Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Sci Rep ; 14(1): 11124, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750107

RESUMO

Influenza is a significant public health and economic threat around the world. Epidemiological studies have demonstrated a close association between influenza pandemics and cardiovascular mortality. Moreover, it has been shown that there is a decrease in cardiovascular mortality in high-risk patients following vaccination with the influenza vaccine. Here, we have investigated the role of anti-viral STAT1 signaling in influenza-induced myocarditis. Wild-type mice (C57BL/6) were infected with either influenza A/PR/8/34 or control, and cellular response and gene expression analysis from the heart samples were assessed 7 days later. The expression of interferon response genes STAT1, STAT2, Mx1, OASL2, ISG15, chemokines CCL2, CCL3, CXCL9 and CXCL10, and the frequency of neutrophils (CD45+CD11b+Ly6G+) and CD4+ T cells (CD45+CD4+) were all significantly increased in influenza-infected mice when compared to vehicle controls. These data suggest that influenza infection induces interferons, inflammatory chemokines, and cellular recruitment during influenza infection. We further investigated the role of STAT1 in influenza-induced myocarditis. The frequency of neutrophils and the levels of lipocalin 2 were significantly increased in STAT1-/- mice when compared to WT controls. Finally, we investigated the role of Lcn2 in viral-induced myocarditis. We found that in the absence of Lcn2, there was preserved cardiac function in Lcn2-/- mice when compared to WT controls. These data suggest that the absence of Lcn2 is cardioprotective during viral-induced myocarditis.


Assuntos
Lipocalina-2 , Camundongos Endogâmicos C57BL , Miocardite , Infecções por Orthomyxoviridae , Fator de Transcrição STAT1 , Animais , Miocardite/virologia , Miocardite/metabolismo , Miocardite/etiologia , Lipocalina-2/metabolismo , Lipocalina-2/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Neutrófilos/metabolismo , Neutrófilos/imunologia , Masculino , Camundongos Knockout
2.
Nature ; 628(8009): 835-843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600381

RESUMO

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Assuntos
Lesão Pulmonar , Necroptose , Infecções por Orthomyxoviridae , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Feminino , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/metabolismo , Vírus da Influenza A/classificação , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Lesão Pulmonar/complicações , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/virologia , Camundongos Endogâmicos C57BL , Necroptose/efeitos dos fármacos , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/prevenção & controle , Síndrome do Desconforto Respiratório/virologia
3.
Am J Pathol ; 194(3): 384-401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159723

RESUMO

Respiratory tract virus infections cause millions of hospitalizations worldwide each year. Severe infections lead to lung damage that coincides with persistent inflammation and a lengthy repair period. Vaccination and antiviral therapy help to mitigate severe infections before or during the acute stage of disease, but there are currently limited specific treatment options available to individuals experiencing the long-term sequelae of respiratory viral infection. Herein, C57BL/6 mice were infected with influenza A/PR/8/34 as a model for severe viral lung infection and allowed to recover for 21 days. Mice were treated with rapamycin, a well-characterized mammalian target of rapamycin complex 1 (mTORC1) inhibitor, on days 12 to 20 after infection, a time period after viral clearance. Persistent inflammation following severe influenza infection in mice was primarily driven by macrophages and T cells. Uniform manifold approximation and projection analysis of flow cytometry data revealed that lung macrophages had high activation of mTORC1, an energy-sensing kinase involved in inflammatory immune cell effector functions. Rapamycin treatment reduced lung inflammation and the frequency of exudate macrophages, T cells, and B cells in the lung, while not impacting epithelial progenitor cells or adaptive immune memory. These data highlight mTORC1's role in sustaining persistent inflammation following clearance of a viral respiratory pathogen and suggest a possible intervention for post-viral chronic lung inflammation.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia , Camundongos , Animais , Humanos , Infecções por Orthomyxoviridae/complicações , Camundongos Endogâmicos C57BL , Pulmão , Macrófagos , Inflamação/complicações , Sirolimo/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Serina-Treonina Quinases TOR , Mamíferos
4.
Antiviral Res ; 209: 105502, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549394

RESUMO

Influenza A virus infection causes considerable morbidity and mortality each year globally, and secondary bacterial infection further exacerbates the severity and fatality of the initial viral infection. Mast cells have substantial roles in protecting the respiratory tract mucosa, while their role in viral and bacterial co-infection remains unclear. The present study revealed that secondary Staphylococcus aureus infection significantly aggravated the activation of mast cells during the initial H1N1 infection both in vivo and in vitro, which was closely related to the increased inflammatory lung injury and mortality. Meanwhile, the secondary S. aureus infection suppressed autophagy and promoted inflammatory mediators released by mast cells through activating the PI3K/Akt signaling pathway. Blocking PI3K/Akt pathway by LY294002, an inhibitor of Akt phosphorylation, could rescue autophagy and inhibit the release of inflammatory mediators. Furthermore, based on the influenza A viral and secondary bacterial infected mice model, we showed that the combination of LY294002 and antiviral drug oseltamivir could effectively reduce the inflammatory damage and pro-inflammatory cytokines releasing in lungs, recovering body weight loss and improving the survival rate from the co-infections. In conclusion, secondary bacterial infection can inhibit autophagy and stimulate mast cell activation through the PI3K/Akt pathway, which might explain why secondary bacterial infection would cause severe and fatal consequences following an initial influenza A viral infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Lesão Pulmonar , Infecções por Orthomyxoviridae , Infecções Estafilocócicas , Animais , Camundongos , Humanos , Vírus da Influenza A/metabolismo , Staphylococcus aureus , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/metabolismo , Mastócitos/metabolismo , Pulmão , Autofagia , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/tratamento farmacológico , Mediadores da Inflamação/farmacologia , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/tratamento farmacológico
5.
Drug Dev Res ; 83(7): 1707-1721, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112730

RESUMO

Viral pneumonia is a common complication caused by Influenza A virus infection and is characterized by severe pulmonary inflammation. A previous study showed that berberine (BBR) significantly ameliorated the pulmonary inflammation in mice with influenza viral pneumonia but its underlying mechanism is not entirely understood. In this study, we reproduced the mouse model of influenza viral pneumonia through intranasal infection of A/Puerto Rico/8/34 (H1N1), to further investigate the anti-inflammatory mechanism of BBR based on nucleotide-binding oligomerization domain-like receptor protein (NLRP) 3 inflammasome activation and Gasdermin D (GSDMD)-mediated pyroptosis. Consistent with MCC950 (10 mg/kg, a specific NLRP3 inflammasome inhibitor), BBR (10 mg/kg) obviously improved the weight loss and survival rate of infected mice, alleviated their pulmonary inflammation, and suppressed the accumulation of tumor necrosis factor and interleukin (IL)-6 in lungs without obvious inhibition on viral multiplication (hemagglutinin titer and nucleoprotein messenger RNA). Moreover, BBR (10 mg/kg) reduced the expressions of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and cysteinyl aspartate-specific proteinase (Caspase)1 (Caspase1 precursor [Pro-caspase1] + Caspase1p20 subunit) and the ratio of Caspase1p20 subunit to Caspase1, thus inhibiting the NLRP3 inflammasome activation and resulting in the decreased contents of mature IL-1ß and IL-18 in lungs. The GSDMD expression (GSDMD precursor [Pro-GSDMD] + GSDMD-N terminal [NT]) and the ratio of GSDMD-NT to GSDMD were also declined by BBR (10 mg/kg). These evidence indicate that BBR may ameliorate pulmonary inflammation in mice with influenza viral pneumonia through inhibiting NLRP3 inflammasome activation, as well as depressing GSDMD-mediated pyroptosis via declining GSDMD expression and restraining NLRP3 inflammasome-mediated GSDMD activation.


Assuntos
Berberina , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Pneumonia Viral , Animais , Camundongos , Berberina/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia Viral/tratamento farmacológico , Piroptose , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/tratamento farmacológico
6.
Cell Rep ; 38(9): 110456, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235782

RESUMO

Influenza A virus (IAV) infection triggers an exuberant host response that promotes acute lung injury. However, the host response factors that promote the development of a pathologic inflammatory response to IAV remain incompletely understood. In this study, we identify an interferon-γ (IFN-γ)-regulated subset of monocytes, CCR2+ monocytes, as a driver of lung damage during IAV infection. IFN-γ regulates the recruitment and inflammatory phenotype of CCR2+ monocytes, and mice deficient in CCR2 (CCR2-/-) or IFN-γ (IFN-γ-/-) exhibit reduced lung inflammation, pathology, and disease severity. Adoptive transfer of wild-type (WT) (IFN-γR1+/+) but not IFN-γR1-/- CCR2+ monocytes restore the WT-like pathological phenotype of lung damage in IAV-infected CCR2-/- mice. CD8+ T cells are the main source of IFN-γ in IAV-infected lungs. Collectively, our data highlight the requirement of IFN-γ signaling in the regulation of CCR2+ monocyte-mediated lung pathology during IAV infection.


Assuntos
Vírus da Influenza A , Influenza Humana , Lesão Pulmonar , Infecções por Orthomyxoviridae , Animais , Linfócitos T CD8-Positivos , Humanos , Interferon gama , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos , Infecções por Orthomyxoviridae/complicações
7.
Sci Rep ; 11(1): 21259, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711897

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a serious public health concern worldwide. Notably, co-infection with other pathogens may worsen the severity of COVID-19 symptoms and increase fatality. Here, we show that co-infection with influenza A virus (IAV) causes more severe body weight loss and more severe and prolonged pneumonia in SARS-CoV-2-infected hamsters. Each virus can efficiently spread in the lungs without interference by the other. However, in immunohistochemical analyses, SARS-CoV-2 and IAV were not detected at the same sites in the respiratory organs of co-infected hamsters, suggesting that either the two viruses may have different cell tropisms in vivo or each virus may inhibit the infection and/or growth of the other within a cell or adjacent areas in the organs. Furthermore, a significant increase in IL-6 was detected in the sera of hamsters co-infected with SARS-CoV-2 and IAV at 7 and 10 days post-infection, suggesting that IL-6 may be involved in the increased severity of pneumonia. Our results strongly suggest that IAV co-infection with SARS-CoV-2 can have serious health risks and increased caution should be applied in such cases.


Assuntos
COVID-19/complicações , Infecções por Orthomyxoviridae/complicações , Pneumonia Viral/complicações , SARS-CoV-2 , Animais , COVID-19/patologia , COVID-19/virologia , Coinfecção/patologia , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-6/sangue , Pulmão/diagnóstico por imagem , Pulmão/patologia , Mesocricetus , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Replicação Viral
8.
J Immunol ; 207(5): 1371-1376, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34380647

RESUMO

Inflammatory cytokine storm is a known cause for acute respiratory distress syndrome. In this study, we have investigated the role of IFN-γ in lethal lung inflammation using a mouse model of postinfluenza methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. To mimic the clinical scenario, animals were treated with antibiotics for effective bacterial control following MRSA superinfection. However, antibiotic therapy alone is not sufficient to improve survival of wild-type animals in this lethal acute respiratory distress syndrome model. In contrast, antibiotics induce effective protection in mice deficient in IFN-γ response. Mechanistically, we show that rather than inhibiting bacterial clearance, IFN-γ promotes proinflammatory cytokine response to cause lethal lung damage. Neutralization of IFN-γ after influenza prevents hyperproduction of TNF-α, and thereby protects against inflammatory lung damage and animal mortality. Taken together, the current study demonstrates that influenza-induced IFN-γ drives a stepwise propagation of inflammatory cytokine response, which ultimately results in fatal lung damage during secondary MRSA pneumonia, despite of antibiotic therapy.


Assuntos
Antibacterianos/uso terapêutico , Inflamação/imunologia , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Interferon gama/metabolismo , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Estafilocócica/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Animais , Células Cultivadas , Humanos , Influenza Humana/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/complicações , Pneumonia Estafilocócica/complicações , Infecções Estafilocócicas/complicações , Superinfecção , Fator de Necrose Tumoral alfa
9.
Microbes Infect ; 23(8): 104839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34023525

RESUMO

Primary influenza virus (IV) infection can predispose hosts to secondary infection with Haemophilus influenzae (H. influenzae), which further increases the severity and mortality of the disease. While adhesion molecules play a key role in the host inflammatory response and H. influenzae colonization, it remains to be clarified which types of adhesion molecules are associated with H. influenzae colonization and invasion following IV infection. In this study, we established a mouse model of co-infection with influenza A virus (A/Puerto Rico/8/34, H1N1) (PR8) and non-typeable H. influenzae (NTHi) and found that sequential infection with PR8 and NTHi induced a lethal synergy in mice. This outcome may be possibly due to increased NTHi loads, greater lung damage and higher levels of cytokines. Furthermore, the protein levels of intracellular adhesion molecules-1 (ICAM-1) and Fibronectin (Fn) were significantly increased in the lungs of coinfected mice, but the levels of carcinoembryonic adhesion molecule (CEACAM)-1, CEACAM-5 and platelet-activating factor receptor (PAFr) were unaffected. Both the protein levels of ICAM-1 and Fn were positively correlated with NTHi growth. These results indicate the correlation between adhesion molecules, including ICAM-1 and Fn, and NTHi growth in secondary NTHi pneumonia following primary IV infection.


Assuntos
Infecções por Haemophilus , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Animais , Infecções por Haemophilus/complicações , Haemophilus influenzae/metabolismo , Inflamação , Molécula 1 de Adesão Intercelular , Camundongos , Infecções por Orthomyxoviridae/complicações
10.
Cells ; 10(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804896

RESUMO

Despite vaccination and antivirals, influenza remains a communicable disease of high burden, with limited therapeutic options available to patients that develop complications. Here, we report the development and preclinical characterization of Adipose Stromal Cell (ASC) concentrated secretome (CS), generated by process adaptable to current Good Manufacturing Practices (cGMP) standards. We demonstrate that ASC-CS limits pulmonary histopathological changes, infiltration of inflammatory cells, protein leak, water accumulation, and arterial oxygen saturation (spO2) reduction in murine model of lung infection with influenza A virus (IAV) when first administered six days post-infection. The ability to limit lung injury is sustained in ASC-CS preparations stored at -80 °C for three years. Priming of the ASC with inflammatory factors TNFα and IFNγ enhances ASC-CS ability to suppress lung injury. IAV infection is associated with dramatic increases in programmed cell death ligand (PDL1) and angiopoietin 2 (Angpt2) levels. ASC-CS application significantly reduces both PDL1 and Angpt2 levels. Neutralization of PDL1 with anti-mouse PDL1 antibody starting Day6 onward effectively ablates lung PDL1, but only non-significantly reduces Angpt2 release. Most importantly, late-phase PDL1 neutralization results in negligible suppression of protein leakage and inflammatory cell infiltration, suggesting that suppression of PDL1 does not play a critical role in ASC-CS therapeutic effects.


Assuntos
Tecido Adiposo/citologia , Vírus da Influenza A/fisiologia , Lesão Pulmonar/terapia , Lesão Pulmonar/virologia , Infecções por Orthomyxoviridae/terapia , Infecções por Orthomyxoviridae/virologia , Angiopoietina-2/metabolismo , Animais , Antígeno B7-H1/metabolismo , Lavagem Broncoalveolar , Criopreservação , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/complicações , Inflamação/patologia , Lesão Pulmonar/complicações , Lesão Pulmonar/patologia , Masculino , Camundongos , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/patologia , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Caracteres Sexuais , Células Estromais/metabolismo
11.
Elife ; 102021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33650487

RESUMO

Adverse early-life exposures have a lasting negative impact on health. Neonatal hyperoxia that is a risk factor for bronchopulmonary dysplasia confers susceptibility to influenza A virus (IAV) infection later in life. Given our previous findings that the circadian clock protects against IAV, we asked if the long-term impact of neonatal hyperoxia vis-à-vis IAV infection includes circadian disruption. Here, we show that neonatal hyperoxia abolishes the clock-mediated time of day protection from IAV in mice, independent of viral burden through host tolerance pathways. We discovered that the lung intrinsic clock (and not the central or immune clocks) mediated this dysregulation. Loss of circadian protein, Bmal1, in alveolar type 2 (AT2) cells recapitulates the increased mortality, loss of temporal gating, and other key features of hyperoxia-exposed animals. Our data suggest a novel role for the circadian clock in AT2 cells in mediating long-term effects of early-life exposures to the lungs.


Assuntos
Relógios Circadianos/genética , Hiperóxia/complicações , Hiperóxia/virologia , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/complicações , Células Epiteliais Alveolares , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Hiperóxia/patologia , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/virologia
12.
Cell Host Microbe ; 29(1): 107-120.e6, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33120116

RESUMO

Streptococcus pneumoniae is an opportunistic human pathogen that causes invasive diseases, including pneumonia, with greater health risks upon influenza A virus (IAV) co-infection. To facilitate pathogenesis studies in vivo, we developed an inducible CRISPR interference system that enables genome-wide fitness testing in one sequencing step (CRISPRi-seq). We applied CRISPRi-seq to assess bottlenecks and identify pneumococcal genes important in a murine pneumonia model. A critical bottleneck occurs at 48 h with few bacteria causing systemic infection. This bottleneck is not present during IAV superinfection, facilitating identification of pneumococcal pathogenesis-related genes. Top in vivo essential genes included purA, encoding adenylsuccinate synthetase, and the cps operon required for capsule production. Surprisingly, CRISPRi-seq indicated no fitness-related role for pneumolysin during superinfection. Interestingly, although metK (encoding S-adenosylmethionine synthetase) was essential in vitro, it was dispensable in vivo. This highlights advantages of CRISPRi-seq over transposon-based genetic screens, as all genes, including essential genes, can be tested for pathogenesis potential.


Assuntos
Genes Bacterianos , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Adenilossuccinato Sintase/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óperon , Infecções por Orthomyxoviridae/complicações , Pneumonia Pneumocócica/complicações , Streptococcus pneumoniae/crescimento & desenvolvimento , Superinfecção
13.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177200

RESUMO

Influenza A viruses cause severe respiratory illnesses in humans and animals. Overreaction of the innate immune response to influenza virus infection results in hypercytokinemia, which is responsible for mortality and morbidity. However, the mechanism by which influenza induces hypercytokinemia is not fully understood. In this study, we established a mouse-adapted H9N2 virus, MA01, to evaluate the innate immune response to influenza in the lung. MA01 infection caused high levels of cytokine release, enhanced pulmonary injury in mice, and upregulated CD83 protein in dendritic cells and macrophages in the lung. Influenza virus neuraminidase (NA) unmasked CD83 protein and contributed to high cytokine levels. Furthermore, we provide evidence that CD83 is a sialylated glycoprotein. Neuraminidase treatment enhanced lipopolysaccharide (LPS)-stimulated NF-κB activation in RAW264.7 cells. Anti-CD83 treatment alleviated influenza virus-induced lung injury in mice. Our study indicates that influenza virus neuraminidase modulates CD83 status and contributes to the "cytokine storm," which may suggest a new approach to curb this immune injury.IMPORTANCE The massive release of circulating mediators of inflammation is responsible for lung injury during influenza A virus infection. This phenomenon is referred to as the "cytokine storm." However, the mechanism by which influenza induces the cytokine storm is not fully understood. In this study, we have shown that neuraminidase unmasked CD83 protein in the lung and contributed to high cytokine levels. Anti-CD83 treatment could diminish immune damage to lung tissue. The NA-CD83 axis may represent a target for an interruption of influenza-induced lung damage.


Assuntos
Antígenos CD/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Imunoglobulinas/metabolismo , Vírus da Influenza A Subtipo H9N2/patogenicidade , Lesão Pulmonar/etiologia , Glicoproteínas de Membrana/metabolismo , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/complicações , Proteínas Virais/metabolismo , Animais , Antígenos CD/genética , Células Dendríticas/imunologia , Células Dendríticas/virologia , Feminino , Imunoglobulinas/genética , Vírus da Influenza A Subtipo H9N2/enzimologia , Lesão Pulmonar/patologia , Macrófagos/imunologia , Macrófagos/virologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neuraminidase/genética , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais , Proteínas Virais/genética , Virulência , Antígeno CD83
14.
BMC Infect Dis ; 20(1): 823, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176722

RESUMO

BACKGROUND: The highly pathogenic avian influenza A/H5N1 virus is one of the causative agents of acute lung injury (ALI) with high mortality rate. Studies on therapeutic administration of bone marrow-derived mesenchymal stem cells (MSCs) in ALI caused by the viral infection have been limited in number and have shown conflicting results. The aim of the present investigation is to evaluate the therapeutic potential of MSC administration in A/H5N1-caused ALI, using a mouse model. METHODS: MSCs were prepared from the bone marrow of 9 to 12 week-old BALB/c mice. An H5N1 virus of A/turkey/East Java/Av154/2013 was intranasally inoculated into BALB/c mice. On days 2, 4, and 6 after virus inoculation, MSCs were intravenously administered into the mice. To evaluate effects of the treatment, we examined for lung alveolar protein as an indicator for lung injury, PaO2/FiO2 ratio for lung functioning, and lung histopathology. Expressions of NF-κB, RAGE (transmembrane receptor for damage associated molecular patterns), TNFα, IL-1ß, Sftpc (alveolar cell type II marker), and Aqp5+ (alveolar cell type I marker) were examined by immunohistochemistry. In addition, body weight, virus growth in lung and brain, and duration of survival were measured. RESULTS: The administration of MSCs lowered the level of lung damage in the virus-infected mice, as shown by measuring lung alveolar protein, PaO2/FiO2 ratio, and histopathological score. In the MSC-treated group, the expressions of NF-κB, RAGE, TNFα, and IL-1ß were significantly suppressed in comparison with a mock-treated group, while those of Sftpc and Aqp5+ were enhanced. Body weight, virus growth, and survival period were not significantly different between the groups. CONCLUSION: The administration of MSCs prevented further lung injury and inflammation, and enhanced alveolar cell type II and I regeneration, while it did not significantly affect viral proliferation and mouse morbidity and mortality. The results suggested that MSC administration was a promissing strategy for treatment of acute lung injuries caused by the highly pathogenic avian influenza A/H5N1 virus, although further optimization and combination use of anti-viral drugs will be obviously required to achieve the goal of reducing mortality.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/cirurgia , Virus da Influenza A Subtipo H5N1 , Transplante de Células-Tronco Mesenquimais , Infecções por Orthomyxoviridae/complicações , Pneumonia/etiologia , Pneumonia/cirurgia , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/virologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Pneumonia/prevenção & controle , Pneumonia/virologia , Resultado do Tratamento
15.
J Immunol ; 205(2): 480-488, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32522833

RESUMO

Aspergillus fumigatus is an environmental fungus that can cause invasive pulmonary aspergillosis when spores are inhaled into the respiratory tract and invade airway or lung tissue. Influenza is a common respiratory virus that can cause severe respiratory disease, and postinfluenza invasive pulmonary aspergillosis, which is becoming a well-recognized clinical problem, typically occurs in critically ill patients. Mice challenged with influenza A PR/8/34 H1N1 and subsequently challenged with A. fumigatus had increased fungal burden, viral burden, inflammation, and mortality compared with single infected mice. Neutrophil recruitment in the lung of superinfected mice was decreased; however, mice were not neutropenic, and there was no difference in absolute blood neutrophils between groups. Additionally, CXCL1 and CXCL2 were decreased in lungs of superinfected mice compared with controls. IFN levels were increased in mice that received influenza, and deletion of STAT1 resulted in decreased fungal burden, increased airway and lung neutrophils, and increased CXCL1 compared with wild-type mice, whereas deletion of STAT2 did not change fungal burden or airway neutrophilia compared with wild-type mice. These data demonstrate a mechanism by which influenza A-induced STAT1 signaling inhibits neutrophil recruitment and increases susceptibility to postinfluenza invasive pulmonary aspergillosis.


Assuntos
Aspergillus fumigatus/fisiologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/imunologia , Aspergilose Pulmonar Invasiva/imunologia , Pulmão/imunologia , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Quimiocina CXCL1/metabolismo , Contagem de Colônia Microbiana , Progressão da Doença , Humanos , Evasão da Resposta Imune , Influenza Humana/complicações , Aspergilose Pulmonar Invasiva/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Infecções por Orthomyxoviridae/complicações , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
16.
Inflammopharmacology ; 28(1): 299-310, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31446589

RESUMO

BACKGROUND: Influenza is an acute viral respiratory illness that causes high morbidity and mortality globally. Therapeutic actions are limited to vaccines and a few anti-viral drugs. Polygala (P.) japonica herba is rich in Polygalasaponin F (PSF, C53H86O23), used for acute bronchitis, pharyngitis, pneumonia, amygdalitis, and respiratory tract infections treatment in China. Hypercytokinemia is often correlated with severe pneumonia caused by several influenza viruses. PSF was reported to have anti-inflammatory effects and its mechanism is associated with the nuclear factor (NF)-κB signaling pathway. The action of PSF to alleviate pulmonary inflammation caused by influenza A virus (IAV) infection requires careful assessment. In the present study, we evaluated the effect and mechanism of PSF on mice with pneumonia caused by influenza H1N1 (A/FM/1/47). METHODS: Mice were infected intranasally with fifteen 50% mouse lethal challenge doses (MLD50) of influenza virus. BALB/c mice were treated with PSF or oseltamivir (oral administration) for 2 h post-infection and received concomitant treatment for 5 days after infection. On day 6 post-infection, 10 mice per group were killed to collect related samples, measure body weight and lung wet weight, and detect the viral load, cytokine, prostaglandins, pathological changes, and cell pathway protein expression in the lungs. In addition, the survival experiments were carried out to investigate the survival of mice. The expression profile of cell pathway proteins was detected and analyzed using a broad pathway antibody array and confirmed the findings from the array by western blotting. RESULTS: Polygalasaponin F and oseltamivir can protect against influenza viral infection in mice. PSF and oseltamivir significantly relieved the signs and symptoms, reduced body weight loss, and improved the survival rate of H1N1-infected mice. Moreover, PSF efficiently decreased the level of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-4, interferon (IFN)-γ, thromboxane A2 (TXA2), and prostaglandin E2 (PGE2) in lung tissues of mice infected with influenza virus (p < 0.05-0.01). Oseltamivir had a similar effect to lung cytokine of PSF, but did not decrease the levels of TXA2 and PGE2. There was a twofold or greater increase in four cell pathway protein, namely NF-κB p65 (2.68-fold), I-kappa-B-alpha (IκBα) (2.56-fold), and MAPK/ERK kinase 1 (MEK1) (7.15-fold) assessed in the array induced by influenza virus. Western blotting showed that the expression of these proteins was significantly decreased in lung after influenza virus challenge in PSF and oseltamivir-treated mice (p < 0.05-0.01). CONCLUSION: Polygalasaponin F appears to be able to augment protection against IAV infection in mice via attenuation of pulmonary inflammatory responses. Its effect on IAV-induced pulmonary inflammation was associated with suppression of Raf/MEK/ERK and NF-κB expressions.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/complicações , Pneumonia/tratamento farmacológico , Pneumonia/etiologia , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Citocinas/metabolismo , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/metabolismo , Pneumonia/metabolismo , Pneumonia/virologia , Transdução de Sinais/efeitos dos fármacos
17.
Cell Prolif ; 53(1): e12721, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31782850

RESUMO

OBJECTIVES: Secondary bacterial pneumonia is common following influenza infection. However, it remains unclear about the underlying molecular mechanisms. MATERIALS AND METHODS: We established a mouse model of post-influenza S aureus pneumonia using conditional Shp2 knockout mice (LysMCre/+ :Shp2flox/flox ). The survival, bacterial clearance, pulmonary histology, phenotype of macrophages, and expression of type I interferons and chemokines were assessed between SHP2 deletion and control mice (Shp2flox/flox ). We infused additional KC and MIP-2 to examine the reconstitution of antibacterial immune response in LysMCre/+ :Shp2flox/flox mice. The effect of SHP2 on signal molecules including MAPKs (JNK, p38 and Erk1/2), NF-κB p65 and IRF3 was further detected. RESULTS: LysMCre/+ :Shp2flox/flox mice displayed impaired antibacterial immunity and high mortality compared with control mice in post-influenza S aureus pneumonia. The attenuated antibacterial ability was associated with the induction of type I interferon and suppression of chemo-attractants KC and MIP-2, which reduced the infiltration of neutrophils into the lung upon secondary bacterial invasion. In additional, Shp2 knockout mice displayed enhanced polarization to alternatively activated macrophages (M2 phenotype). Further in vitro analyses consistently demonstrated that SHP2-deficient macrophages were skewed towards an M2 phenotype and had a decreased antibacterial capacity. Moreover, SHP2 modulated the inflammatory response to secondary bacterial infection via interfering with NF-κB and IRF3 signalling in macrophages. CONCLUSIONS: Our findings reveal that the SHP2 expression enhances the host immune response and prompts bacterial clearance in post-influenza S aureus pneumonia.


Assuntos
Vírus da Influenza A/imunologia , Macrófagos/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Estafilocócica/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência , Staphylococcus aureus/imunologia , Animais , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/imunologia , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/patologia , Pneumonia Estafilocócica/etiologia , Pneumonia Estafilocócica/genética , Pneumonia Estafilocócica/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/imunologia
18.
Rev. Hosp. Ital. B. Aires (2004) ; 39(2): 43-50, jun. 2019. tab., graf.
Artigo em Espanhol | LILACS | ID: biblio-1047853

RESUMO

Introducción: la vacunación antigripal es la forma más eficaz para prevenir la enfermedad por virus Influenza y sus complicaciones. La cobertura en los profesionales sanitarios es un indicador de calidad hospitalaria. Material y métodos: estudio descriptivo de corte transversal. A partir de registros vacunales, se calculó la cobertura para las campañas 2013 a 2018. Se compararon las coberturas por trienios. Se describieron características generales de las campañas de 2016 a 2018. Resultados: en 2016 se alcanzó la mayor tasa del período (59,79%, IC 95%:58,75-60,81); en 2017, la menor (34,46%, IC 95%:33,48-35,46). La campaña 2018 obtuvo una cobertura de 54,90% (IC 95%: 53,88-55,92) y se inició más tempranamente que otras. Al comparar las tasas trienales del período se observó una diferencia de proporción de -1,3% (IC 95%: -2.84-0.24). Durante los tres últimos años, el personal vacunado correspondió mayormente al sexo femenino, a la Sede Central y tenía relación contractual directa. Las mayores coberturas específicas correspondieron a la sede de San Justo y a los profesionales de enfermería. El puesto ambulante fue el que aplicó más vacunas. Conclusión: si bien hubo variaciones en las coberturas alcanzadas a lo largo de los años, siendo la del año 2016 la más elevada y la del año 2017 la más baja, no se observaron diferencias estadísticamente significativas en las coberturas alcanzadas al comparar trienios. Resulta necesario continuar realizando intervenciones adaptadas al contexto local que permitan alcanzar los objetivos de cobertura esperados. Discusión: se reconocieron varios obstáculos para alcanzar las coberturas esperadas. La educación al personal de salud, la evaluación sistematizada de los ESAVI (Eventos supuestamente atribuibles a vacunación e inmunización) y la descripción de los elementos que facilitaron las coberturas específicas elevadas de algunas subpoblaciones podrían contribuir para mejorar los resultados. (AU)


Introduction: influenza vaccination is the most effective way to prevent influenza virus disease and its complications. Coverage in health professionals measurement is an indicator of hospital quality. Material and methods: descriptive cross-sectional study. From vaccination records, the coverage was calculated for the 2013 to 2018 campaigns. The coverage for three years was compared. General characteristics of the campaigns from 2016 to 2018 were described. Results: in 2016, the highest was achieved during the period (59.79%, IC 95%: 58.75 -60.81). In 2017, the lowest (34.46%, IC 95%: 33.48-35,46). The 2018 campaign achieved a coverage of 54.90% (IC 95%: 53.88-55.92) and started earlier than others. When comparing the triennial rates of the period, a difference of proportion of -1.3% was observed (IC 95%: -2.84-0.24). During the last three years, the vaccinated staff corresponded mostly to the female sex, to the headquarters and had a direct contractual relationship. The largest specific coverage corresponded to the San Justo headquarters and to nursing professionals. The ambulatory position was the post that applied the most vaccines. Conclusion: although there were variations in the coverage achieved over the years, with 2016 being the highest and 2017 being the lowest, there were no statistically significant differences in the coverage achieved when comparing trienniums. It is necessary to continue carrying out interventions adapted to the local context to achieve the expected coverage objectives. Discussion: several obstacles were recognized to reach the expected coverage. The education of health personnel, the systematic evaluation of the ESAVIs and the description of the elements that facilitated the high specific coverage of some subpopulations could contribute to improve the results. (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Cobertura Vacinal/estatística & dados numéricos , Qualidade da Assistência à Saúde/estatística & dados numéricos , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/provisão & distribuição , Fatores Sexuais , Epidemiologia Descritiva , Fatores Etários , Pessoal de Saúde/educação , Pessoal de Saúde/estatística & dados numéricos , Programas de Imunização/provisão & distribuição , Programas de Imunização/estatística & dados numéricos , Infecções por Orthomyxoviridae/complicações , Absenteísmo , Cobertura Vacinal/organização & administração
19.
mBio ; 10(3)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064834

RESUMO

We previously reported that the Toll-like receptor 4 (TLR4) antagonist Eritoran blocks acute lung injury (ALI) therapeutically in mouse and cotton rat models of influenza. However, secondary (2°) bacterial infection following influenza virus infection is associated with excess morbidity and mortality. Wild-type (WT) mice infected with mouse-adapted influenza A/Puerto Rico/8/34 virus (PR8) and, 7 days later, with Streptococcus pneumoniae serotype 3 (Sp3) exhibited significantly enhanced lung pathology and lethality that was reversed by Eritoran therapy after PR8 infection but before Sp3 infection. Cotton rats infected with nonadapted pH1N1 influenza virus and then superinfected with methicillin-resistant Staphylococcus aureus also exhibited increased lung pathology and serum high-mobility-group box 1 (HMGB1) levels, both of which were blunted by Eritoran therapy. In mice, PR8 infection suppressed Sp3-induced CXCL1 and CXCL2 mRNA, reducing neutrophil infiltration and increasing the bacterial burden, all of which were reversed by Eritoran treatment. While beta interferon (IFN-ß)-deficient (IFN-ß-/-) mice are highly susceptible to PR8, they exhibited delayed death upon Sp3 superinfection, indicating that while IFN-ß was protective against influenza, it negatively impacted the host response to Sp3 IFN-ß-treated WT macrophages selectively suppressed Sp3-induced CXCL1/CXCL2 transcriptionally, as evidenced by reduced recruitment of RNA polymerase II to the CXCL1 promoter. Thus, influenza establishes a "trained" state of immunosuppression toward 2° bacterial infection, in part through the potent induction of IFN-ß and its downstream transcriptional regulation of chemokines, an effect reversed by Eritoran.IMPORTANCE Enhanced susceptibility to 2° bacterial infections following infection with influenza virus is a global health concern that accounts for many hospitalizations and deaths, particularly during pandemics. The complexity of the impaired host immune response during 2° bacterial infection has been widely studied. Both type I IFN and neutrophil dysfunction through decreased chemokine production have been implicated as mechanisms underlying enhanced susceptibility to 2° bacterial infections. Our findings support the conclusion that selective suppression of CXCL1/CXCL2 represents an IFN-ß-mediated "training" of the macrophage transcriptional response to TLR2 agonists and that blocking of TLR4 therapeutically with Eritoran after influenza virus infection reverses this suppression by blunting influenza-induced IFN-ß.


Assuntos
Coinfecção/microbiologia , Pulmão/microbiologia , Infecções por Orthomyxoviridae/microbiologia , Superinfecção , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/virologia , Animais , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Quimiocina CXCL2/genética , Quimiocina CXCL2/imunologia , Dissacarídeos/administração & dosagem , Suscetibilidade a Doenças , Feminino , Hospedeiro Imunocomprometido , Vírus da Influenza A , Interferon beta/imunologia , Masculino , Staphylococcus aureus Resistente à Meticilina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/complicações , Sigmodontinae , Streptococcus pneumoniae/imunologia , Fosfatos Açúcares/administração & dosagem , Receptor 4 Toll-Like/imunologia
20.
BMC Vet Res ; 15(1): 113, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975135

RESUMO

BACKGROUND: In May 2017, 17 dogs in a German Shepherd breeding kennel in northern China developed respiratory clinical signs. The owner treated the dogs with an intravenous injection of Shuang-Huang-lian, a traditional Chinese medicine, and azithromycin. The respiratory signs improved 3 days post-treatment, however, cysts were observed in the necks of eight dogs, and three of them died in the following 2 days. CASE PRESENTATION: Quantitative real-time PCR was used to detect canine influenza virus (CIV). All of the dogs in this kennel were positive and the remaining 14 dogs had seroconverted. Two of the dogs were taken to the China Agricultural University Veterinary Teaching Hospital for further examination. Two strains of influenza virus (A/canine/Beijing/0512-133/2017 and A/canine/Beijing/0512-137/2017) isolated from the nasal swabs of these dogs were sequenced and identified as avian-origin H3N2 CIV. For the two dogs admitted to the hospital, hematology showed mild inflammation and radiograph results indicated pneumonia. Cyst fluid was plated for bacterial culture and bacterial 16 s rRNA gene PCR was performed, followed by Sanger sequencing. The results indicated an Enterococcus faecalis infection. Antimicrobial susceptibility tests were performed and dogs were treated with enrofloxacin. All 14 remaining dogs recovered within 16 days. CONCLUSIONS: Coinfection of H3N2 CIV and Enterococcus faecalis was detected in dogs, which has not been reported previously. Our results highlight that CIV infection might promote the secondary infection of opportunistic bacteria and cause more severe and complicated clinical outcomes.


Assuntos
Coinfecção/veterinária , Doenças do Cão/virologia , Infecções por Bactérias Gram-Positivas/veterinária , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae/veterinária , Animais , China/epidemiologia , Coinfecção/epidemiologia , Coinfecção/microbiologia , Coinfecção/virologia , Surtos de Doenças/veterinária , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Cães/virologia , Enterococcus faecalis , Feminino , Infecções por Bactérias Gram-Positivas/complicações , Infecções por Bactérias Gram-Positivas/microbiologia , Vírus da Influenza A Subtipo H3N2/genética , Masculino , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA