Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.683
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Methods Mol Biol ; 2807: 209-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743231

RESUMO

The post-transcriptional processing and chemical modification of HIV RNA are understudied aspects of HIV virology, primarily due to the limited ability to accurately map and quantify RNA modifications. Modification-specific antibodies or modification-sensitive endonucleases coupled with short-read RNA sequencing technologies have allowed for low-resolution or limited mapping of important regulatory modifications of HIV RNA such as N6-methyladenosine (m6A). However, a high-resolution map of where these sites occur on HIV transcripts is needed for detailed mechanistic understanding. This has recently become possible with new sequencing technologies. Here, we describe the direct RNA sequencing of HIV transcripts using an Oxford Nanopore Technologies sequencer and the use of this technique to map m6A at near single nucleotide resolution. This technology also provides the ability to identify splice variants with long RNA reads and thus, can provide high-resolution RNA modification maps that distinguish between overlapping splice variants. The protocols outlined here for m6A also provide a powerful paradigm for studying any other RNA modifications that can be detected on the nanopore platform.


Assuntos
Adenosina , Sequenciamento por Nanoporos , RNA Mensageiro , RNA Viral , Sequenciamento por Nanoporos/métodos , RNA Viral/genética , Metilação , Humanos , Adenosina/análogos & derivados , Adenosina/genética , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , HIV-1/genética , Processamento Pós-Transcricional do RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Infecções por HIV/virologia , Infecções por HIV/genética , HIV/genética
2.
Sci Rep ; 14(1): 10852, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741006

RESUMO

Hematopoietic stem-cell (HSC) transplantation using a donor with a homozygous mutation in the HIV co-receptor CCR5 (CCR5Δ32/Δ32) holds great promise as a cure for HIV-1. Previously, there were three patients that had been reported to be completely cured from HIV infection by this approach. However, finding a naturally suitable Human Leukocyte Antigen (HLA)-matched homozygous CCR5Δ32 donor is very difficult. The prevalence of this allele is only 1% in the Caucasian population. Therefore, additional sources of CCR5Δ32/Δ32 HSCs are required. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is one method to mediate CCR5 knockout in HSCs that has been successfully employed as a gene editing tool in clinical trials. Additional anti-HIV-1 strategies are still required for broad-spectrum inhibition of HIV-1 replication. Here in this study, we combined an additional anti-HIV-1 therapy, which is C46, a cell membrane-anchored HIV-1 fusion inhibitor with the CRISPR/Cas9 mediated knockout CCR5. The combined HIV-1 therapeutic genes were investigated for the potential prevention of both CCR5 (R5)- and CXCR4 (X4)-tropic HIV-1 infections in the MT4CCR5 cell line. The combinatorial CRISPR/Cas9 therapies were superior compared to single method therapy for achieving the HIV-1 cure strategy and shows potential for future applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Receptores CCR5 , Receptores CCR5/genética , Receptores CCR5/metabolismo , Edição de Genes/métodos , Humanos , HIV-1/genética , HIV-1/efeitos dos fármacos , Infecções por HIV/genética , Infecções por HIV/virologia , Infecções por HIV/terapia , Inibidores da Fusão de HIV/farmacologia , Linhagem Celular , Replicação Viral/efeitos dos fármacos , Proteínas Recombinantes de Fusão
3.
Eur Rev Med Pharmacol Sci ; 28(6): 2430-2463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567606

RESUMO

Human Immunodeficiency Virus (HIV) has continuously been the greatest epidemic for humanity over a period spanning almost five decades. With no specific cure or treatment available to date despite extensive research, the C-C Chemokine Receptor 5, Delta 32 (CCR5 Δ32) allele genetic point mutation plays an imperative role in the prevention of acquired immunodeficiency syndrome (AIDS). This comprehensive study aims to review the induction of the homozygous recessive deletion genotype using the Clustered Regularly Interspaced Short Palindromic Repeats, Cas 9 Enzyme (CRISPR-Cas9), and hematopoietic stem cell transplantation under positive selection pressure for active immunity in seropositive patients' populations as the phenotype. A methodology is proposed to trigger a significant increase in the expression of Delta 32 beneficial mutant alleles within controlled modern healthcare facilities utilizing totipotent stem cells through somatic gene therapy. It acts upon two dysfunctional CCR5 genes, translating mutant G protein-coupled co-receptors, whose primary function is similar to that of C-X-C Motif Chemokine receptor 4 (CXCR4), by blocking the entry of viral RNA into the CD4+ T helper lymphocytes, halting infection and seizing viral life cycle. This modification is endemic in Northern Europe, where it naturally pertains to the Caucasian descent population samples in the form of polymorphism, p (X=0.01), where X is the probability of frequency of complete immunity against HIV-1 in population samples. The epigenetics of the single nucleotide polymorphism (SNP) are analyzed as they play a significant role in immunity distribution. Furthermore, a comparative analysis within the ethical boundaries of CRISPR-Cas9 is conducted to discuss the practical aspects and challenges of the presented methodologies and treatment alternatives. Additionally, the study assembles all available data and summarizes preexisting research while providing a promising solution to this ethical dilemma. Finally, a methodology is devised to answer the question of whether the variant-specific epidemic of AIDS caused by HIV-1 can be cured via artificially inducing immunity by CRISPR-Cas9.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Síndrome da Imunodeficiência Adquirida/genética , Síndrome da Imunodeficiência Adquirida/terapia , Infecções por HIV/genética , Infecções por HIV/terapia , Sistemas CRISPR-Cas/genética , Receptores CCR5/genética , Receptores CCR5/metabolismo , Mutação , Terapia Genética , Polimorfismo de Nucleotídeo Único , Frequência do Gene
4.
Cell Stem Cell ; 31(4): 499-518.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579682

RESUMO

Allogeneic hematopoietic stem and progenitor cell transplant (HSCT) of CCR5 null (CCR5Δ32) cells can be curative for HIV-1-infected patients. However, because allogeneic HSCT poses significant risk, CCR5Δ32 matched bone marrow donors are rare, and CCR5Δ32 transplant does not confer resistance to the CXCR4-tropic virus, it is not a viable option for most patients. We describe a targeted Cas9/AAV6-based genome editing strategy for autologous HSCT resulting in both CCR5- and CXCR4-tropic HIV-1 resistance. Edited human hematopoietic stem and progenitor cells (HSPCs) maintain multi-lineage repopulation capacity in vivo, and edited primary human T cells potently inhibit infection by both CCR5-tropic and CXCR4-tropic HIV-1. Modification rates facilitated complete loss of CCR5-tropic replication and up to a 2,000-fold decrease in CXCR4-tropic replication without CXCR4 locus disruption. This multi-factor editing strategy in HSPCs could provide a broad approach for autologous HSCT as a functional cure for both CCR5-tropic and CXCR4-tropic HIV-1 infections.


Assuntos
Edição de Genes , Infecções por HIV , HIV-1 , Humanos , Edição de Genes/métodos , Células-Tronco Hematopoéticas , Infecções por HIV/genética , Infecções por HIV/terapia , HIV-1/genética , Receptores CCR5/genética , Receptores CXCR4/genética
5.
EBioMedicine ; 103: 105133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677181

RESUMO

BACKGROUND: Endogenous retroelements (EREs), including human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs), comprise almost half of the human genome. Our previous studies of the interferome in the gut suggest potential mechanisms regarding how IFNb may drive HIV-1 gut pathogenesis. As ERE activity is suggested to partake in type 1 immune responses and is incredibly sensitive to viral infections, we sought to elucidate underlying interactions between ERE expression and gut dynamics in people living with HIV-1 (PLWH). METHODS: ERE expression profiles from bulk RNA sequencing of colon biopsies and PBMC were compared between a cohort of PLWH not on antiretroviral therapy (ART) and uninfected controls. FINDINGS: 59 EREs were differentially expressed in the colon of PLWH when compared to uninfected controls (padj <0.05 and FC ≤ -1 or ≥ 1) [Wald's Test]. Of these 59, 12 EREs were downregulated in PLWH and 47 were upregulated. Colon expression of the ERE loci LTR19_12p13.31 and L1FLnI_1q23.1s showed significant correlations with certain gut immune cell subset frequencies in the colon. Furthermore L1FLnI_1q23.1s showed a significant upregulation in peripheral blood mononuclear cells (PBMCs) of PLWH when compared to uninfected controls suggesting a common mechanism of differential ERE expression in the colon and PBMC. INTERPRETATION: ERE activity has been largely understudied in genomic characterizations of human pathologies. We show that the activity of certain EREs in the colon of PLWH is deregulated, supporting our hypotheses that their underlying activity could function as (bio)markers and potential mediators of pathogenesis in HIV-1 reservoirs. FUNDING: US NIH grants NCI CA260691 (DFN) and NIAID UM1AI164559 (DFN).


Assuntos
Retrovirus Endógenos , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/genética , HIV-1/genética , Retrovirus Endógenos/genética , Masculino , Feminino , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Adulto , Pessoa de Meia-Idade , Colo/metabolismo , Colo/virologia , Colo/patologia , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Microbioma Gastrointestinal
6.
Viruses ; 16(4)2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675828

RESUMO

The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance. This mechanism might involve USP18. In our recent studies, we demonstrate that HIV-1 infection induces USP18, which dramatically enhances HIV-1 replication by abrogating the antiviral function of p21. USP18 downregulates p21 by accumulating misfolded dominant negative p53, which inactivates wild-type p53 transactivation, leading to the upregulation of key enzymes involved in de novo dNTP biosynthesis pathways and inactivated SAMHD1. Despite the USP18-mediated increase in HIV-1 DNA in infected cells, it is intriguing to note that the cGAS-STING-mediated sensing of the viral DNA is abrogated. Indeed, the expression of USP18 or knockout of ISG15 inhibits the sensing of HIV-1. We demonstrate that STING is ISGylated at residues K224, K236, K289, K347, K338, and K370. The inhibition of STING K289-linked ISGylation suppresses its oligomerization and IFN induction. We propose that human USP18 is a novel factor that potentially contributes in multiple ways to HIV-1 replication.


Assuntos
HIV-1 , Ubiquitina Tiolesterase , Ubiquitinas , Replicação Viral , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Humanos , HIV-1/fisiologia , HIV-1/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Citocinas/metabolismo , Citocinas/genética , Imunidade Inata , Infecções por HIV/virologia , Infecções por HIV/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Interações Hospedeiro-Patógeno , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
7.
Viruses ; 16(4)2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38675845

RESUMO

Schlafen (SLFN) is a family of proteins upregulated by type I interferons with a regulatory role in translation. Intriguingly, SLFN14 associates with the ribosome and can degrade rRNA, tRNA, and mRNA in vitro, but a role in translation is still unknown. Ribosomes are important regulatory hubs during translation elongation of mRNAs rich in rare codons. Therefore, we evaluated the potential role of SLFN14 in the expression of mRNAs enriched in rare codons, using HIV-1 genes as a model. We found that, in a variety of cell types, including primary immune cells, SLFN14 regulates the expression of HIV-1 and non-viral genes based on their codon adaptation index, a measurement of the synonymous codon usage bias; consequently, SLFN14 inhibits the replication of HIV-1. The potent inhibitory effect of SLFN14 on the expression of the rare codon-rich transcript HIV-1 Gag was minimized by codon optimization. Mechanistically, we found that the endoribonuclease activity of SLFN14 is required, and that ribosomal RNA degradation is involved. Therefore, we propose that SLFN14 impairs the expression of HIV-1 transcripts rich in rare codons, in a catalytic-dependent manner.


Assuntos
Uso do Códon , HIV-1 , Replicação Viral , Humanos , Códon/genética , Regulação Viral da Expressão Gênica , Células HEK293 , Infecções por HIV/virologia , Infecções por HIV/genética , HIV-1/genética , HIV-1/fisiologia , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral
8.
Cell Stem Cell ; 31(4): 433-434, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579679

RESUMO

The chemokine receptors CCR5 and CXCR4 are "front doors" for HIV-1 infection in host cells, and their targeting represents a potential solution for a cure. Dudek et al.1 now propose a new gene editing strategy to simultaneously block CCR5- and CXCR4-mediated HIV-1 entry in autologous hematopoietic stem and progenitor cells (HSPCs).


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Células-Tronco Hematopoéticas , Receptores CCR5/genética , Infecções por HIV/genética , Receptores CXCR4/genética , Edição de Genes
9.
Front Immunol ; 15: 1369311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601162

RESUMO

Background: Coronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses. Methods: Sequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes. Results: The analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified. Conclusion: This research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza.


Assuntos
COVID-19 , Infecções por HIV , Influenza Humana , MicroRNAs , Humanos , Influenza Humana/genética , COVID-19/genética , SARS-CoV-2 , Biologia Computacional , MicroRNAs/genética , Fatores de Transcrição , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
10.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38687324

RESUMO

HIV-1 matrix protein p17 variants (vp17s), characterized by amino acid insertions at the COOH-terminal region of the viral protein, have been recently identified and studied for their biological activity. Different from their wild-type counterpart (refp17), vp17s display a potent B cell growth and clonogenic activity. Recent data have highlighted the higher prevalence of vp17s in people living with HIV-1 (PLWH) with lymphoma compared with those without lymphoma, suggesting that vp17s may play a key role in lymphomagenesis. Molecular mechanisms involved in vp17 development are still unknown. Here we assessed the efficiency of HIV-1 Reverse Transcriptase (RT) in processing this genomic region and highlighted the existence of hot spots of mutation in Gag, at the end of the matrix protein and close to the matrix-capsid junction. This is possibly due to the presence of inverted repeats and palindromic sequences together with a high content of Adenine in the 322-342 nucleotide portion, which constrain HIV-1 RT to pause on the template. To define the recombinogenic properties of hot spots of mutation in the matrix gene, we developed plasmid vectors expressing Gag and a minimally modified Gag variant, and measured homologous recombination following cell co-nucleofection by next-generation sequencing. Data obtained allowed us to show that a wide range of recombination events occur in concomitance with the identified hot spots of mutation and that imperfect events may account for vp17s generation.


Assuntos
Antígenos HIV , Transcriptase Reversa do HIV , HIV-1 , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Humanos , HIV-1/genética , Antígenos HIV/genética , Antígenos HIV/metabolismo , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Mutação , Infecções por HIV/virologia , Infecções por HIV/genética , Linhagem Celular
11.
Viruses ; 16(4)2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675925

RESUMO

The interferon-induced host cell protein Shiftless (SFL) inhibits -1 programmed ribosomal frameshifting (-1PRF) required for the expression of HIV-1 Gal-Pol and the formation of infectious HIV-1 particles. However, the specific regions in SFL required for antiviral activity and the mechanism by which SFL inhibits -1PRF remain unclear. Employing alanine scanning mutagenesis, we found that basic amino acids in the predicted zinc ribbon motif of SFL are essential for the suppression of Gag-Pol expression but dispensable for anti-HIV-1 activity. We have shown that SFL inhibits the expression of the murine leukemia virus (MLV) Gag-Pol polyprotein and the formation of infectious MLV particles, although Gag-Pol expression of MLV is independent of -1PRF but requires readthrough of a stop codon. These findings indicate that SFL might inhibit HIV-1 infection by more than one mechanism and that SFL might target programmed translational readthrough as well as -1PRF signals, both of which are regulated by mRNA secondary structure elements.


Assuntos
Proteínas de Fusão gag-pol , Infecções por HIV , HIV-1 , Proteínas de Ligação a RNA , Humanos , Mudança da Fase de Leitura do Gene Ribossômico , Proteínas de Fusão gag-pol/genética , Proteínas de Fusão gag-pol/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/fisiologia , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/fisiologia , Replicação Viral , Proteínas de Ligação a RNA/metabolismo
12.
Mol Genet Genomic Med ; 12(3): e2362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451012

RESUMO

BACKGROUND: The ABCG2 421C/A polymorphism contributes significantly to the distribution and absorption of antiretroviral (ARV) regimens and is associated with the undesirable side effects of efavirenz. METHODS: To investigate this, we examined ABCG2 34G/A (rs2231137) and 421C/A (rs2231142) genetic variations in 149 HIV-infected patients (116 without hepatotoxicity, 33 with ARV-induced hepatotoxicity) and 151 healthy controls through the PCR-restriction fragment length polymorphism (PCR-RFLP) technique. RESULTS AND DISCUSSION: The ABCG2 34GA genotype and 34A allele indicated a risk for antiretroviral therapy-associated hepatotoxicity development (p = 0.09, OR = 1.58, 95% CI: 0.93-2.69; p = 0.06, OR = 1.50, 95% CI: 0.98-2.30). The haplotype GA was associated with hepatotoxicity (p = 0.042, OR = 2.37, 95% CI: 1.04-5.43; p = 0.042, OR = 2.49, 95% CI: 1.04-5.96). Moreover, when comparing HIV patients with hepatotoxicity to healthy controls, the haplotype GA had an association with an elevated risk for the development of hepatotoxicity (p = 0.041, OR = 1.73, 95% CI: 1.02-2.93). Additionally, the association of the ABCG2 34GA genotype with the progression of HIV (p = 0.02, OR = 1.97, 95% CI: 1.07-3.63) indicated a risk for advanced HIV infection. Furthermore, the ABCG2 421AA genotype was linked to tobacco users and featured as a risk factor for the progression of HIV disease (p = 0.03, OR = 11.07, 95% CI: 1.09-270.89). CONCLUSION: The haplotype GA may enhance the risk of hepatotoxicity development and its severity. Individuals with the ABCG2 34A allele may also be at risk for the development of hepatotoxicity. Additionally, individuals with an advanced stage of HIV and the ABCG2 34GA genotype may be at risk for disease progression.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/complicações , Polimorfismo de Nucleotídeo Único , Genótipo , Fatores de Risco , Doença Hepática Induzida por Substâncias e Drogas/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética
13.
PLoS Pathog ; 20(3): e1012063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466776

RESUMO

BACKGROUND: Epigenome-wide association studies (EWAS) have identified CpG sites associated with HIV infection in blood cells in bulk, which offer limited knowledge of cell-type specific methylation patterns associated with HIV infection. In this study, we aim to identify differentially methylated CpG sites for HIV infection in immune cell types: CD4+ T-cells, CD8+ T-cells, B cells, Natural Killer (NK) cells, and monocytes. METHODS: Applying a computational deconvolution method, we performed a cell-type based EWAS for HIV infection in three independent cohorts (Ntotal = 1,382). DNA methylation in blood or in peripheral blood mononuclear cells (PBMCs) was profiled by an array-based method and then deconvoluted by Tensor Composition Analysis (TCA). The TCA-computed CpG methylation in each cell type was first benchmarked by bisulfite DNA methylation capture sequencing in a subset of the samples. Cell-type EWAS of HIV infection was performed in each cohort separately and a meta-EWAS was conducted followed by gene set enrichment analysis. RESULTS: The meta-analysis unveiled a total of 2,021 cell-type unique significant CpG sites for five inferred cell types. Among these inferred cell-type unique CpG sites, the concordance rate in the three cohorts ranged from 96% to 100% in each cell type. Cell-type level meta-EWAS unveiled distinct patterns of HIV-associated differential CpG methylation, where 74% of CpG sites were unique to individual cell types (false discovery rate, FDR <0.05). CD4+ T-cells had the largest number of unique HIV-associated CpG sites (N = 1,624) compared to any other cell type. Genes harboring significant CpG sites are involved in immunity and HIV pathogenesis (e.g. CD4+ T-cells: NLRC5, CX3CR1, B cells: IFI44L, NK cells: IL12R, monocytes: IRF7), and in oncogenesis (e.g. CD4+ T-cells: BCL family, PRDM16, monocytes: PRDM16, PDCD1LG2). HIV-associated CpG sites were enriched among genes involved in HIV pathogenesis and oncogenesis that were enriched among interferon-α and -γ, TNF-α, inflammatory response, and apoptotic pathways. CONCLUSION: Our findings uncovered computationally inferred cell-type specific modifications in the host epigenome for people with HIV that contribute to the growing body of evidence regarding HIV pathogenesis.


Assuntos
Metilação de DNA , Infecções por HIV , Humanos , Epigenoma , Epigênese Genética , Leucócitos Mononucleares , Infecções por HIV/genética , Ilhas de CpG , Carcinogênese/genética , Estudo de Associação Genômica Ampla/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética
14.
Proc Natl Acad Sci U S A ; 121(12): e2321907121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38457490

RESUMO

The discovery of the 32-bp deletion allele of the chemokine receptor gene CCR5 showed that homozygous carriers display near-complete resistance to HIV infection, irrespective of exposure. Algorithms of molecular evolutionary theory suggested that the CCR5-∆32 mutation occurred but once in the last millennium and rose by strong selective pressure relatively recently to a ~10% allele frequency in Europeans. Several lines of evidence support the hypothesis that CCR5-∆32 was selected due to its protective influence to resist Yersinia pestis, the agent of the Black Death/bubonic plague of the 14th century. Powerful anti-AIDS entry inhibitors targeting CCR5 were developed as a treatment for HIV patients, particularly those whose systems had developed resistance to powerful anti-retroviral therapies. Homozygous CCR5-∆32/∆32 stem cell transplant donors were used to produce HIV-cleared AIDS patients in at least five "cures" of HIV infection. CCR5 has also been implicated in regulating infection with Staphylococcus aureus, in recovery from stroke, and in ablation of the fatal graft versus host disease (GVHD) in cancer transplant patients. While homozygous CCR5-∆32/32 carriers block HIV infection, alternatively they display an increased risk for encephalomyelitis and death when infected with the West Nile virus.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Humanos , Infecções por HIV/genética , Infecções por HIV/tratamento farmacológico , Frequência do Gene , Receptores CCR5/genética , Síndrome da Imunodeficiência Adquirida/genética , Mutação , Homozigoto
15.
J Neurovirol ; 30(1): 71-85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355914

RESUMO

Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 messenger RNA (mRNA) from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL corresponding to a physical titer of 0, 4.23 × 109, 8.46 × 109, 1.269 × 1010, 1.692 × 1010, 2.115 × 1010, and 2.538 × 1010 gc/µL) of CRISPR/Cas9 for 72 h. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n = 5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the medial prefrontal cortex. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1-associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 protractedly, albeit not permanently, restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , HIV-1 , RNA Mensageiro , Ratos Transgênicos , Animais , HIV-1/genética , HIV-1/fisiologia , Ratos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Edição de Genes/métodos , Neuroglia/virologia , Neuroglia/metabolismo , Dependovirus/genética , Infecções por HIV/virologia , Infecções por HIV/genética , Técnicas de Silenciamento de Genes , RNA Viral/genética , Cognição/fisiologia , Humanos
16.
Genes (Basel) ; 15(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397248

RESUMO

Genotypic testing is often recommended to improve the management of patients infected with human immunodeficiency virus (HIV). To help combat this major pandemic, next-generation sequencing (NGS) techniques are widely used to analyse resistance to antiretroviral drugs. In this study, we used a Vela Sentosa kit (Vela Diagnostics, Kendall, Singapore), which is usually used for the Ion Torrent personal genome machine (PGM) platform, to sequence HIV using the Illumina Miseq platform. After RNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR), minor modifications were applied to the Vela Sentosa kit to adapt it to the Illumina Miseq platform. Analysis of the results showed the same mutations present in the samples using both sequencing platforms. The total number of reads varied from 185,069 to 752,343 and from 642,162 to 2,074,028 in the Ion Torrent PGM platform and the Illumina Miseq platform, respectively. The average depth was 21,955 and 46,856 for Ion Torrent PGM and Illumina Miseq platforms, respectively. The cost of sequencing a run of eight samples was quite similar between the two platforms (about USD 1790 for Illumina Miseq and about USD 1833 for Ion Torrent PGM platform). We have shown for the first time that it is possible to adapt and use the Vela Sentosa kit for the Illumina Miseq platform to obtain high-quality results with a similar cost.


Assuntos
Infecções por HIV , HIV , Humanos , HIV/genética , Mutação , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
17.
Rev Clin Esp (Barc) ; 224(2): 96-104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253256

RESUMO

INTRODUCTION: Genetic studies have shown associations of several single nucleotide polymorphisms (SNP) with different rates of progression and variation in susceptibility to HIV infection. This study aimed to estimate the frequency of ccr5Δ32, IL-6-174G/C, IFN-γ+874T/A and IL-10-1082A/G polymorphisms in Cuban HIV-infected patients and a group of sero-discordant couples to assess their influence on risk and disease progression. METHODS: A cross-sectional study was carried out on 120 subjects registered at the Institute of Tropical Medicine «Pedro Kour¼ (IPK) and the Ameijeiras Hospital from June 2018 until December 2019. The amplification of fragments of the ccr5, IL-6, IFN-γ and IL-10 genes was performed by polymerase chain reaction followed by identification of polymorphisms using the restriction fragment length polymorphism analysis for IL-6 with the restriction enzymes Nla III. Amplification Refractory Mutation System was used for IFN-γ and IL-10 genes. RESULTS: The allelic and genotypic distributions of the genes ccr5, IL-6, IFN-γ and IL-10 did not differ significantly between the two groups. Cell counts and plasma viral load values did not differ significantly between genotypes of the ccr5, IL-6, IFN-γ and IL-10 genes. Only the IL-6 GC genotype was associated with higher viral load values. The combination of alleles of the four considered SNPs showed a highly significant increase in the risk of HIV infection for one of them, but with a very low frequency (<1%). CONCLUSION: This study contributes to evaluating the frequency of these polymorphisms and their influence on biomarkers of the progression of HIV infection in the Cuban HIV-population.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Humanos , Infecções por HIV/genética , Síndrome da Imunodeficiência Adquirida/genética , Interleucina-6/genética , Interleucina-10/genética , Estudos Transversais , Frequência do Gene , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Receptores CCR5/genética
18.
Immun Inflamm Dis ; 12(1): e1117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270309

RESUMO

INTRODUCTION: Toxoplasma gondii infection is considered as one of the most important opportunistic infections and cause of death in HIV patients. METHODS: In this cross-sectional study, 334 HIV positive patients were included. The molecular test was performed by the restriction fragment length polymorphism-polymerase chain reaction method. Allelic frequency, haplotype analyses, and linkage disequilibrium were calculated. The odds ratio was calculated. The linear regression model was used to analysis of interleukin (IL)-17A, IL-17F, and IL-6 single-nucleotide polymorphism genotypes in HIV patients with and without toxoplasmosis. RESULTS: In total, 95 tested'patients (28.4%) were positive for toxoplasmosis. The risk of toxoplasma infection in the current study did not correlate with IL-17 and IL-6 polymorphism and the risk of contracting toxoplasma was also not significantly correlated in this study. There was no association between the frequency of alleles and the risk of toxoplasma infection in IL-17 haplotype analysis. CONCLUSION: The findings of this study revealed that there were significant differences in the serum levels of IL-6 and IL-17A, but not IL-17F, between the case and control groups in various genetic models. However, these polymorphisms did not show a significant relationship with toxoplasma infection in HIV-positive patients. This study represents the first investigation in Iran to explore the role of IL-6 and IL-17 polymorphisms in toxoplasma infection among HIV-positive patients.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Interleucina-17 , Interleucina-6 , Toxoplasmose , Humanos , Estudos Transversais , Infecções por HIV/complicações , Infecções por HIV/genética , Interleucina-17/genética , Interleucina-6/genética , Irã (Geográfico)/epidemiologia , Polimorfismo de Nucleotídeo Único , Toxoplasmose/genética
19.
J Acquir Immune Defic Syndr ; 95(3): 297-303, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180896

RESUMO

BACKGROUND: Dolutegravir plasma concentrations and pharmacokinetic (PK) parameters in children display considerable variability. Here, the impact of genetic variants in ABCG2 421C>A (rs2231142), NR1I2 63396 C>T (rs2472677), and UGT1A1 (rs5839491) on dolutegravir PK was examined. METHODS: Children defined by age and administered dolutegravir formulation had AUC 24 at steady state, C max and C 24h determined. Associations between genetic variants and PK parameters were assessed using the dominant inheritance model. RESULTS: The 59 children studied had a median age of 4.6 years, log 10 plasma HIV RNA of 4.79 (copies/mm 3 ), and CD4 + lymphocyte count of 1041 cells/mm 3 ; 51% were female. For ABCG2 , participants with ≥1 minor allele had lower adjusted mean AUC difference (hr*mg/L) controlling for weight at entry, cohort and sex (-15.7, 95% CI: [-32.0 to 0.6], P = 0.06), and log 10 C max adjusted mean difference (-0.15, 95% CI: [-0.25 to -0.05], P = 0.003). Participants with ≥1 minor allele had higher adjusted mean AUC difference (11.9, 95% CI: [-1.1 to 25.0], P = 0.07). For UGT1A1 , poor metabolizers had nonsignificant higher concentrations (adjusted log 10 C max mean difference 11.8; 95% CI: [-12.3 to 36.0], P = 0.34) and lower mean log 10 adjusted oral clearance -0.13 L/h (95% CI: [-0.3 to 0.06], P = 0.16). No association was identified between time-averaged AUC differences by genotype for adverse events, plasma HIV RNA, or CD4 + cell counts. CONCLUSIONS: Dolutegravir AUC 24 for genetic variants in ABCG2 , NR1l2 , and UGT1A1 varied from -25% to +33%. These findings help to explain some of the variable pharmacokinetics identified with dolutegravir in children.


Assuntos
Infecções por HIV , Oxazinas , Piperazinas , Criança , Humanos , Feminino , Pré-Escolar , Masculino , Receptor de Pregnano X/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Genótipo , Compostos Heterocíclicos com 3 Anéis , Piridonas , RNA , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética
20.
Science ; 383(6680): 319-325, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236978

RESUMO

Heterozygosity of Human leukocyte antigen (HLA) class I genes is linked to beneficial outcomes after HIV infection, presumably through greater breadth of HIV epitope presentation and cytotoxic T cell response. Distinct allotype pairs, however, differ in the extent to which they bind shared sets of peptides. We developed a functional divergence metric that measures pairwise complementarity of allotype-associated peptide binding profiles. Greater functional divergence for pairs of HLA-A and/or HLA-B allotypes was associated with slower AIDS progression and independently with enhanced viral load control. The metric predicts immune breadth at the peptide level rather than gene level and redefines HLA heterozygosity as a continuum differentially affecting disease outcome. Functional divergence may affect response to additional infections, vaccination, immunotherapy, and other diseases where HLA heterozygote advantage occurs.


Assuntos
Infecções por HIV , Antígenos HLA-B , Heterozigoto , Humanos , Alelos , Progressão da Doença , Infecções por HIV/genética , Infecções por HIV/patologia , Antígenos HLA-B/genética , Peptídeos/genética , Peptídeos/imunologia , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA