RESUMO
Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.
Assuntos
Transtorno Bipolar , Temperatura Corporal , Caderinas , Modelos Animais de Doenças , Locomoção , Camundongos Knockout , Animais , Masculino , Camundongos , Comportamento Animal , Transtorno Bipolar/genética , Transtorno Bipolar/fisiopatologia , Caderinas/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Locomoção/genética , Camundongos Endogâmicos C57BL , Inibição Pré-Pulso/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , ProtocaderinasRESUMO
Some cancer survivors experience marked cognitive impairment, referred to as cancer-related cognitive impairment (CRCI). CRCI has been linked to the genetic factor APOE4, the strongest genetic risk factor for Alzheimer's disease (AD). We used APOE knock-in mice to test whether the relationship between APOE4 and CRCI can be demonstrated in a mouse model, to identify associations of chemotherapy with behavioural and structural correlates of cognition, and to test whether chemotherapy affects markers of AD. Twelve-month old C57BL/6â¯J female APOE3 (nâ¯=â¯30) and APOE4 (nâ¯=â¯31) knock-in mice were randomized to treatment with either doxorubicin (10â¯mg/kg) or saline. Behavioural assays at 2-21 weeks-post exposure included open field maze, elevated zero maze, pre-pulse inhibition, Barnes maze, and fear conditioning. Ex-vivo magnetic resonance imaging was used to determine regional volume differences at 31-35 weeks-post exposure, and tissue sections were analyzed for markers of AD pathogenesis. Minimal toxicities were observed in the aged mice after doxorubicin exposure. In the Barnes maze assay, APOE3 mice did not exhibit impairment in spatial learning after doxorubicin treatment, but APOE4 mice demonstrated significant impairments in both the initial identification of the escape hole and the latency to full escape at 6 weeks post-exposure. Both APOE3 and APOE4 mice treated with doxorubicin showed impairment of spatial memory. Grey matter volume in the frontal cortex decreased in APOE4 mice treated with doxorubicin vs. APOE3 mice. This study demonstrates cognitive impairments in aged APOE4 knock-in mice after doxorubicin treatment and establishes this system as a novel and powerful model of CRCI.
Assuntos
Envelhecimento , Antibióticos Antineoplásicos/toxicidade , Encéfalo/efeitos dos fármacos , Comprometimento Cognitivo Relacionado à Quimioterapia/fisiopatologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/toxicidade , Camundongos , Animais , Antibióticos Antineoplásicos/farmacologia , Ansiedade , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Comprometimento Cognitivo Relacionado à Quimioterapia/etiologia , Comprometimento Cognitivo Relacionado à Quimioterapia/genética , Cognição/fisiologia , Doxorrubicina/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Feminino , Técnicas de Introdução de Genes , Imageamento por Ressonância Magnética , Teste de Campo Aberto , Tamanho do Órgão , Inibição Pré-Pulso/genética , Fatores de Risco , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologiaRESUMO
The current study was designed to explore how disruption of specific molecular circuits in the cerebral cortex may cause sensorimotor cortico-striatal community structure deficits in both a mouse model and patients with schizophrenia. We used prepulse inhibition (PPI) and brain structural and diffusion MRI scans in 23 mice with conditional ErbB4 knockout in parvalbumin interneurons and 27 matched controls. Quantitative real-time PCR was used to assess the differential levels of GABA-related transcripts in brain regions. Concurrently, we measured structural and diffusion MRI and the cumulative contribution of risk alleles in the GABA pathway genes in first-episode treatment-naïve schizophrenic patients (n = 117) and in age- and sex-matched healthy controls (n = 86). We present the first evidence of gray and white matter impairment of right sensorimotor cortico-striatal networks and reproduced the sensorimotor gating deficit in a mouse model of schizophrenia. Significant correlations between gray matter volumes (GMVs) in the somatosensory cortex and PPI as well as glutamate decarboxylase 1 mRNA expression were found in controls but not in knockout mice. Furthermore, these findings were confirmed in a human sample in which we found significantly decreased gray and white matter in sensorimotor cortico-striatal networks in schizophrenic patients. The psychiatric risk alleles of the GABA pathway also displayed a significant negative correlation with the GMVs of the somatosensory cortex in patients. Our study identified that ErbB4 ablation in parvalbumin interneurons induced GABAergic dysregulation, providing valuable mechanistic insights into the sensorimotor cortico-striatal community structure deficits associated with schizophrenia.
Assuntos
Córtex Cerebral/patologia , Corpo Estriado/patologia , Inibição Pré-Pulso/genética , Receptor ErbB-4/deficiência , Esquizofrenia/genética , Esquizofrenia/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Substância Branca/patologiaRESUMO
Developmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319.
Assuntos
Movimento Celular/genética , Dislexia/genética , Dislexia/patologia , Neocórtex/patologia , Proteínas do Tecido Nervoso/deficiência , Neurônios/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Ansiedade/etiologia , Ansiedade/genética , Encéfalo/metabolismo , Adaptação à Escuridão/genética , Modelos Animais de Doenças , Dislexia/complicações , Eletroporação , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genótipo , Técnicas In Vitro , Antígeno Ki-67/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Fator de Transcrição PAX6/metabolismo , Técnicas de Patch-Clamp , Gravidez , Inibição Pré-Pulso/genética , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Filtro Sensorial/genética , Proteínas com Domínio T/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Pregnancy is a period characterized by a supraphysiological hormonal status, and greater anxiety proneness, which can lead to peripartum affective symptoms with dramatic consequences not only for the woman but also for the child. Clinical psychiatry is heavily hampered by the paucity of objective and biology-based intermediate phenotypes. Prepulse inhibition (PPI) of the startle response, a neurophysiological measure of sensorimotor gating, has been poorly investigated in relation to anxiety and in pregnant women. In the present study, the PPI of healthy non-pregnant women (n = 82) and late pregnant women (n = 217) was investigated. Age, BMI, depression and anxiety symptoms, tobacco use, and antidepressant medication were considered. We investigated and provided evidence of lower PPI: (i) in healthy pregnant women compared to healthy non-pregnant controls, (ii) in pregnant women with anxiety disorders compared to healthy pregnant women, (iii) in pregnant women with anxiety disorders using SSRI compared to un-medicated pregnant women with anxiety disorders, and (iv) in healthy pregnant women carrying the COMT Val158Met Val/Val genotype compared to Met carriers. Altogether, a reduced sensorimotor gating as an effect of supraphysiological hormonal status, anxiety disorders, SSRIs, and catecholaminergic genotype, implicate the putative relevance of lower PPI as an objective biological correlate of anxiety proneness in pregnant women. These findings call for prospective studies to dissect the multifactorial influences on PPI in relation to mental health of pregnant women.