucopenia Felina , Panleucopenia Felina , Enteropatias Parasitárias , Vacinas Virais , Animais , Gatos , Vírus da Panleucopenia Felina/imunologia , Panleucopenia Felina/prevenção & controle , Panleucopenia Felina/imunologia , Enteropatias Parasitárias/veterinária , Enteropatias Parasitárias/prevenção & controle , Enteropatias Parasitárias/imunologia , Anticorpos Antivirais/sangue , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Masculino , Vacinação/veterinária , Feminino , Doenças do Gato/prevenção & controle , Doenças do Gato/imunologia , Doenças do Gato/parasitologia , Doenças do Gato/virologia , Estudos Prospectivos , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/imunologia
3.
Food Environ Virol ; 16(2): 241-252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570420

RESUMO

As a natural nonflavonoid polyphenol compound, resveratrol is the main functional component of Reynoutria japonica and has anti-inflammatory, antioxidant, antiviral, and other physiological activities. In this study, the effect of resveratrol on the viability of RAW264.7 cells was examined, and murine norovirus (MNV-1) was used as a surrogate for human norovirus to evaluate the inhibitory effect of resveratrol. The concentrations of resveratrol resulting in 50% cytotoxicity (CC50) for RAW264.7 cells were 21.32 and 24.97 µg/mL after 24 and 48 h of incubation, respectively, and resveratrol at a concentration lower than the half-effective inhibitory concentration (EC50) could not damage cell DNA. The EC50 of resveratrol on MNV-1 in infected RAW264.7 cells was determined to equal 5.496 µg/mL. After RAW264.7 cells, virus, and a fresh mixture of virus and RAW264.7 cells were treated with resveratrol solution for 1 h (denoted cell pre-treatment, virus pre-treatment, and mixture coprocessing), the RAW264.7 cells obtained after cell pre-treatment exhibited lower virus infection, and MNV-1 obtained after virus pre-treatment and mixture coprocessing showed a decreased infectious capacity. The inhibition ratio of resveratrol on MNV-1 did not significantly differ between the treatments at 4 and 25 °C or among the various pH values except for the lower acidic condition (pH 2). TEM revealed significant changes in the morphology of MNV-1 after treatment with resveratrol, and molecular docking indicated that resveratrol strongly binds to the viral capsid protein of MNV-1. In addition, resveratrol regulated the expression of cytokine that protects against MNV-1 infection. Therefore, at a lower concentration, resveratrol, a natural component from Reynoutria japonica, exerts an inhibitory effect on MNV-1 growth and could be used as a safe additive in food products to improve the nutritional status and control norovirus.


Assuntos
Antivirais , Norovirus , Resveratrol , Resveratrol/farmacologia , Resveratrol/química , Norovirus/efeitos dos fármacos , Norovirus/crescimento & desenvolvimento , Norovirus/fisiologia , Camundongos , Animais , Células RAW 264.7 , Antivirais/farmacologia , Antivirais/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Estilbenos/farmacologia , Estilbenos/química , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/tratamento farmacológico , Macrófagos/virologia , Macrófagos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
4.
Res Vet Sci ; 172: 105255, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608346

RESUMO

Rabbit hemorrhagic disease virus (RHDV) can cause fatal fulminant hepatitis, which is very similar to human acute liver failure. The aim of this study was to investigate whether adipose-derived stem cells (ADSCs) could alleviate RHDV2-induced liver injury in rabbits. Twenty 50-day-old rabbits were divided randomly into two groups (RHDV2 group, ADSCs + RHDV2 group). Starting from the 1st day, two groups of rabbits were given 0.5 ml of viral suspensions by subcutaneous injection in the neck. Meanwhile, the ADSCs + RHDV2 group was injected with ADSCs cell suspension (1.5 × 107 cells/ml) via a marginal ear vein, and the RHDV2 group was injected with an equal amount of saline via a marginal ear vein. At the end of the 48 h experiment, the animals were euthanized and gross hepatic changes were observed before liver specimens were collected. Histopathological analysis was performed using hematoxylin-eosin (HE), periodic acid schiff (PAS) and Masson's trichrome staining. For RHDV2 affected rabbits, HE staining demonstrated disorganized hepatic cords, loss of cellular detail, and severe cytoplasmic vacuolation within hepatocytes. Glycogen was not observed with PAS staining, and Masson's Trichrome staining showed increased hepatic collagen deposition. For rabbits treated with ADSCs at the time of inoculation, hepatic pathological changes were significantly less severe, liver glycogen synthesis was increased, and collagen fiber deposition was decreased. For RHDV2 affected rabbits, Tunel and immunofluorescence staining showed that the number of apoptotic cells, TGF-ß, and MMP-9 protein expression increased. And that in the ADSC treated group there was less hepatocyte apoptosis. In addition, RHDV2 induces liver inflammation and promotes the expression of IL-1ß, IL-6, and TNF-α. In rabbits administered ADSCs at time of inoculation, the expression of inflammatory factors in liver tissue decreased significantly. Our experiments show that ADSCs can protect rabbits from liver injury by RHDV2 and reduce the pathological and inflammatory response of liver. However, the specific protective mechanism needs further study.


Assuntos
Tecido Adiposo , Vírus da Doença Hemorrágica de Coelhos , Animais , Coelhos , Vírus da Doença Hemorrágica de Coelhos/fisiologia , Tecido Adiposo/citologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/terapia , Fígado/patologia , Transplante de Células-Tronco/métodos , Células-Tronco , Apoptose , Masculino , Distribuição Aleatória
5.
Vet Q ; 43(1): 1-12, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37851857

RESUMO

High-resolution melting (HRM) analysis, a post-polymerase chain reaction (PCR) application in a single closed tube, is the straightforward method for simultaneous detection, genotyping, and mutation scanning, enabling more significant dynamic detection and sequencing-free turnaround time. This study aimed to establish a combined reverse-transcription quantitative PCR and HRM (RT-qPCR-HRM) assay for diagnosing and genotyping feline calicivirus (FCV). This developed method was validated with constructed FCV plasmids, clinical swab samples from living cats, fresh-frozen lung tissues from necropsied cats, and four available FCV vaccines. We performed RT-qPCR to amplify a 99-base pair sequence, targeting a segment between open reading frame (ORF) 1 and ORF2. Subsequently, the HRM assay was promptly applied using Rotor-Gene Q® Software. The results significantly revealed simultaneous detection and genetic discrimination between commercially available FCV vaccine strains, wild-type Thai FCV strains, and VS-FCV strains within a single PCR reaction. There was no cross-reactivity with other feline common viruses, including feline herpesvirus-1, feline coronavirus, feline leukemia virus, feline immunodeficiency virus, and feline morbillivirus. The detection limit of the assay was 6.18 × 101 copies/µl. This study, therefore, is the first demonstration of the uses and benefits of the RT-qPCR-HRM assay for FCV detection and strain differentiation in naturally infected cats.


Assuntos
Infecções por Caliciviridae , Calicivirus Felino , Doenças do Gato , Vacinas , Gatos , Animais , Calicivirus Felino/genética , Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/veterinária , Reação em Cadeia da Polimerase/veterinária , Mutação , Doenças do Gato/diagnóstico
6.
Microbiol Spectr ; 11(4): e0005023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37314328

RESUMO

Myxoma virus (MYXV) and rabbit hemorrhagic disease virus (RHDV) are important drivers of the population decline of the European rabbit, an endangered keystone species. Both viruses elicit strong immune responses, but the long-term dynamics of humoral immunity are imperfectly known. This study aimed to assess the determinants of the long-term dynamics of antibodies to each virus based on a longitudinal capture-mark-recapture of wild European rabbits and semiquantitative serological data of MYXV and RHDV GI.2-specific IgG. The study included 611 indirect enzyme-linked immunosorbent assay (iELISA) normalized absorbance ratios for each MYXV and RHDV GI.2 from 505 rabbits from 2018 to 2022. Normalized absorbance ratios were analyzed using log-linear mixed models, showing a significant positive relationship with the time since the first capture of individual rabbits, with monthly increases of 4.1% for antibodies against MYXV and 2.0% against RHDV GI.2. Individual serological histories showed fluctuations over time, suggesting that reinfections boosted the immune response and likely resulted in lifelong immunity. Normalized absorbance ratios significantly increased with the seroprevalence in the population, probably because of recent outbreaks, and with body weight, highlighting the role of MYXV and RHDV GI.2 in determining survival to adulthood. Juvenile rabbits seropositive for both viruses were found, and the dynamics of RHDV GI.2 normalized absorbance ratios suggest the presence of maternal immunity up to 2 months of age. Semiquantitative longitudinal serological data provide epidemiological information, otherwise lost when considering only qualitative data, and support a lifelong acquired humoral immunity to RHDV GI.2 and MYXV upon natural infection. IMPORTANCE This study addresses the long-term dynamics of humoral immunity to two major viral pathogens of the European rabbit, an endangered keystone species of major ecological relevance. Such studies are particularly challenging in free-ranging species, and a combination of longitudinal capture-mark-recapture and semiquantitative serology was used to address this question. Over 600 normalized absorbance ratios of iELISA, obtained from 505 individual rabbits in 7 populations over 5 years, were analyzed using linear mixed models. The results support a lifelong acquired humoral immunity to myxoma virus and rabbit hemorrhagic disease virus upon natural infection and suggest the presence of maternal immunity to the latter in wild juvenile rabbits. These results contribute to understanding the epidemiology of two viral diseases threatening this keystone species and assist in developing conservation programs.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Myxoma virus , Mixoma , Animais , Coelhos , Vírus da Doença Hemorrágica de Coelhos/fisiologia , Imunidade Humoral , Estudos Soroepidemiológicos , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/epidemiologia , Myxoma virus/fisiologia
7.
Viruses ; 15(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37112796

RESUMO

Rabbit haemorrhagic disease virus (RHDV), European brown hare syndrome virus (EBHSV), rabbit calicivirus (RCV), and hare calicivirus (HaCV) belong to the genus Lagovirus of the Caliciviridae family that causes severe diseases in rabbits and several hare (Lepus) species. Previously, Lagoviruses were classified into two genogroups, e.g., GI (RHDVs and RCVs) and GII (EBHSV and HaCV) based on partial genomes, e.g., VP60 coding sequences. Herein, we provide a robust phylogenetic classification of all the Lagovirus strains based on full-length genomes, grouping all the available 240 strains identified between 1988 and 2021 into four distinct clades, e.g., GI.1 (classical RHDV), GI.2 (RHDV2), HaCV/EBHSV, and RCV, where the GI.1 clade is further classified into four (GI.1a-d) and GI.2 into six sub-clades (GI.2a-f). Moreover, the phylogeographic analysis revealed that the EBHSV and HaCV strains share their ancestor with the GI.1, while the RCV shares with the GI.2. In addition, all 2020-2021 RHDV2 outbreak strains in the USA are connected to the strains from Canada and Germany, while RHDV strains isolated in Australia are connected with the USA-Germany haplotype RHDV strain. Furthermore, we identified six recombination events in the VP60, VP10, and RNA-dependent RNA polymerase (RdRp) coding regions using the full-length genomes. The amino acid variability analysis showed that the variability index exceeded the threshold of 1.00 in the ORF1-encoded polyprotein and ORF2-encoded VP10 protein, respectively, indicating significant amino acid drift with the emergence of new strains. The current study is an update of the phylogenetic and phylogeographic information of Lagoviruses that may be used to map the evolutionary history and provide hints for the genetic basis of their emergence and re-emergence.


Assuntos
Infecções por Caliciviridae , Lebres , Vírus da Doença Hemorrágica de Coelhos , Animais , Coelhos , Filogenia , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Aminoácidos/genética
8.
Transbound Emerg Dis ; 69(5): e3024-e3035, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810475

RESUMO

Estimation of the diagnostic performance of serological tests often relies on another test assumed as a reference or on samples of known infection status, yet both are seldom available for emerging pathogens in wildlife. Longitudinal disease serological data can be analysed through multi-event capture-mark-recapture (MECMR) models accounting for the uncertainty in state assignment, allowing us to estimate epidemiological parameters such as incidence and mortality. We hypothesized that by estimating the uncertainty in state assignment, MECMR models estimate the diagnostic performance of serological tests for rabbit haemorrhagic disease virus (RHDV) and myxoma virus (MYXV). We evaluated this hypothesis on longitudinal serological data of three tests of RHDV and one test of MYXV in two populations of the European rabbit (Oryctolagus cuniculus algirus). First, we selected the optimal cut-off threshold for each test using finite mixture models, a reference method not relying on reference tests or samples. Second, we used MECMR models to compare the diagnostic sensitivity (Se) and specificity (Sp) of the three tests for RHDV. Third, we compared the estimates of diagnostic performance by MECMR and finite mixture models across a range of cut-off values. The MECMR models showed that the RHDV test employing GI.2 antigens (Se: 100%) outperformed two tests employing GI.1 antigens (Se: 21.7% ± 8.6% and 8.7% ± 5.9%). At their selected cut-offs (2.0 for RHDV GI.2 and 2.4 for MYXV), the estimates of Se and Sp were concordant between the MECMR and finite mixture models. Over the duration of the study (May 2018 to September 2020), the monthly survival of European rabbits seropositive for MYXV was significantly higher than that of seronegative rabbits (82.7% ± 4.9% versus 61.5% ± 12.7%) at the non-fenced site. We conclude that MECMR models can reliably estimate the diagnostic performance of serological tests for RHDV and MYXV in European rabbits. This conclusion could extend to other diagnostic tests and host-pathogen systems. Longitudinal disease surveillance data analysed through MECMR models allow the validation of diagnostic tests for emerging pathogens in novel host species while simultaneously estimating epidemiological parameters.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Myxoma virus , Mixoma , Animais , Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Mixoma/veterinária , Coelhos , Testes Sorológicos/veterinária
9.
Transbound Emerg Dis ; 69(5): e2629-e2640, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35687756

RESUMO

Australia is known for its long history of using biocontrol agents, such as myxoma virus (MYXV) and rabbit haemorrhagic disease virus (RHDV), to manage wild European rabbit populations. Interestingly, while undertaking RHDV surveillance of rabbits that were found dead, we observed that approximately 40% of samples were negative for RHDV. To investigate whether other infectious agents are responsible for killing rabbits in Australia, we subjected a subset of these RHDV-negative liver samples to metatranscriptomic sequencing. In addition, we investigated whether the host transcriptome data could provide additional differentiation between likely infectious versus non-infectious causes of death. We identified transcripts from several Clostridia species, Pasteurella multocida, Pseudomonas spp., and Eimeria stiedae, in liver samples of several rabbits that had died suddenly, all of which are known to infect rabbits and are capable of causing disease and mortality. In addition, we identified Hepatitis E virus and Cyniclomyces yeast in some samples, both of which are not usually associated with severe disease. In one-third of the sequenced total liver RNAs, no infectious agent could be identified. While metatranscriptomic sequencing cannot provide definitive evidence of causation, additional host transcriptome analysis provided further insights to distinguish between pathogenic microbes and commensals or environmental contaminants. Interestingly, three samples where no pathogen could be identified showed evidence of up-regulated host immune responses, while immune response pathways were not up-regulated when E. stiedae, Pseudomonas, or yeast were detected. In summary, although no new putative rabbit pathogens were identified, this study provides a robust workflow for future investigations into rabbit mortality events.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Myxoma virus , Animais , Austrália/epidemiologia , Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Coelhos , Saccharomyces cerevisiae
10.
Transbound Emerg Dis ; 69(3): 1521-1528, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33892517

RESUMO

Rabbit haemorrhagic disease (RHD) is a significant viral disease caused by infection with Rabbit haemorrhagic disease virus (RHDV). The first documented cases of RHDV in Singapore occurred in adult pet European rabbits (Oryctolagus cuniculus) in September 2020. Rabbits presented with acute hyporexia, lethargy, huddled posture, and varying degrees of pyrexia and tachypnoea. Clinical pathology consistently reflected markedly elevated alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALKP). Hepatic lobe torsion was ruled out using ultrasonography and colour Doppler studies in all patients. A total of 11 rabbits owned by 3 families were presented to the clinics; 8/11 rabbits died within 48 hr of presentation, while the remaining two rabbits had recovered after prolonged hospitalization and one rabbit was aclinical. Histopathology revealed acute, marked diffuse hepatocellular necrosis and degeneration, findings which were suggestive for RHDV infection and prompted the undertaking of further molecular diagnostics. Subsequent polymerase chain reaction of the liver samples detected RHDV RNA. Molecular characterization of viral genomes by whole genome sequencing revealed that the outbreak strain was of the genotype GI.2 (RHDV2/RHDVb). Nucleotide sequences of the VP60 gene were compared with various RHDV variants using phylogenetic analysis. The sample genome shared highest sequence identity with a GI.2-genotyped virus from GenBank (RHDV isolate Algarve 1 polyprotein and minor structural protein (VP10) genes, GenBank accession KF442961). The combination of clinical, histopathological, molecular and sequencing technologies enabled rapid detection and detailed genetic characterization of the RHDV virus causing the present outbreak for prompt implementation of disease control measures in Singapore. Further epidemiological investigations of potential virus introduction into Singapore are ongoing.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Surtos de Doenças/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Humanos , Filogenia , Coelhos , Singapura
11.
Transbound Emerg Dis ; 69(2): 895-902, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33560563

RESUMO

The European rabbit (Oryctolagus cuniculus) is one of the most devastating invasive species in Australia. Since the 1950s, myxoma virus (MYXV) and rabbit haemorrhagic disease virus (RHDV) have been used to manage overabundant rabbit populations. Resistance to MYXV was observed within a few years of the release. More recently, resistance to lethal RHDV infection has also been reported, undermining the efficiency of landscape-scale rabbit control. Previous studies suggest that genetic resistance to lethal RHDV infection may differ locally between populations, yet the mechanisms of genetic resistance remain poorly understood. Here, we used genotyping by sequencing (GBS) data representing a reduced representation of the genome, to investigate Australian rabbit populations. Our aims were to understand the relationship between populations and identify possible genomic signatures of selection for RHDV resistance. One population we investigated had previously been reported to show levels of resistance to lethal RHDV infection. This population was compared to three other populations with lower or no previously reported RHDV resistance. We identified a set of novel candidate genes that could be involved in host-pathogen interactions such as virus binding and infection processes. These genes did not overlap with previous studies on RHDV resistance carried out in different rabbit populations, suggesting that multiple mechanisms are feasible. These findings provide useful insights into the different potential mechanisms of genetic resistance to RHDV virus which will inform future functional studies in this area.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Myxoma virus , Animais , Austrália/epidemiologia , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/veterinária , Genômica , Vírus da Doença Hemorrágica de Coelhos/genética , Myxoma virus/genética , Coelhos
12.
Vet Microbiol ; 265: 109311, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34965497

RESUMO

In April 2020, rabbit hemorrhagic virus type 2 (Lagovirus europaeus GI.2), which causes highly infectious fatal rabbit hemorrhagic disease, was emerged in China. The phylogenetic analyses of the complete genome sequence of GI.2 showed that it belonged to the non-recombinant GI.3/GI.2 genotype. However, the pathogenicity of this GI.2 strain differed from that of early typical GI.2 strains in Europe. To prevent the spread of the new strain in China, its pathogenicity urgently needs to be studied. Thus, viral shedding and distribution as well as clinical symptoms, histopathological changes, and serum cytokines were studied in experimentally GI.2/SC2020-infected rabbit adults and kits. The kit group showed a shorter survival time after the challenge than the adult group did. The mortality rate was higher in the kits (80 %) than in the adults (30 %). Viral RNA could be detected in both nasal and fecal swabs, and the main dissemination route appeared to be the fecal route. Viral RNA rapidly increased in the blood of the adults and kits at 6 h post-infection, indicating that blood viral load testing can be used for early diagnosis. The most affected organs were the liver and spleen, and the lesions were more severe in the kits than in the adults. The liver contained the highest viral RNA levels. Moreover, serum interleukin (IL)-6, IL-8, IL-10, and tumor necrosis factor-alpha levels were increased in the infected rabbits. In conclusion, our findings will help to understand the evolutionary trends and pathogenic characteristics of GI.2 strains in China.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Lagovirus , Animais , Infecções por Caliciviridae/veterinária , China , Vírus da Doença Hemorrágica de Coelhos/genética , Filogenia , Virulência
13.
Virus Res ; 306: 198595, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637812

RESUMO

Calicivirus infection in patients and animals is associated with the production of multiple inflammatory cytokines, including tumor necrosis factor α (TNF-α). Here we studied the feline calicivirus (FCV) non-structural proteins and found that the FCV protease was a key factor for TNF-α gene expression in cultured cells. The expression of the TNF-α gene in cells expressing FCV, human norovirus, and rabbit hemorrhagic disease virus protease was compared, revealing that the induction of TNF-α could be a common phenomenon during the infection by the viruses in the Caliciviridae. The level of TNF-α mRNA in the cells expressing mutant proteases that lacked the active site was measured. These data indicate that the protease activity is crucial for TNF-α expression. These findings provide new insight into the induction of inflammation during calicivirus infection.


Assuntos
Infecções por Caliciviridae , Calicivirus Felino , Animais , Infecções por Caliciviridae/veterinária , Calicivirus Felino/genética , Gatos , Humanos , Peptídeo Hidrolases/metabolismo , RNA Mensageiro , Fator de Necrose Tumoral alfa/genética
14.
Vet Microbiol ; 259: 109143, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34098254

RESUMO

Rabbit hemorrhagic disease virus (RHDV) causes a highly contagious disease in rabbits that is associated with high mortality. Because of the lack of a suitable cell culture system for RHDV, its pathogenic mechanism and replication remain unclear. This study found that the expression level of host protein rabbit hemoglobin subunit beta (HBB) was significantly downregulated in RHDV-infected cells. To investigate the role of HBB in RHDV replication, small interfering RNAs for HBB and HBB eukaryotic expression plasmids were used to change the expression level of HBB in RK-13 cells and the results showed that the RHDV replication level was negatively correlated with the expression level of HBB. It was also verified that HBB inhibited RHDV replication using constructed HBB stable overexpression cell lines and HBB knockout cell lines. The interaction of HBB with viral capsid protein VP60, replicase RdRp, and VPg protein was confirmed, as was the activation of the expression of interferon γ by HBB. The results of this study indicated that HBB may be an important host protein in host resistance to RHDV infection.


Assuntos
Infecções por Caliciviridae/veterinária , Proteínas do Capsídeo/metabolismo , Subunidades de Hemoglobina/metabolismo , Vírus da Doença Hemorrágica de Coelhos/química , Vírus da Doença Hemorrágica de Coelhos/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Replicação Viral , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Feminino , Subunidades de Hemoglobina/genética , Subunidades de Hemoglobina/imunologia , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/fisiologia , Interferon gama/imunologia , Coelhos , Proteínas Virais/genética
15.
Am J Vet Res ; 82(5): 381-394, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33904799

RESUMO

OBJECTIVE: To identify associations between microbes and host genes in cats with feline chronic gingivostomatitis (FCGS), a debilitating inflammatory oral mucosal disease with no known cause, compared with healthy cats and cats with periodontitis (control cats). ANIMALS: 19 control cats and 23 cats with FCGS. PROCEDURES: At least 1 caudal oral mucosal swab specimen was obtained from each cat. Each specimen underwent unbiased metatranscriptomic next-generation RNA sequencing (mNGS). Filtered mNGS reads were aligned to all known genetic sequences from all organisms and to the cat transcriptome. The relative abundances of microbial and host gene read alignments were compared between FCGS-affected cats and control cats and between FCGS-affected cats that did and did not clinically respond to primary treatment. Assembled feline calicivirus (FCV) genomes were compared with reverse transcription PCR (RT-PCR) primers commonly used to identify FCV. RESULTS: The only microbe strongly associated with FCGS was FCV, which was detected in 21 of 23 FCGS-affected cats but no control cats. Problematic base pair mismatches were identified between the assembled FCV genomes and RT-PCR primers. Puma feline foamy virus was detected in 9 of 13 FCGS-affected cats that were refractory to treatment and 5 healthy cats but was not detected in FCGS-affected cats that responded to tooth extractions. The most differentially expressed genes in FCGS-affected cats were those associated with antiviral activity. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that FCGS pathogenesis has a viral component. Many FCV strains may yield false-negative results on RT-PCR-based assays. Coinfection of FCGS-affected cats with FCV and puma feline foamy virus may adversely affect response to treatment.


Assuntos
Infecções por Caliciviridae , Calicivirus Felino , Doenças do Gato , Estomatite , Animais , Infecções por Caliciviridae/veterinária , Calicivirus Felino/genética , Gatos , Reação em Cadeia da Polimerase/veterinária , Estomatite/veterinária , Transcriptoma
16.
Acta Biochim Pol ; 68(2): 255-263, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33848411

RESUMO

The aim of this study was the molecular epidemiology of independently introduced RHDV2 strains in Poland. The nucleotide sequences of RHDV2 diagnosed in domestic rabbits in 2018 in the voivodeships of Swietokrzyskie (strain PIN), Malopolskie (strain LIB) and Mazowieckie (strain WAK), and RHDVa from 2015 (strain F77-3) recognized in wild rabbits in Kujawsko-Pomorskie voivodeship were compared to the genome sequences of the first native RHDV2 strains from 2016-2017. The reference sequences available in public databases, the representative for a classical RHDV (G1-G5 genogroups), RHDVa (G6), non-pathogenic caliciviruses (RCV, GI.3 and GI.4) as well as original and recombinant RHDV2 isolates were included for this analysis. Nucleotide sequence similarity among the most distanced RHDV2 strains isolated in Poland in 2018 was from 92.3% to 98.2% in the genome sequence encoding ORF1, ORF2 and 3'UTR, between 94.8-98.7% in the VP60 gene and between 91.3-98.1% in non-structural proteins (NSP) region. The diversity between three RHDV2 and RHDVa from 2015 was up to 16.3% in the VP60 region. Similarities are shown for the VP60 tree within the RHDV2 group, however, the nucleotide analysis of NSP region revealed the differences between older and new native RHDV2 strains. The Polish RHDV2 isolates from 2016-2017 clustered together with RHDV G1/RHDV2 recombinants, first identified in the Iberian Peninsula in 2012, while all strains from 2018 are close to the original RHDV2. The F77-3 strain clustered to well supported RHDVa (G6) genetic group, together with other Polish and European RHDVa isolates. Based on the results of phylogenetic characterization of RHDV2 strains detected in Poland between 2016-2018 and the chronology of their emergence it can be concluded that RHDV2 strains of 2018 and RHDV2 strains of 2016-2017 were introduced independently thus confirming their different origin and simultaneous pathway of spreading.


Assuntos
Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Coelhos/virologia , Animais , Antígenos Virais/genética , Antígenos Virais/isolamento & purificação , Caliciviridae/genética , Infecções por Caliciviridae/epidemiologia , Genoma Viral , Genótipo , Vírus da Doença Hemorrágica de Coelhos/classificação , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Epidemiologia Molecular , Filogenia , Polônia/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas Estruturais Virais/genética
17.
Methods Mol Biol ; 2225: 1-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33108654

RESUMO

Viral diseases, whether of animals or humans, are normally considered as problems to be managed. However, in Australia, two viruses have been used as landscape-scale therapeutics to control European rabbits (Oryctolagus cuniculus), the preeminent invasive vertebrate pest species. Rabbits have caused major environmental and agricultural losses and contributed to extinction of native species. It was not until the introduction of Myxoma virus that effective control of this pest was obtained at a continental scale. Subsequent coevolution of rabbit and virus saw a gradual reduction in the effectiveness of biological control that was partially ameliorated by the introduction of the European rabbit flea to act as an additional vector for the virus. In 1995, a completely different virus, Rabbit hemorrhagic disease virus (RHDV), escaped from testing and spread through the Australian rabbit population and again significantly reduced rabbit numbers and environmental impacts. The evolutionary pressures on this virus appear to be producing quite different outcomes to those that occurred with myxoma virus and the emergence and invasion of a novel genotype of RHDV in 2014 have further augmented control. Molecular studies on myxoma virus have demonstrated multiple proteins that manipulate the host innate and adaptive immune response; however the molecular basis of virus attenuation and reversion to virulence are not yet understood.


Assuntos
Agentes de Controle Biológico , Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/patogenicidade , Myxoma virus/patogenicidade , Mixomatose Infecciosa/virologia , Reprodução , Animais , Austrália , Coevolução Biológica , Infecções por Caliciviridae/mortalidade , Infecções por Caliciviridae/virologia , Feminino , Expressão Gênica , Genótipo , Vírus da Doença Hemorrágica de Coelhos/genética , Interações Hospedeiro-Patógeno/genética , Insetos Vetores/virologia , Espécies Introduzidas , Masculino , Myxoma virus/genética , Mixomatose Infecciosa/mortalidade , Mixomatose Infecciosa/patologia , Coelhos , Sifonápteros/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
Foodborne Pathog Dis ; 18(1): 24-30, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32716659

RESUMO

Norovirus is a major cause of foodborne disease and nonbacterial gastroenteritis globally. This study evaluated the antiviral effects of Magnolia officinalis extract and its honokiol and magnolol constituents against human norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV) in vitro, and in model food systems. Pretreatment or cotreatment of M. officinalis extract at 1 mg/mL reduced MNV and FCV titers by 0.6-1.8 log. Honokiol and magnolol, which are the major polyphenols in the extract, showed significant antiviral effects against MNV and FCV. The virus-infected cells that were treated with M. officinalis extract exhibited significantly increased glutathione levels (p < 0.05). The extract, honokiol, and magnolol revealed ferric ion-reducing and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities in a dose-dependent manner. Furthermore, MNV and FCV titers were reduced by >1.6 log or to undetectable levels in apple, orange, and plum juices and by 0.9 and 1.6 log in milk, respectively, when they were treated with the extract at 5 mg/mL. Therefore, the present study suggests that M. officinalis extract can be used as an antiviral food material to control norovirus foodborne diseases.


Assuntos
Antivirais/farmacologia , Infecções por Caliciviridae/prevenção & controle , Magnolia , Norovirus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Compostos de Bifenilo/farmacologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/virologia , Calicivirus Felino/efeitos dos fármacos , Gatos , Doenças Transmitidas por Alimentos/veterinária , Doenças Transmitidas por Alimentos/virologia , Humanos , Lignanas/farmacologia , Camundongos
19.
Vaccimonitor (La Habana, Print) ; 29(3)sept.-dic. 2020. tab, graf
Artigo em Inglês | LILACS, CUMED | ID: biblio-1139858

RESUMO

Rabbit hemorrhagic disease is a contagious viral disease of rabbits controlled by vaccination. The present study was aimed to diagnose rabbit hemorrhagic disease from 11 infected farms from Qalubia governorate during 2019 and to prepare homologous vaccine against rabbit hemorrhagic disease virus 2. For this purpose, 11 liver samples were collected from suspected cases and subjected to detection and identification of circulating rabbit hemorrhagic disease virus. Ten samples were confirmed to be rabbit hemorrhagic disease virus using hemagglutination test, animal inoculation and reverse transcriptase polymerase chain reaction. Sequencing and phylogenetic analysis of two isolates (R5&R6) revealed the presence of rabbit hemorrhagic disease virus 2 (A/Qalubia/2019 and B/Qalubia/2019) under accession number MT07629 and MT067630 respectively. The inactivated rabbit hemorrhagic disease virus vaccines were prepared using Montanide ISA 206 oil or aluminum hydroxide gel adjuvants. Prepared vaccines were inoculated subcutaneously in susceptible rabbits and submitted to sterility, safety and potency tests. Obtained results showed that mean hemagglutination inhibition titer for aluminum hydroxide gel vaccine was 6,7.7,8.9 and 9.1 log2 while, Montanide vaccine reached to 6.7,8.7,9.2 and 9.5 log2 at 1st, 2nd, 3rd, and 4th weeks post vaccination, respectively. Immunized rabbits with Montanide vaccine showed better protection reach to 70 percent, 90 percent percent, 100 percent and 100 percent when compared to aluminum hydroxide gel vaccine 60 percent, 70 percent, 90 percent and 90 percent at 1st, 2nd, 3rd and 4th weeks post vaccination respectively. It was concluded that newly emerged rabbit hemorrhagic disease virus 2 was isolated from suspected cases. The two prepared vaccines were sterile, safe and potent. The oily adjuvanted rabbit hemorrhagic disease virus 2 vaccine stimulated an earlier and higher humoral immune response than the aluminum hydroxide gel adjuvanted vaccine. This humoral immune response achieved significant level of protection(AU)


La enfermedad hemorrágica del conejo es una enfermedad viral contagiosa de los conejos que se controla mediante vacunación. El presente estudio tuvo como objetivo diagnosticar la enfermedad hemorrágica del conejo en 11 granjas infectadas de la provincia de Qalubia, durante 2019 y preparar una vacuna homóloga contra el virus de la enfermedad hemorrágica del conejo tipo 2. Para este propósito, se recolectaron 11 muestras de hígado de casos sospechosos y se sometieron a detección e identificación de virus circulante de la enfermedad hemorrágica del conejo. Se confirmó que diez muestras eran positivas al virus de la enfermedad hemorrágica del conejo, utilizando para ello la prueba de hemaglutinación, inoculación en animales y Reacción en cadena de la polimerasa con transcriptasa inversa. La secuenciación y el análisis filogenético de dos aislamientos (R5 y R6) revelaron la presencia del virus de la enfermedad hemorrágica del conejo tipo 2 (A/Qalubia/2019 y B/Qalubia/2019) con los números de acceso MT07629 y MT067630 respectivamente. Las vacunas inactivadas del virus de la enfermedad hemorrágica del conejo se prepararon usando adyuvantes de gel de hidróxido de aluminio o aceite Montanide ISA 206. Las vacunas preparadas se inocularon por vía subcutánea en conejos susceptibles y se sometieron a pruebas de esterilidad, seguridad y potencia. Los resultados obtenidos mostraron que el título medio de inhibición de la hemaglutinación para la vacuna en gel de hidróxido de aluminio fue de 6; 7,7; 8,9 y 9,1 log2, mientras que la vacuna de Montanide alcanzó 6,7; 8,7; 9,2 y 9,5 log2 en la 1ª, 2ª, 3ª y 4ª semanas después de la vacunación, respectivamente. Los conejos inmunizados con la vacuna Montanide tuvieron una mejor protección, alcanzándose niveles de 70 por ciento, 90 por ciento, 100 por ciento y 100 por ciento en comparación con la vacuna en gel de hidróxido de aluminio 60 por ciento, 70 por ciento, 90 por ciento y 90 por ciento en la 1ª, 2ª, 3ª y 4ª semanas después de la vacunación, respectivamente. Se concluyó que el virus de la enfermedad hemorrágica del conejo tipo 2 de reciente aparición se aisló de los casos sospechosos. Las dos vacunas preparadas fueron estériles, seguras y potentes. La vacuna contra el virus de la enfermedad hemorrágica del conejo tipo 2 con adyuvante oleoso estimuló una respuesta inmune humoral más temprana y mayor que la vacuna con adyuvante en gel de hidróxido de aluminio. Esta respuesta inmune humoral confirió un nivel significativo de protección(AU)


Assuntos
Animais , Coelhos , Reação em Cadeia da Polimerase/métodos , Vírus da Doença Hemorrágica de Coelhos/imunologia , Infecções por Caliciviridae/veterinária , Dose Letal Mediana , Vacinas , Egito
20.
Sheng Wu Gong Cheng Xue Bao ; 36(10): 2083-2091, 2020 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-33169573

RESUMO

Rabbit haemorrhagic disease virus (RHDV) and myxoma virus (MYXV), are two pathogens that have harmful effect on rabbit breeding and population decline of European rabbits in their native range, causing rabbit haemorrhagic disease (rabbit fever) and myxomatosis, respectively. The capsid protein VP60 of the RHDV represents the major antigenic protein. To develop a recombinant bivalent vaccine candidate that can simultaneously prevent these two diseases, we used the nonessential gene TK (thymidine kinase) of MYXV as the insertion site to construct a recombinant shuttle vector p7.5-VP60-GFP expressing the RHDV major capsid protein (VP60) and the selectable marker GFP. Then the shuttle vector p7.5-VP60-GFP was transfected into rabbit kidney cell line RK13 which was previously infected with MYXV. After homologous recombination, the recombinant virus expressing GFP was screened under a fluorescence microscope and named as rMV-VP60-GFP. Finally, the specific gene-knock in and expression verification of the vp60 and gfp genes of the recombinant virus was confirmed by PCR and Western blotting. The results showed that these two genes were readily knocked into the MYXV genome and also successfully expressed, indicating that the recombinant MYXV expressing the vp60 of RHDV was generated. Protection against MYXV challenge showed that the recombinant virus induced detectable antibodies against MYXV which would shed light on development of the effective vaccine.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Vacinas Sintéticas , Proteínas Estruturais Virais , Animais , Western Blotting , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/imunologia , Coelhos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA