Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32641481

RESUMO

In recent years, nidoviruses have emerged as important respiratory pathogens of reptiles, affecting captive python populations. In pythons, nidovirus (recently reclassified as serpentovirus) infection induces an inflammation of the upper respiratory and alimentary tract which can develop into a severe, often fatal proliferative pneumonia. We observed pyogranulomatous and fibrinonecrotic lesions in organ systems other than the respiratory tract during full postmortem examinations on 30 serpentovirus reverse transcription-PCR (RT-PCR)-positive pythons of varying species originating from Switzerland and Spain. The observations prompted us to study whether this not yet reported wider distribution of lesions is associated with previously unknown serpentoviruses or changes in the serpentovirus genome. RT-PCR and inoculation of Morelia viridis cell cultures served to recruit the cases and obtain virus isolates. Immunohistochemistry and immunofluorescence staining against serpentovirus nucleoprotein demonstrated that the virus infects not only a broad spectrum of epithelia (respiratory and alimentary epithelium, hepatocytes, renal tubules, pancreatic ducts, etc.), but also intravascular monocytes, intralesional macrophages, and endothelial cells. With next-generation sequencing we obtained a full-length genome for a novel serpentovirus species circulating in Switzerland. Analysis of viral genomes recovered from pythons showing serpentovirus infection-associated respiratory or systemic disease did not reveal sequence association to phenotypes; however, functional studies with different strains are needed to confirm this observation. The results indicate that serpentoviruses have a broad cell and tissue tropism, further suggesting that the course of infection could vary and involve lesions in a broad spectrum of tissues and organ systems as a consequence of monocyte-mediated viral systemic spread.IMPORTANCE During the last years, python nidoviruses (now reclassified as serpentoviruses) have become a primary cause of fatal disease in pythons. Serpentoviruses represent a threat to captive snake collections, as they spread rapidly and can be associated with high morbidity and mortality. Our study indicates that, different from previous evidence, the viruses do not only affect the respiratory tract, but can spread in the entire body with blood monocytes, have a broad spectrum of target cells, and can induce a variety of lesions. Nidovirales is an order of animal and human viruses that comprises important zoonotic pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. Serpentoviruses belong to the same order as the above-mentioned human viruses and show similar characteristics (rapid spread, respiratory and gastrointestinal tropism, etc.). The present study confirms the relevance of natural animal diseases to better understand the complexity of viruses of the order Nidovirales.


Assuntos
Infecções por Nidovirales/virologia , Nidovirales/fisiologia , Infecções Respiratórias/virologia , Doenças dos Animais/diagnóstico , Doenças dos Animais/virologia , Animais , Biópsia , Boidae/virologia , Suscetibilidade a Doenças , Humanos , Imuno-Histoquímica , Nidovirales/isolamento & purificação , Infecções por Nidovirales/diagnóstico , Especificidade de Órgãos , Fenótipo , Filogenia , Recombinação Genética , Infecções Respiratórias/diagnóstico , Tropismo Viral , Eliminação de Partículas Virais
2.
J Aquat Anim Health ; 28(2): 131-41, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27230033

RESUMO

In 2011, the Fathead Minnow nidovirus (FHMNV; Genus Bafinivirus, Family Coronaviridae, Order Nidovirales) was isolated from pond-raised juvenile Muskellunge Esox masquinongy suffering from lingering mortality at the Wild Rose Hatchery in Wild Rose, Wisconsin. Moribund Muskellunge exhibited tubular necrosis in the kidneys as well as multifocal coalescing necrotizing hepatitis. The FHMNV was also isolated from apparently healthy juvenile Muskellunge at the Wolf Lake State Fish Hatchery in Mattawan, Michigan. The identity of the two syncytia-forming viruses (designated MUS-WR and MUS-WL from Wild Rose Hatchery and Wolf Lake State Fish Hatchery, respectively) as strains of FHMNV was determined based on multiple-gene sequencing and phylogenetic analyses. The pathogenicity of the MUS-WL FHMNV strain was determined by experimentally infecting naive juvenile Muskellunge through intraperitoneal injection with two viral concentrations (63 and 6.3 × 10(3) TCID50/fish). Both doses resulted in 100% mortality in experimentally infected fish, which exhibited severely pale gills and petechial hemorrhaging in eyes, fins, and skin. Histopathological alterations in experimentally infected fish were observed mainly in the hematopoietic tissues in the form of focal areas of necrosis. Phylogenetic analysis of concatenated partial spike glycoprotein and helicase gene sequences revealed differences between the MUS-WL FHMNV, MUS-WR FHMNV, and two other FHMNV originally isolated from moribund Fathead Minnows Pimephales promelas including the index FHMNV strain (GU002364). Based on a partial helicase gene sequence, a reverse transcriptase PCR assay was developed that is specific to FHMNV. These results give evidence that the risks posed to Muskellunge by FHMNV should be taken seriously. Received May 1, 2015; accepted February 8, 2016.


Assuntos
Aquicultura , Esocidae , Doenças dos Peixes/virologia , Infecções por Nidovirales/veterinária , Nidovirales/isolamento & purificação , Animais , Doenças dos Peixes/mortalidade , Nidovirales/classificação , Nidovirales/genética , Infecções por Nidovirales/virologia , Filogenia
3.
Dis Aquat Organ ; 119(1): 37-44, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068501

RESUMO

Since the initial isolation of the fathead minnow nidovirus (FHMNV), concerns have been raised regarding the risks it may pose to other fish species. In this study, 7 fish species resident to the Laurentian Great Lakes were challenged intraperitoneally with 2 doses of FHMNV: 102.8 and 104.8 median tissue culture infective dose (TCID(50)) ml(-1). Infected spotfin shiner Cyprinella spiloptera and golden shiner Notemigonus crysoleucas suffered morbidity and mortality during the 40 d observation period, while other species, including creek chub Semotilus atromaculatus, rainbow trout Oncorhynchus mykiss, largemouth bass Micropterus salmoides and walleye Sander vitreus, showed no clinical signs or mortality. FHMNV was re-isolated on the epithelioma papulosum cyprini cell line from the tissues of infected spotfin shiner and golden shiner, which harbored high numbers of viral RNA copies as measured by quantitative loop-mediated isothermal amplification. Infected spotfin shiner and golden shiner exhibited external petechiae, exophthalmia, oedematous kidneys, and liver pallor. Histopathological analysis revealed multifocal areas of necrosis in the kidney, spleen and liver of infected fish. Spotfin shiner and golden shiner were then infected with 2 doses of FHMNV (10(3.5) and 10(3.9) TCID(50) ml(-1)) by immersion to mimic more natural modes of infection. Spotfin shiner experienced 60% mortality at both doses, while golden shiner did not experience mortality nor develop any clinical signs following a 40 d observation period. Overall, piscivorous fish tested in this study do not seem to be at risk for infection, while cyprinids appear to vary in their susceptibility to the strain of FHMNV used in this study.


Assuntos
Doenças dos Peixes/virologia , Infecções por Nidovirales/veterinária , Nidovirales/classificação , Animais , Doenças dos Peixes/patologia , Peixes , Infecções por Nidovirales/patologia , Infecções por Nidovirales/virologia , Fatores de Tempo
4.
J Virol Methods ; 222: 66-71, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26028426

RESUMO

The objective of the study was to establish a system for isolation of a recently described, thus far uncultured, marsupial nidovirus associated with a neurological disease of possums, termed wobbly possum disease (WPD). Primary cultures of possum macrophages were established from livers of adult Australian brushtail possums (Trichosurus vulpecula). High viral copy numbers (up to 6.9×10(8)/mL of cell lysate) were detected in infected cell culture lysates from up to the 5th passage of the virus, indicating that the putative WPD virus (WPDV) was replicating in cultured cells. A purified virus stock with a density of 1.09 g/mL was prepared using iodixanol density gradient ultracentrifugation. Virus-like particles approximately 60 nm in diameter were observed using electron microscopy in negatively stained preparations of the purified virus. The one-step growth curve of WPDV in macrophage cultures showed the highest increase in intracellular viral RNA between 6 and 12h post-infection. Maximum levels of cell-associated viral RNA were detected at 24h post-infection, followed by a decline. Levels of extracellular RNA increased starting at 9h post-infection, with maximum levels detected at 48 h post-infection. The establishment of the in vitro system to culture WPDV will facilitate further characterisation of this novel nidovirus.


Assuntos
Macrófagos/virologia , Infecções por Nidovirales/veterinária , Nidovirales/crescimento & desenvolvimento , Nidovirales/isolamento & purificação , Trichosurus/virologia , Cultura de Vírus/métodos , Animais , Células Cultivadas , Centrifugação com Gradiente de Concentração , Microscopia Eletrônica de Transmissão , Nidovirales/ultraestrutura , Infecções por Nidovirales/virologia , Vírion/ultraestrutura
5.
J Gen Virol ; 96(8): 2188-2193, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25918239

RESUMO

The family Coronaviridae represents a diverse group of vertebrate RNA viruses, all with genomes greater than 26,000 nt. Here, we report the discovery and genetic characterization of a novel virus present in cattle with respiratory disease. Phylogenetic characterization of this virus revealed that it clusters within the subfamily Torovirinae, in the family Coronaviridae. The complete genome consists of only 20,261 nt and represents the smallest reported coronavirus genome. We identified seven ORFs, including the canonical nidovirus ORF1a and ORF1b. Analysis of polyprotein 1ab revealed that this virus, tentatively named bovine nidovirus (BoNV), shares the highest homology with the recently described python-borne nidoviruses and contains several conserved nidovirus motifs, but does not encode the NendoU or O-MT domains that are present in other viruses within the family Coronaviridae. In concert with its reduced genome, the atypical domain architecture indicates that this virus represents a unique lineage within the order Nidovirales.


Assuntos
Doenças dos Bovinos/virologia , Infecções por Nidovirales/veterinária , Nidovirales/isolamento & purificação , Doenças Respiratórias/virologia , Animais , Bovinos , Genoma Viral , Dados de Sequência Molecular , Nidovirales/classificação , Nidovirales/genética , Nidovirales/fisiologia , Infecções por Nidovirales/virologia , Fases de Leitura Aberta , Filogenia
6.
J Gen Virol ; 95(Pt 11): 2480-2485, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25063552

RESUMO

The order Nidovirales contains large, enveloped viruses with a non-segmented positive-stranded RNA genome. Nidoviruses have been detected in man and various animal species, but, to date, there have been no reports of nidovirus in reptiles. In the present study, we describe the detection, characterization, phylogenetic analyses and disease association of a novel divergent nidovirus in the lung of an Indian python (Python molurus) with necrotizing pneumonia. Characterization of the partial genome (>33 000 nt) of this virus revealed several genetic features that are distinct from other nidoviruses, including a very large polyprotein 1a, a putative ribosomal frameshift signal that was identical to the frameshift signal of astroviruses and retroviruses and an accessory ORF that showed some similarity with the haemagglutinin-neuraminidase of paramyxoviruses. Analysis of genome organization and phylogenetic analysis of polyprotein 1ab suggests that this virus belongs to the subfamily Torovirinae. Results of this study provide novel insights into the genetic diversity within the order Nidovirales.


Assuntos
Boidae/virologia , Infecções por Nidovirales/veterinária , Nidovirales/genética , Nidovirales/isolamento & purificação , Pneumonia Viral/veterinária , Animais , Sequência de Bases , Variação Genética , Genoma Viral , Pulmão/patologia , Pulmão/virologia , Dados de Sequência Molecular , Nidovirales/classificação , Infecções por Nidovirales/patologia , Infecções por Nidovirales/virologia , Filogenia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , RNA Viral/genética , Homologia de Sequência do Ácido Nucleico , Proteínas Virais/genética
7.
J Gen Virol ; 93(Pt 6): 1247-1252, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22422065

RESUMO

A bacilliform virus was isolated from diseased fathead minnows (Pimephales promelas). Analysis of the complete genome coding for the polyprotein (pp1ab), spike (S), membrane (M) and nucleocapsid (N) proteins revealed that the virus was most like white bream virus (WBV), another bacilliform virus isolated from white bream (Blicca bjoerkna L.) and the type species of the genus Bafinivirus within the order Nidovirales. In addition to similar gene order and size, alignment of deduced amino acid sequences of the pp1ab, M, N and S proteins of the fathead minnow nidovirus (FHMNV) with those of WBV showed 46, 44, 39 and 15 % identities, respectively. Phylogenetic analysis using the conserved helicase domain of the replicase showed FHMNV was distinct from WBV, yet the closest relative identified to date. Thus, FHMNV appears to represent a second species in the genus Bafinivirus. A PCR assay was developed for the identification of future FHMNV-like isolates.


Assuntos
Cyprinidae , Doenças dos Peixes/virologia , Infecções por Nidovirales/veterinária , Nidovirales/genética , Nidovirales/isolamento & purificação , Sequência de Aminoácidos , Animais , Cyprinidae/virologia , Variação Genética , Dados de Sequência Molecular , Nidovirales/química , Nidovirales/classificação , Infecções por Nidovirales/virologia , Filogenia , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA