Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11053, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744900

RESUMO

This study investigated the influence of polyunsaturated fatty acid composition and vitamin E supplementation on oxidative status and immune responses in weanling piglets pre- and post-E. coli challenge. Suckling piglets (n = 24) were randomly selected from two litters for an oral supplementation (1 mL/day) with fish oil or hemp oil and vitamin E supplementation (60 mg natural vitamin E/mL oil) from day 10 to 28 of age. At day 29 and 30 of age, each piglet was orally inoculated with 6.7 × 108 and 3.96 × 108 CFU of F4 and F18 E. coli, respectively. Blood was sampled from all piglets on day 28 before E. coli challenge and on day 35 of age to investigate immunological and oxidative stress markers in plasma. One week after weaning and exposure to E. coli, a general reduction in the α-tocopherol concentration and activity of GPX1 was obtained. Vitamin E supplementation lowered the extent of lipid peroxidation and improved the antioxidative status and immune responses after E. coli challenge. Hemp oil had the greatest effect on antioxidant enzyme activity. Provision of hemp oil and vitamin E to suckling piglets may reduce the incidence of post-weaning diarrhea.


Assuntos
Cannabis , Suplementos Nutricionais , Infecções por Escherichia coli , Escherichia coli , Óleos de Peixe , Oxirredução , Vitamina E , Animais , Vitamina E/farmacologia , Suínos , Óleos de Peixe/farmacologia , Óleos de Peixe/administração & dosagem , Cannabis/química , Oxirredução/efeitos dos fármacos , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Desmame , Peroxidação de Lipídeos/efeitos dos fármacos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/tratamento farmacológico
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38629856

RESUMO

Frequent incidence of postweaning enterotoxigenic Escherichia coli (ETEC) diarrhea in the swine industry contributes to high mortality rates and associated economic losses. In this study, a combination of butyric, caprylic, and capric fatty acid monoglycerides was investigated to promote intestinal integrity and host defenses in weanling pigs infected with ETEC. A total of 160 pigs were allotted to treatment groups based on weight and sex. Throughout the 17-d study, three treatment groups were maintained: sham-inoculated pigs fed a control diet (uninfected control [UC], n = 40), ETEC-inoculated pigs fed the same control diet (infected control [IC], n = 60), and ETEC-inoculated pigs fed the control diet supplemented with monoglycerides included at 0.3% of the diet (infected supplemented [MG], n = 60). After a 7-d acclimation period, pigs were orally inoculated on each of three consecutive days with either 3 mL of a sham-control (saline) or live ETEC culture (3 × 109 colony-forming units/mL). The first day of inoculations was designated as 0 d postinoculation (DPI), and all study outcomes reference this time point. Fecal, tissue, and blood samples were collected from 48 individual pigs (UC, n = 12; IC, n = 18; MG, n = 18) on 5 and 10 DPI for analysis of dry matter (DM), bacterial enumeration, inflammatory markers, and intestinal permeability. ETEC-inoculated pigs in both the IC and MG groups exhibited clear signs of infection including lower (P < 0.05) gain:feed and fecal DM, indicative of excess water in the feces, and elevated (P < 0.05) rectal temperatures, total bacteria, total E. coli, and total F18 ETEC during the peak-infection period (5 DPI). Reduced (P < 0.05) expression of the occludin, tumor necrosis factor α, and vascular endothelial growth factor A genes was observed in both ETEC-inoculated groups at the 5 DPI time point. There were no meaningful differences between treatments for any of the outcomes measured at 10 DPI. Overall, all significant changes were the result of the ETEC infection, not monoglyceride supplementation.


Infection caused by the bacterium known as enterotoxigenic Escherichia coli (ETEC) is a common disruptor of weaned pigs' health, leading to economic losses for the producers. To determine if nutritional supplementation could help protect against these losses, weaned pigs were assigned to one of three treatments: 1) uninfected and fed a standard nursery pig diet, 2) infected with ETEC and fed the same standard diet, or 3) infected with ETEC and fed the standard diet supplemented with a combination of butyric, caprylic, and capric fatty acid monoglycerides. Growth performance was tracked throughout the 17-d study and health outcomes were measured at the peak and resolution of ETEC infection. At the peak-infection time point, pigs that were infected with ETEC had lower fecal moisture content, greater fecal bacterial concentrations, and elevated body temperatures compared with uninfected pigs. Additionally, infection reduced expression of genes related to inflammation, angiogenesis, and the intestinal barrier during the peak-infection period. Overall, all significant changes were the result of the ETEC infection, and there were no meaningful differences observed between the different treatments.


Assuntos
Ração Animal , Suplementos Nutricionais , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Monoglicerídeos , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/prevenção & controle , Escherichia coli Enterotoxigênica/fisiologia , Masculino , Feminino , Ração Animal/análise , Dieta/veterinária , Intestinos/microbiologia , Diarreia/veterinária , Diarreia/microbiologia , Fezes/microbiologia , Desmame
3.
J Agric Food Chem ; 72(18): 10328-10338, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38651941

RESUMO

This work seeks to generate new knowledge about the mechanisms underlying the protective effects of cranberry against urinary tract infections (UTI). Using Caco-2 cells grown in Transwell inserts as an intestinal barrier model, we found that a cranberry-derived digestive fluid (containing 135 ± 5 mg of phenolic compounds/L) increased transepithelial electrical resistance with respect to control (ΔTEER = 54.5 Ω cm2) and decreased FITC-dextran paracellular transport by about 30%, which was related to the upregulation of the gene expression of tight junction (TJ) proteins (i.e., occludin, zonula occludens-1 [ZO-1], and claudin-2) (∼3-4-fold change with respect to control for claudin-2 and ∼2-3-fold for occludin and ZO-1). Similar protective effects, albeit to a lesser extent, were observed when Caco-2 cells were previously infected with uropathogenic Escherichia coli (UPEC). In a urinary barrier model comprising T24 cells grown in Transwell inserts and either noninfected or UPEC-infected, treatments with the cranberry-derived phenolic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and phenylacetic acid (PAA) (250 µM) also promoted favorable changes in barrier integrity and permeability. In this line, incubation of noninfected T24 cells with these metabolites induced positive regulatory effects on claudin-2 and ZO-1 expression (∼3.5- and ∼2-fold change with respect to control for DOPAC and ∼1.5- and >2-fold change with respect to control for PAA, respectively). Overall, these results suggest that the protective action of cranberry polyphenols against UTI might involve molecular mechanisms related to the integrity and functionality of the urothelium and intestinal epithelium.


Assuntos
Extratos Vegetais , Polifenóis , Infecções Urinárias , Vaccinium macrocarpon , Vaccinium macrocarpon/química , Humanos , Infecções Urinárias/prevenção & controle , Infecções Urinárias/microbiologia , Polifenóis/farmacologia , Polifenóis/química , Polifenóis/metabolismo , Células CACO-2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genética , Ocludina/genética , Ocludina/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Frutas/química , Intestinos/efeitos dos fármacos , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/microbiologia
4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38198728

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the major bacterial infections, causing substantial economic losses globally in the swine industry. This study aimed to investigate the impact of low Saccharomyces cerevisiae fermentation postbiotics (SCFP), high SCFP, essential oil (EO), or their combination on the growth performance and health of weanling pigs during ETEC infection. Forty-eight male weanling pigs were randomly allocated to five groups: 1) control group (CON-basal diet, n = 16); 2) low SCFP group (LSC-basal diet + 1.25 g/kg SCFP, n = 8); 3) high SCFP group (HSC-basal diet + 2 g/kg SCFP, n = 8); 4) essential oil group (EO-basal diet + 0.4 g/kg EO, n = 8); 5) the SCFP and EO combination group (SE-basal diet + 1.25 g/kg SCFP + 0.4 g/kg EO, n = 8). On day 15 of the trial, pigs in CON were divided into positive control (PC) and negative control (NC), and all pigs, except in NC, were challenged with ETEC. Under the normal condition, dietary LSC, HSC, EO, and EO all increased average daily gain (ADG) (P < 0.05), and decreased F:G ratio (P < 0.05) accompanied by decreased malondialdehyde (MDA) and increases in catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) indicating enhanced anti-oxidative capacity, as well as decreased IL-2, IL-8, INF-γ, indicating mitigated systemic inflammation. During ETEC infection, all treatments alleviated ETEC-induced ADG reduction, diarrhea, damages in intestinal permeability and morphology, and down-regulation of tight junctions (Claudin1, ZO-1, and Occludin), while HSC and EO exhibited additional protections. All treatments increased CAT, T-SOD, and T-AOC, and decreased MDA in serum and jejunal mucosa at similar degrees (P < 0.05). Moreover, all treatments alleviated ETEC-induced inflammation as shown by decreased IL-6, TNF-α, INF-γ, and increased IL-4 and IL-10 in serum or jejunal mucosa (P < 0.05), and enhanced the immunity by increased serum IgG and mucosal sIgA (P < 0.05). HSC and SE further reduced mucosal INF-γ and TNF-α than LSC or EO aligning with their additional protection against diarrhea during ETEC infection. Additionally, the key gut bacteria (e.g., Terrisporobacter) related to the benefits of SCFP and EO were identified. In sum, all treatments enhanced growth performance and protected against ETEC-induced intestinal damage through the regulation of redox and immune homeostasis. HSP and SE offered extra protection during disease for their additional control of inflammation. Our study provided new insight into the use of feed additives in the context of animal health states.


Weanling pigs are vulnerable to a variety of stressors and pathogen infections. Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea and growth retardation in weanling pigs. The postbiotics, Saccharomyces cerevisiae fermentation postbiotics (SCFP), and essential oil (EO, mainly thymol, and cinnamaldehyde) were reported to exert health benefits in different sites of the intestine. However, whether SCFP and EO have dose and synergistic effects on weanling pigs, especially against ETEC infection, is incompletely understood. Our research has revealed that SCFP, EO, and their combination all enhanced the growth performance and intestinal barrier function, and reduced diarrhea of piglets, albeit to varying degrees, under both health conditions and ETEC infection. We further elucidated the disparity in the regulation of redox and immune homeostasis by SCFP, EO, and their combination contributing to their different action in distinct states. This has led to a reevaluation of the function of additives in the context of gut health and disease susceptibility.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Óleos Voláteis , Doenças dos Suínos , Suínos , Masculino , Animais , Saccharomyces cerevisiae , Fator de Necrose Tumoral alfa , Óleos Voláteis/farmacologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Diarreia/microbiologia , Diarreia/veterinária , Dieta/veterinária , Inflamação/veterinária , Superóxido Dismutase , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Ração Animal/análise , Desmame
5.
Vet Microbiol ; 288: 109923, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061277

RESUMO

Escherichia coli and Salmonella Typhimurium are the main pathogens of diarrhea in weaned piglets. The prevention of bacterial diarrhea in weaned piglets by phage is rarely reported. We conducted this study to evaluate the preventive effect of phages on mixed Escherichia coli and Salmonella Typhimurium infections in weaned piglets. A novel phage named NJ12 was isolated by using Salmonella Typhimurium SM022 as host bacteria and characterized by electron microscopy, genomic analysis and in vitro bacteriostatic activity. Phage NJ12 and a previously reported phage EP01 were microencapsulated with sodium alginate to make phage cocktail. Microencapsulated phage cocktail and PBS (Phosphate buffer solution) were used to piglets the phage and phage-free group through oral administration before bacterial infection 2 h, respectively. Piglets of the phage and phage-free group were consumed with feed contaminated with 6 mL (108CFU/mL) Escherichia coli O157:H7 GN07 (GXEC-N07) and 6 mL (108CFU/mL) SM022 every day for seven consecutive days. The results showed that piglets in the phage-free group had more severe diarrhea, larger decreased average weight gain and higher levels of neutrophils compared with piglets in phage group. Meanwhile, piglets in the phage-free group had higher load of SM022 and GN07 in jejunal tissue and more severe intestinal damage compared with piglets in group phage in vivo. In addition, oral administration phage can significant decreased the relative abundance of Enterobacteriaceae but hardly repaired the changes of diversity and composition of gut microbiota caused by the mixed infection of SM022 and GN07. This implies that phage used as a feed additive have a marvelous preventive effect on bacterial diarrhea during weaning of piglets.


Assuntos
Bacteriófagos , Disenteria , Infecções por Escherichia coli , Escherichia coli O157 , Infecções por Salmonella , Doenças dos Suínos , Animais , Suínos , Salmonella typhimurium , Escherichia coli O157/genética , Desmame , Diarreia/prevenção & controle , Diarreia/veterinária , Diarreia/microbiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Disenteria/veterinária , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia
6.
Pol J Vet Sci ; 26(3): 367-376, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37727052

RESUMO

Montmorillonite (MMT), a natural absorbent agent, has widely been accepted for its antidiarrhea function in human and farm animals; however, its specific physicochemical property limits its biological function in practical use. In the current study, raw MMT was loaded by andrographolide, namely andrographolide loaded montmorillonite (AGP-MMT). The microstructure of AGP-MMT was observed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The effect of AGP-MMT on the growth performance, intestinal barrier and inflammation was investigated in an enterotoxigenic Escherichia coli (ETEC) challenged mice model. The results show that the microstructure of MMT was obviously changed after andrographolide modification: AGP-MMT exhibited a large number of spheroid particles, and floccule aggregates, but lower interplanar spacing compared with MMT. ETEC infection induced body weight losses and intestinal barrier function injury, as indicated by a lower villus height and ratio of villus height/crypt depth, whereas the serum levels of diamine oxidase (DAO), D-xylose and ETEC shedding were higher in the ETEC group compared with the CON group. Mice pretreated with AGP-MMT showed alleviated body weight losses and the intestinal barrier function injury induced by ETEC challenge. The villus height and the ratio of villus height/crypt depth, were higher in mice pretreated with AGP-MMT than those pretreated with equal levels of MMT. Pretreatment with AGP-MMT also alleviated the increased concentration of serum tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), and the corresponding genes in the jejunum induced by ETEC infection in mice. The protein and mRNA levels of IL-1ß were lower in mice pretreated with AGP-MMT than those with equal levels of MMT. The results indicate that AGP-MMT was more effective in alleviating intestinal barrier injury and inflammation in mice with ETEC challenge than MMT.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Humanos , Animais , Camundongos , Bentonita/farmacologia , Bentonita/uso terapêutico , Inflamação/prevenção & controle , Inflamação/veterinária , Modelos Animais de Doenças , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Redução de Peso
7.
Scand J Urol ; 58: 32-37, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553957

RESUMO

BACKGROUND: Infection of the prostate gland following biopsy, usually with Escherichia coli, is a common complication, despite the use of antimicrobial prophylaxis. A fluoroquinolone (FQ) is commonly prescribed as prophylaxis. Worryingly, the rate of fluoroquinolone-resistant (FQ-R) E. coli species has been shown to be increasing. OBJECTIVE: This study aimed to identify risk factors associated with infection after transrectal ultrasound-guided prostate biopsy (TRUS-Bx). METHODS: This was a prospective study on patients undergoing TRUS-Bx in southeast Sweden. Prebiopsy rectal and urine cultures were obtained, and antimicrobial susceptibility and risk-group stratification were determined. Multivariate analyses were performed to identify independent risk factors for post-biopsy urinary tract infection (UTI) and FQ-R E. coli in the rectal flora. RESULTS: In all, 283 patients were included, of whom 18 (6.4%) developed post-TRUS-Bx UTIs. Of these, 10 (3.5%) had an UTI without systemic inflammatory response syndrome (SIRS) and 8 (2.8%) had a UTI with SIRS. Being in the medium- or high-risk groups of infectious complications was not an independent risk factor for UTI with SIRS after TRUS-Bx, but low-level FQ-resistance (minimum inhibitory concentration (MIC): 0.125-0.25 mg/L) or FQ-resistance (MIC > 0.5 mg/L) among E. coli in the faecal flora was. Risk for SIRS increased in parallel with increasing degrees of FQ-resistance. Significant risk factor for harbouring FQ-R E.coli was travelling outside Europe within the previous 12 months. CONCLUSION: The predominant risk factor for UTI with SIRS after TRUS-Bx was FQ-R E. coli among the faecal flora. The difficulty in identifying this type of risk factor demonstrates a need for studies on the development of a general approach either with rectal swab culture for targeted prophylaxis, or prior rectal preparation with a bactericidal agent such as povidone-iodine before TRUS-Bx to reduce the risk of FQ-R E. coli-related infection.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Masculino , Humanos , Próstata/patologia , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Escherichia coli , Estudos Prospectivos , Antibioticoprofilaxia , Farmacorresistência Bacteriana , Reto/patologia , Biópsia/efeitos adversos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fatores de Risco , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/etiologia , Infecções por Escherichia coli/prevenção & controle , Infecções Urinárias/epidemiologia , Infecções Urinárias/etiologia , Infecções Urinárias/prevenção & controle , Ultrassonografia de Intervenção , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Biópsia Guiada por Imagem/efeitos adversos
8.
Int J Biol Macromol ; 246: 125700, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37414312

RESUMO

The rapid spread of multidrug-resistant pathogens with the low efficacy of common antibiotics for humans and animals in its clinical therapeutics are a global health concern. Therefore, there is a need to develop new treatment strategies to control them clinically. The study aimed to evaluate the effects of Plantaricin Bio-LP1 bacteriocin produced from Lactiplantibacillus plantarum NWAFU-BIO-BS29 to alleviate the inflammation caused by multidrug-resistance Escherichia Coli (MDR-E. coli) infection in BALB/c mice-model. The focus was given on aspects linked to the mechanism of the immune response. Results indicated that Bio-LP1 had highly promising effects on partially ameliorating MDR-E. coli infection by reducing the inflammatory response through inhibiting the overexpression of proinflammatory-cytokines such as secretion of tumor necrosis factor (TNF-α) and interleukin (IL-6 and IL-ß) and strongly regulated theTLR4 signaling-pathway. Additionally, avoided the villous destruct, colon length shortening, loss of intestinal barrier integrity, and increased disease activity index. Furthermore, significantly increased the relative abundance of beneficial-intestinal-bacteria including Ligilactobacillus, Enterorhabdus, Pervotellaceae, etc. Finally, improved the intestinal mucosal barrier to alleviate the pathological damages and promote the production of short-chain fatty acids (SCFAs) a source of energy for the proliferation. In conclusion, plantaricin Bio-LP1 bacteriocin can be considered a safe alternative to antibiotics against MDR-E. coli-induced intestinal inflammation.


Assuntos
Bacteriocinas , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Lactobacillaceae , Animais , Camundongos , Bacteriocinas/administração & dosagem , Bacteriocinas/isolamento & purificação , Bacteriocinas/farmacologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Microbioma Gastrointestinal , Inflamação/prevenção & controle , Intestinos/metabolismo , Intestinos/microbiologia , Lactobacillaceae/química , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Ácidos Graxos Voláteis/análise
9.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37167436

RESUMO

This study was conducted to investigate the effects of supplementing different ratios of phytogenic feed additives (PFA) to weaned pigs challenged with pathogenic Escherichia coli on growth performance, nutrient digestibility, intestinal barrier integrity, and immune response, and to determine the optimal mixing ratio for post-weaning diarrhea (PWD) prevention. A total of 48 4-wk-old weaned pigs with initial body weight of 8.01 ± 0.39 kg were placed in individual metabolic cages, and then randomly assigned to eight treatment groups. The eight treatments were as follows: a basal diet without E. coli challenge (negative control, NC), a basal diet with E. coli challenge (positive control, PC), PC with supplementing 0.1% mixture of 20% bitter citrus extract (BCE), 10% microencapsulated blend of thymol and carvacrol (MEO), and 70% excipient (T1), PC with supplementing 0.1% mixture of 10% MEO, 20% premixture of grape seed and grape marc extract, green tea, and hops (PGE), and 60% excipient (T2), PC with supplementing 0.1% mixture of 10% BCE, 10% MEO, 10% PGE, and 70% excipient (T3), PC with supplementing 0.1% mixture of 20% BCE, 20% MEO, and 60% excipient (T4), PC with supplementing 0.1% mixture of 20% MEO, 20% PGE, and 60% excipient (T5), and PC with supplementing 0.1% mixture of 10% BCE, 20% MEO, 10% PGE, and 60% excipient (T6). The experiments progressed in 16 days, including 5 days before and 11 days after the first E. coli challenge (day 0). In the E. coli challenge treatments, all pigs were orally inoculated by dividing a total of 10 mL of E. coli F 18 for three consecutive days from day 0 postinoculation (PI). Compared with the PC group, the PFA2 and PFA6 groups significantly increased (P < 0.05) feed efficiency and decreased (P < 0.05) diarrhea during the entire period. At day 11 PI, the PFA6 group significantly improved (P < 0.05) gross energy digestibility compared to the PFA1 group. The PFA6 group significantly decreased (P < 0.05) tumor necrosis factor α (TNF-α) and interleukin-6 in serum and increased (P < 0.05) the villus height to crypt depth ratio (VH:CD). The PFA2 significantly decreased (P < 0.05) the relative protein expression of calprotectin in the ileum. In conclusion, improvements in growth performance, diarrhea reduction, and immunity enhancement are demonstrated when 10% BCE, 20% MEO, 10% PGE, and 60% excipient are mixed.


Phytogenic feed additives (PFA) include various herbs and spices, such as essential oils and polyphenols. Flavonoids and polyphenols contained in PFA are generally known to have antioxidant and antibacterial actions and based on this, PFA is considered an alternative to antibiotics in the swine industry. Pathogenic Escherichia coli infection is one of the most important causes of post-weaning diarrhea (PWD) in pigs. PWD causes intestinal damage, which leads to severe diarrhea, reduced growth performance, and mortality in weaned pigs, resulting in significant financial loss to the swine industry. Therefore, this study was conducted to investigate the effects of supplementing different ratios of PFA to weaned pigs challenged with E. coli and determine the optimal mixing ratio for PWD prevention. Our study results showed that growth performance was improved when supplementing a mixture of 10% bitter citrus extract (BCE), 20% microencapsulated blend of thymol and carvacrol (MEO), 10% premixture of grape seed and grape marc extract, green tea, and hops (PGE), and 60% excipient. Also, the effect of improving the immune response and intestinal morphology was shown. In conclusion, a mixture of 10% BCE, 20% MEO, 10% PGE, and 60% excipients is considered the optimal mixing ratio.


Assuntos
Infecções por Escherichia coli , Doenças dos Suínos , Suínos , Animais , Escherichia coli , Desmame , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Excipientes , Diarreia/prevenção & controle , Diarreia/veterinária , Dieta/veterinária , Nutrientes , Imunidade , Ração Animal/análise , Doenças dos Suínos/prevenção & controle
10.
Benef Microbes ; 14(5): 477-491, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38656096

RESUMO

The probiotic Enterococcus faecium is a gut microbe with immunomodulatory effects, which has been widely used to prevent diarrhoea in pigs and birds. Escherichia coli is a common pathogen that causes inflammatory bowel disease in animals. The aim of this study was to investigate the protective effects of E. faecium on enteritis in goats. Forty goats were randomly divided into 4 treatment groups: control, E. faecium, E. coli, and E. faecium + E. coli. The changes of physiological indicators and diarrhoea scoring were evaluated on days -4, -2, 0, 2, 4, 6, and 8. The pathological examination, inflammatory cytokines mRNA expression and bacterial counts in jejunum and caecum were detected on day 4 and 8. The results showed that body temperature, respiratory rate, heart rate and leukocyte counts all increased from the 2nd to the 6th day after feeding with E. coli, and the diarrhoea score was significantly increased. However, E. faecium-pretreated goats had lower body temperatures and fewer leukocytes than E. coli-treated goats on day 2, as well as decreased diarrhoea scores. E. coli treatment caused histopathological damage and morphological changes in the jejunum and caecum, while pretreatment with E. faecium significantly alleviated these injuries. E. faecium pretreatment can reduce the load of E. coli and increase the prevalence of Lactobacillus, thereby balancing the microbiota in the intestine. Furthermore, E. coli-infected goats pretreated with E. faecium showed obvious inhibition of Toll-like receptor 4, interleukin (IL)-1ß, IL-6, IL-8 and tumour necrosis factor-α mRNA expression in the jejunum and caecum compared to that in the E. coli treatment group. In conclusion, the addition of E. faecium to goat feed is beneficial for improving clinical symptoms, maintaining intestinal mucosa integrity, balancing the microbiota and decreasing inflammatory responses in E. coli-induced intestinal injury.


Assuntos
Citocinas , Enterite , Enterococcus faecium , Infecções por Escherichia coli , Escherichia coli , Doenças das Cabras , Cabras , Probióticos , Animais , Probióticos/administração & dosagem , Probióticos/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/microbiologia , Enterite/prevenção & controle , Enterite/veterinária , Enterite/microbiologia , Doenças das Cabras/microbiologia , Doenças das Cabras/prevenção & controle , Citocinas/metabolismo , Citocinas/genética , Jejuno/microbiologia , Jejuno/patologia , Diarreia/veterinária , Diarreia/microbiologia , Diarreia/prevenção & controle , Ceco/microbiologia , Carga Bacteriana , Suplementos Nutricionais
11.
World J Microbiol Biotechnol ; 39(1): 8, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350434

RESUMO

Nattokinase with excellent anti-thrombotic, anti-inflammatory, anti-tumor, and anti-hypertension properties has been used in the development of several healthcare products in many countries. The probiotic Escherichia coli Nissle 1917 (EcN) with anti-inflammatory effect is commonly used to treat inflammatory bowel disease. To determine whether nattokinase could enhance the therapeutic efficacy of EcN in colitis, a recombinant E. coli Nissle 1917 strain (EcNnatto) with nattokinase-expressing ability was successfully constructed, and the protective effect of the engineered strain on mice with experimental chronic colitis was investigated. Although both EcN and EcNnatto strains substantially alleviated the clinical symptoms and pathological abnormalities in colitis mice by regulating gut flora and maintaining intestinal barrier function, the EcNnatto strain was found to perform better than the control strain, based on a further increase in colon length and a downregulation in pro-inflammatory cytokines (IL-6 and TNF-α). Nattokinase expressed in EcN attenuated DSS-induced epithelial damage and restored the mucosal integrity by upregulating the levels of tight junction proteins, including ZO-1 and occludin. The expression level of Lgr5, a marker of intestinal stem cells, was also increased. Moreover, constitutively expressed nattokinase in EcN reversed the gut microbial richness and diversity in colitis mice. Based on our findings, nattokinase could strengthen the capacity of EcN to treat intestinal inflammation.


Assuntos
Colite , Infecções por Escherichia coli , Probióticos , Animais , Camundongos , Anti-Inflamatórios/metabolismo , Colite/induzido quimicamente , Colite/prevenção & controle , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Escherichia coli/metabolismo , Infecções por Escherichia coli/prevenção & controle , Probióticos/farmacologia
12.
Trop Anim Health Prod ; 54(5): 286, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083376

RESUMO

This work was designed to evaluate the efficacy of a postbiotic compound produced by stabilized non-viable Lactobacilli on the health, growth performance, immunity, and gut status against Escherichia coli (E. coli) challenge of broiler chickens. A total of 400, day-old broiler chicks were allocated into 4 equal groups (1-4) consisting of 100; each assigned into 2 equal replicates (50 each). Chickens in the 1st group were received the dry form of the compound at doses of 1 kg and 0.5 kg/ton feed for starter and grower, and the finisher diets, respectively. Chickens in the 2nd group were given the aqueous form of the compound in a dose of 4 mL/L of the drinking water during the first 3 days of life and at a day before and after each vaccination. Feed and water treatment regimens were administered to chickens in the 3rd group. Group 4 was kept without treatment. Each bird in the 1st, 2nd, 3rd, and 4th group was challenged with E. coli (O78) at 1-week-old. All groups were kept under observation till 5-week-old. Statistical analysis included one-way ANOVA and other methods as described with significant differences at P ≤ 0.05. The results indicated that feed and water treatments with the postbiotic compound induced more significant (P ≤ 0.05) amelioration of a disease picture, enhancement of growth performance, boosting of immune response, improvement of bursa of Fabricius/body weight ratio, and reduction of intestinal coliform count in challenged chickens when compared with challenged non-treated chickens. In conclusion, the postbiotic compound either in a dry and/or an aqueous form is recommended for improving the health, performance, and immunity of colisepticaemic broiler chickens.


Assuntos
Galinhas , Infecções por Escherichia coli , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Escherichia coli/fisiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Lactobacillus
13.
Gut Microbes ; 14(1): 2122667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36138514

RESUMO

Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC) cause gastrointestinal infection and, in severe cases, hemolytic uremic syndrome which may lead to death. There is, to-date, no therapy for this infection. Stx induces ATP release from host cells and ATP signaling mediates its cytotoxic effects. Apyrase cleaves and neutralizes ATP and its effect on Stx and EHEC infection was therefore investigated. Apyrase decreased bacterial RecA and dose-dependently decreased toxin release from E. coli O157:H7 in vitro, demonstrated by reduced phage DNA and protein levels. The effect was investigated in a mouse model of E. coli O157:H7 infection. BALB/c mice infected with Stx2-producing E. coli O157:H7 were treated with apyrase intraperitoneally, on days 0 and 2 post-infection, and monitored for 11 days. Apyrase-treated mice developed disease two days later than untreated mice. Untreated infected mice lost significantly more weight than those treated with apyrase. Apyrase-treated mice exhibited less colonic goblet cell depletion and apoptotic cells, as well as lower fecal ATP and Stx2, compared to untreated mice. Apyrase also decreased platelet aggregation induced by co-incubation of human platelet-rich-plasma with Stx2 and E. coli O157 lipopolysaccharide in the presence of collagen. Thus, apyrase had multiple protective effects, reducing RecA levels, stx2 and toxin release from EHEC, reducing fecal Stx2 and protecting mouse intestinal cells, as well as decreasing platelet activation, and could thereby delay the development of disease.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Escherichia coli O157 , Microbioma Gastrointestinal , Trifosfato de Adenosina/metabolismo , Animais , Apirase/metabolismo , Apirase/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/genética , Humanos , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Toxina Shiga/metabolismo , Toxina Shiga/farmacologia , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Toxina Shiga II/farmacologia
14.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142202

RESUMO

To explore the protective effect of dietary ß-glucan (BGL) supplementation on intestinal epithelium exposure to enterotoxigenic Escherichia coli (ETEC), thirty-two weaned pigs were assigned to four groups. Pigs were fed with a basal diet or basal diet containing 500 mg/kg BGL, and were orally infused with ETEC or culture medium. Results showed BGL supplementation had no influence on growth performance in weaned pigs. However, BGL supplementation increased the absorption of D-xylose, and significantly decreased the serum concentrations of D-lactate and diamine oxidase (DAO) in the ETEC-challenged pigs (p < 0.05). Interestingly, BGL significantly increased the abundance of the zonula occludens-1-(ZO-1) in the jejunal epithelium upon ETEC challenge (p < 0.05). BGL supplementation also increased the number of S-phase cells and the number of sIgA-positive cells, but significantly decreased the number of total apoptotic cells in the jejunal epithelium upon ETEC challenge (p < 0.05). Moreover, BGL significantly increased the duodenal catalase (CAT) activity and the ileal total superoxide dismutase (T-SOD) activity in the ETEC-challenged pigs (p < 0.05). Importantly, BGL significantly decreased the expression levels of critical inflammation related proteins such as the tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) in the jejunal and ileal mucosa upon ETEC challenge (p < 0.05). BGL also elevated the propanoic acid content and the abundance of Lactobacillus and Bacillus in the colon upon ETEC challenge (p < 0.05). These results suggested BGL could alleviate the ETEC-induced intestinal epithelium injury, which may be associated with suppressed inflammation and improved intestinal immunity and antioxidant capacity, as well as the improved intestinal macrobiotic.


Assuntos
Amina Oxidase (contendo Cobre) , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , beta-Glucanas , Agrobacterium/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Imunoglobulina A Secretora/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lactatos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Propionatos/farmacologia , Superóxido Dismutase/metabolismo , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/prevenção & controle , Fator de Necrose Tumoral alfa/metabolismo , Xilose/metabolismo , beta-Glucanas/metabolismo
15.
BMC Vet Res ; 18(1): 308, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35953794

RESUMO

Bacterial flagellin is a potent powerful adjuvant, which exerts its adjuvant activity by activating the Toll-like receptor 5 (TLR5) signaling pathway to induce host pro-inflammatory responses. Flagellin of Salmonella typhimurium (S. typhimurium) has shown strong adjuvant effects for a variety of vaccine candidates, however, the adjuvanticity of different serotypes of Escherichia coli (E. coli) flagellin (FliC) is unclear. To explore the adjuvant activity of different serotypes of E. coli flagellin, FliCH1, FliCH7, and FliCH19 recombinant flagellins were prokaryotically-expressed and purified. The adjuvanticity of three recombinant flagellins was evaluated by analyzing their abilities to induce the IL-8 production in human colorectal adenocarcinoma (Caco-2) cells and the immune responses to co-administrated FaeG antigen in mice. Sequence analysis showed that the N-and C-terminal regions are highly conserved, whereas the central region is hypervariable. The TLR5 recognized site is identical among these three serotypes of flagellins. Coomassie blue staining SDS-PAGE showed the molecular mass of FliCH1, FliCH7, and FliCH19 recombinant flagellin are 66 kDa, 64 kDa, and 68 kDa, which can be recognized by anti-FliCH1, FliCH7, and FliCH19 serum, respectively. Moreover, the flagellin serotypes induced similar levels of IL-8 and TNF-α production in Caco-2 cells, anti-FaeG specific IgG antibodies in mice, and IL-4 production in mice spleen cells. Our results indicated that E. coli flagellins can be an adjuvant for vaccine candidates and that different serotypes of E. coli flagellins possess identical adjuvant effects.


Assuntos
Infecções por Escherichia coli , Doenças dos Roedores , Adjuvantes Imunológicos/farmacologia , Animais , Células CACO-2 , Escherichia coli , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Flagelina/genética , Humanos , Interleucina-8/metabolismo , Camundongos , Sorogrupo , Receptor 5 Toll-Like
16.
Microbiol Spectr ; 10(4): e0125721, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736372

RESUMO

Enteric infections caused by enterotoxic Escherichia coli (ETEC) negatively impact the growth performance of piglets during weaning, resulting in significant economic losses for the producers. With the ban on antibiotic usage in livestock production, probiotics have gained a lot of attention as a potential alternative. However, strain specificity and limited knowledge on the host-specific targets limit their efficacy in preventing ETEC-related postweaning enteric infections. We recently isolated and characterized a novel probiotic Bacillus subtilis bacterium (CP9) that demonstrated antimicrobial activity. Here, we report anti-ETEC properties of CP9 and its impact on metabolic activity of swine intestinal epithelial (IPEC-J2) cells. Our results showed that pre- or coincubation with CP9 protected IPEC-J2 cells from ETEC-induced cytotoxicity. CP9 significantly attenuated ETEC-induced inflammatory response by reducing ETEC-induced nitric oxide production and relative mRNA expression of the Toll-like receptors (TLRs; TLR2, TLR4, and TLR9), proinflammatory tumor necrosis factor alpha, interleukins (ILs; IL-6 and IL-8), augmenting anti-inflammatory granulocyte-macrophage colony-stimulating factor and host defense peptide mucin 1 (MUC1) mRNA levels. We also show that CP9 significantly (P < 0.05) reduced caspase-3 activity, reinstated cell proliferation and increased relative expression of tight junction genes, claudin-1, occludin, and zona occludens-1 in ETEC-infected cells. Finally, metabolomic analysis revealed that CP9 exposure induced metabolic modulation in IPEC J2 cells with the greatest impact seen in alanine, aspartate, and glutamate metabolism; pyrimidine metabolism; nicotinate and nicotinamide metabolism; glutathione metabolism; the citrate cycle (TCA cycle); and arginine and proline metabolism. Our study shows that CP9 incubation attenuated ETEC-induced cytotoxicity in IPEC-J2 cells and offers insight into potential application of this probiotic for ETEC infection control. IMPORTANCE ETEC remains one of the leading causes of postweaning diarrhea and mortality in swine production. Due to the rising concerns with the antibiotic use in livestock, alternative interventions need to be developed. In this study, we analyzed the cytoprotective effect of a novel probiotic strain in combating ETEC infection in swine intestinal cells, along with assessing its mechanism of action. To our knowledge, this is also the first study to analyze the metabolic impact of a probiotic on intestinal cells. Results from this study should provide effective cues in developing a probiotic intervention for ameliorating ETEC infection and improving overall gut health in swine production.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Probióticos , Animais , Antibacterianos/farmacologia , Bacillus subtilis , Linhagem Celular , Citoproteção , Escherichia coli Enterotoxigênica/metabolismo , Células Epiteliais/microbiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Probióticos/farmacologia , RNA Mensageiro/metabolismo , Suínos
17.
J Chemother ; 34(7): 459-464, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35416116

RESUMO

Recurring urinary tract infections (rUTIs) are frequently caused by Escherichia coli, which invades urothelial cells and forms quiescent bacterial reservoirs. D-mannose, an inert monosaccharide, represents a notable agent for rUTI prevention; however, there is no agreement on its dosage. To provide pharmacological basis for an effective dose, we evaluated its ability to inhibit adhesion of E. coli to urothelial cells. E. coli strains isolated from the urine of a woman with recurrent urinary tract infections were selected according to adhesion capacity. Anti-adhesive efficacy and invasion were tested using the TCC-5637 urothelial cell line. The IC50 for the anti-adhesive efficacy and anti-invasion activity of D-mannose were 0.51 mg/ml and 0.30 mg/ml, respectively, both with concentration-dependent inhibition. Lastly, the biofilm interference of D-mannose was evaluated to be 50 mg/ml. D-mannose inhibited the adhesion of E. coli to urothelial cells at high concentrations, whereas inhibition of invasion occurred at much lower concentrations.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Humanos , Feminino , Manose/farmacologia , Escherichia coli , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/prevenção & controle , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/microbiologia , Biofilmes
18.
Microb Pathog ; 165: 105477, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35278644

RESUMO

Increasing reports have indicated that specific strains of probiotic Bacillus have the potential to prevent diseases. The purpose of this study was to explore the effects of three Bacillus strains (Bacillus subtilis BSWJ2017001, Bacillus pumilus BSWJ2017002, and B. subtilis BSWJ2017003) mixture dietary supplementation on rex rabbits infected with enterotoxigenic Escherichia coli (ETEC). In this study, 60 35-day-old weaning rex rabbits were separated into two groups randomly: control group (fed basal diet with no antibiotics) and Bacillus strains group (fed basal diet containing 1.0 × 106 CFU/g Bacillus strains mixture). After 8 weeks of feeding, the rex rabbits were inoculated orally with 5.0 mL of ETEC (1.0 × 109 CFU/mL) and assessed at 0, 12, and 24 h. The Bacillus strains mixture attenuated the oxidative damage, diarrhea severity, and intestinal damage of ETEC infected rabbits. It also significantly increased the population of Lactobacillus spp., and Bifidobacterium spp., and decreased the population of Enterococcus spp.. Moreover, Bacillus strains group exhibited higher levels of toll-like receptor (TLR) 2, anti-inflammatory cytokines, secretory immunoglobulin A, and intestinal barrier-related genes than control group, as well as lower levels of TLR-4 and pro-inflammatory cytokines. These results demonstrated that Bacillus strains mixture could attenuate injury caused by ETEC and enhance disease resistance by improving specific intestinal microbiota members and immunity in weaning rex rabbits.


Assuntos
Bacillus , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Probióticos , Animais , Citocinas , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Coelhos
19.
Theranostics ; 12(2): 675-688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976207

RESUMO

Background: Innate immune memory, also termed "trained immunity", is thought to protect against experimental models of infection, including sepsis. Trained immunity via reprogramming monocytes/macrophages has been reported to result in enhanced inflammatory status and antimicrobial activity against infection in sepsis. However, a safe and efficient way to induce trained immunity remains unclear. Methods: ß-glucan is a prototypical agonist for inducing trained immunity. Ferumoxytol, superparamagnetic iron oxide (SPIO) with low cytotoxicity, has been approved by FDA for clinical use. We synthesized novel nanoparticles BSNPs by coupling ß-glucan with SPIO. BSNPs were further conjugated with fluorescein for quantitative analysis and trace detection of ß-glucan on BSNPs. Inflammatory cytokine levels were measured by ELISA and qRT-PCR, and the phagocytosis of macrophages was detected by flow cytometry and confocal microscopy. The therapeutic effect of BSNPs was evaluated on the well-established sepsis mouse model induced by both clinical Escherichia coli (E. coli) and cecal ligation and puncture (CLP). Results: BSNPs were synthesized successfully with a 3:20 mass ratio of ß-glucan and SPIO on BSNPs, which were mainly internalized by macrophages and accumulated in the lungs and livers of mice. BSNPs effectively reprogrammed macrophages to enhance the production of trained immunity markers and phagocytosis toward bacteria. BSNP-induced trained immunity protected mice against sepsis caused by E. coli and CLP and also against secondary infection. We found that BSNP treatment elevated Akt, S6, and 4EBP phosphorylation, while mTOR inhibitors decreased the trained immunity markers and phagocytosis enhanced by BSNPs. Furthermore, the PCR Array analysis revealed Igf1, Sesn1, Vegfa, and Rps6ka5 as possible key regulators of mTOR signaling during trained immunity. BSNP-induced trained immunity mainly regulated cellular signal transduction, protein modification, and cell cycle by modulating ATP binding and the kinase activity. Our results indicated that BSNPs induced trained immunity in an mTOR-dependent manner. Conclusion: Our data highlight that the trained immunity of macrophages is an effective strategy against sepsis and suggest that BSNPs are a powerful tool for inducing trained immunity to prevent and treat sepsis and secondary infections.


Assuntos
Infecções por Escherichia coli/imunologia , Óxido Ferroso-Férrico/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro , Sepse/imunologia , Animais , Modelos Animais de Doenças , Infecções por Escherichia coli/prevenção & controle , Feminino , Imunidade Inata , Memória Imunológica , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Nanopartículas Magnéticas de Óxido de Ferro/química , Camundongos , Camundongos Endogâmicos ICR , Fagocitose/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Sepse/prevenção & controle , beta-Glucanas/química , beta-Glucanas/uso terapêutico
20.
Sci Rep ; 12(1): 941, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042907

RESUMO

Bacteriophages, simply phages, have long been used as a potential alternative to antibiotics for livestock due to their ability to specifically kill enterotoxigenic Escherichia coli (ETEC), which is a major cause of diarrhea in piglets. However, the control of ETEC infection by phages within intestinal epithelial cells, and their relationship with host immune responses, remain poorly understood. In this study, we evaluated the effect of phage EK99P-1 against ETEC K99-infected porcine intestinal epithelial cell line (IPEC-J2). Phage EK99P-1 prevented ETEC K99-induced barrier disruption by attenuating the increased permeability mediated by the loss of tight junction proteins such as zonula occludens-1 (ZO-1), occludin, and claudin-3. ETEC K99-induced inflammatory responses, such as interleukin (IL)-8 secretion, were decreased by treatment with phage EK99P-1. We used a IPEC-J2/peripheral blood mononuclear cell (PBMC) transwell co-culture system to investigate whether the modulation of barrier disruption and chemokine secretion by phage EK99P-1 in ETEC K99-infected IPEC-J2 would influence immune cells at the site of basolateral. The results showed that phage EK99P-1 reduced the mRNA expression of ETEC K99-induced pro-inflammatory cytokines, IL-1ß and IL-8, from PBMC collected on the basolateral side. Together, these results suggest that phage EK99P-1 prevented ETEC K99-induced barrier dysfunction in IPEC-J2 and alleviated inflammation caused by ETEC K99 infection. Reinforcement of the intestinal barrier, such as regulation of permeability and cytokines, by phage EK99P-1 also modulates the immune cell inflammatory response.


Assuntos
Escherichia coli Enterotoxigênica/virologia , Mucosa Intestinal/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Aderência Bacteriana/fisiologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/patogenicidade , Linhagem Celular , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/fisiologia , Células Epiteliais/metabolismo , Escherichia coli/genética , Escherichia coli/fisiologia , Escherichia coli/virologia , Infecções por Escherichia coli/prevenção & controle , Inflamação/metabolismo , Enteropatias/metabolismo , Intestinos , Ocludina/metabolismo , Permeabilidade , Suínos , Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA