Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Int J Biol Macromol ; 268(Pt 1): 131631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631584

RESUMO

Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and they function in lipid metabolism, membrane biosynthesis, cellular signaling, stress response, disease resistance, and other biological activities in plants. However, the roles of ACBP family members in Medicago remain unclear. In this study, a total of eight ACBP genes were identified in the genome of Medicago truncatula and Medicago sativa, and they were clustered into four sub-families (Class I-IV). Many cis-acting elements related to abiotic response were identified in the promoter region of these ACBP genes, in particular light-responsive elements. These ACBP genes exhibited distinct expression pattern in various tissues, and the expression level of MtACBP1/MsACBP1 and MtACBP2/MsACBP2 gene pairs were significantly increased under NaCl treatment. Subcellular localization analysis showed that MtACBP1/MsACBP1 and MtACBP2/MsACBP2 were localized in the endoplasmic reticulum of tobacco epidermal cells. Arabidopsis seedlings over-expressing MtACBP2/MsACBP2 displayed increased root length than the wild type under short light, Cu2+, ABA, PEG, and NaCl treatments. Over-expression of MtACBP2/MsACBP2 also significantly enhanced Arabidopsis tolerance under NaCl and PEG treatments in mature plants. Collectively, our study identified salt and drought responsive ACBP genes in Medicago and verified their functions in increasing resistance against salt and drought stresses.


Assuntos
Arabidopsis , Resistência à Seca , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal , Arabidopsis/genética , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Medicago/genética , Medicago truncatula/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética
2.
Gerontology ; 69(9): 1104-1112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37607528

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is one of the pathologies that the scientific world is still desperate for. The aim of this study was the investigation of diazepam binding inhibitor (DBI) as a prognostic factor for AD prognosis. METHODS: A total of 120 participants were divided into 3 groups. Forty new diagnosed Alzheimer patients (NDG) who have been diagnosed but have not started AD treatment, 40 patients who diagnosed 5 years ago (D5YG), and 40 healthy control groups (CG) were included in the study. Levels of DBI, oxidative stress, inflammatory, and neurodegenerative biomarkers were compared between 3 groups. RESULTS: Plasma levels of DBI, oligomeric Aß, total tau, glial fibrillary acidic protein, α-synuclein, interleukin (IL) 1ß, IL6, tumor necrosis factor α, oxidative stress index, high-sensitive C-reactive protein, and DNA damage were found higher in D5YG and NDG as compared to CG (p < 0.001). On the contrary, plasma levels of total thiol, native thiol, vitamin D and vitamin B12 were lower in D5YG and NDG as compared to CG (p < 0.001). DISCUSSION: DBI may be a potential plasma biomarker and promising drug target for AD. It could help physicians make a comprehensive evaluation with cognitive and neurodegenerative tests.


Assuntos
Doença de Alzheimer , Relevância Clínica , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Inibidor da Ligação a Diazepam , Biomarcadores , Estresse Oxidativo
3.
Aging Cell ; 22(9): e13910, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357988

RESUMO

Acyl coenzyme A binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is a phylogenetically ancient protein present in some eubacteria and the entire eukaryotic radiation. In several eukaryotic phyla, ACBP/DBI transcends its intracellular function in fatty acid metabolism because it can be released into the extracellular space. This ACBP/DBI secretion usually occurs in response to nutrient scarcity through an autophagy-dependent pathway. ACBP/DBI and its peptide fragments then act on a range of distinct receptors that diverge among phyla, namely metabotropic G protein-coupled receptor in yeast (and likely in the mammalian central nervous system), a histidine receptor kinase in slime molds, and ionotropic gamma-aminobutyric acid (GABA)A receptors in mammals. Genetic or antibody-mediated inhibition of ACBP/DBI orthologs interferes with nutrient stress-induced adaptations such as sporulation or increased food intake in multiple species, as it enhances lifespan or healthspan in yeast, plant leaves, nematodes, and multiple mouse models. These lifespan and healthspan-extending effects of ACBP/DBI suppression are coupled to the induction of autophagy. Altogether, it appears that neutralization of extracellular ACBP/DBI results in "autophagy checkpoint inhibition" to unleash the anti-aging potential of autophagy. Of note, in humans, ACBP/DBI levels increase in various tissues, as well as in the plasma, in the context of aging, obesity, uncontrolled infection or cardiovascular, inflammatory, neurodegenerative, and malignant diseases.


Assuntos
Proteínas de Transporte , Inibidor da Ligação a Diazepam , Animais , Humanos , Camundongos , Acil Coenzima A/metabolismo , Envelhecimento , Autofagia , Inibidor da Ligação a Diazepam/metabolismo , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Genes (Basel) ; 14(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37107617

RESUMO

Members of the acyl-CoA-binding protein (ACBP) gene family play vital roles in diverse processes related to lipid metabolism, growth and development, and environmental response. Plant ACBP genes have been well-studied in a variety of species including Arabidopsis, soybean, rice and maize. However, the identification and functions of ACBP genes in cotton remain to be elucidated. In this study, a total of 11 GaACBP, 12 GrACBP, 20 GbACBP, and 19 GhACBP genes were identified in the genomes of Gossypium arboreum, Gossypium raimondii, Gossypium babardense, and Gossypium hirsutum, respectively, and grouped into four clades. Forty-nine duplicated gene pairs were identified in Gossypium ACBP genes, and almost all of which have undergone purifying selection during the long evolutionary process. In addition, expression analyses showed that most of the GhACBP genes were highly expressed in the developing embryos. Furthermore, GhACBP1 and GhACBP2 were induced by salt and drought stress based on a real-time quantitative PCR (RT-qPCR) assay, indicating that these genes may play an important role in salt- and drought-stress tolerance. This study will provide a basic resource for further functional analysis of the ACBP gene family in cotton.


Assuntos
Inibidor da Ligação a Diazepam , Gossypium , Gossypium/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Genes de Plantas , Estresse Fisiológico/genética
5.
Cell Death Dis ; 14(4): 296, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120445

RESUMO

The diffuse nature of Glioblastoma (GBM) tumors poses a challenge to current therapeutic options. We have previously shown that Acyl-CoA Binding Protein (ACBP, also known as DBI) regulates lipid metabolism in GBM cells, favoring fatty acid oxidation (FAO). Here we show that ACBP downregulation results in wide transcriptional changes affecting invasion-related genes. In vivo experiments using patient-derived xenografts combined with in vitro models demonstrated that ACBP sustains GBM invasion via binding to fatty acyl-CoAs. Blocking FAO mimics ACBPKD-induced immobility, a cellular phenotype that can be rescued by increasing FAO rates. Further investigation into ACBP-downstream pathways served to identify Integrin beta-1, a gene downregulated upon inhibition of either ACBP expression or FAO rates, as a mediator for ACBP's role in GBM invasion. Altogether, our findings highlight a role for FAO in GBM invasion and reveal ACBP as a therapeutic vulnerability to stall FAO and subsequent cell invasion in GBM tumors.


Assuntos
Proteínas de Transporte , Glioblastoma , Humanos , Proteínas de Transporte/metabolismo , Glioblastoma/genética , Inibidor da Ligação a Diazepam/metabolismo , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo
6.
Aging Cell ; 22(1): e13751, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510662

RESUMO

Autophagy defects accelerate aging, while stimulation of autophagy decelerates aging. Acyl-coenzyme A binding protein (ACBP), which is encoded by a diazepam-binding inhibitor (DBI), acts as an extracellular feedback regulator of autophagy. As shown here, knockout of the gene coding for the yeast orthologue of ACBP/DBI (ACB1) improves chronological aging, and this effect is reversed by knockout of essential autophagy genes (ATG5, ATG7) but less so by knockout of an essential mitophagy gene (ATG32). In humans, ACBP/DBI levels independently correlate with body mass index (BMI) as well as with chronological age. In still-healthy individuals, we find that high ACBP/DBI levels correlate with future cardiovascular events (such as heart surgery, myocardial infarction, and stroke), an association that is independent of BMI and chronological age, suggesting that ACBP/DBI is indeed a biomarker of "biological" aging. Concurringly, ACBP/DBI plasma concentrations correlate with established cardiovascular risk factors (fasting glucose levels, systolic blood pressure, total free cholesterol, triglycerides), but are inversely correlated with atheroprotective high-density lipoprotein (HDL). In mice, neutralization of ACBP/DBI through a monoclonal antibody attenuates anthracycline-induced cardiotoxicity, which is a model of accelerated heart aging. In conclusion, plasma elevation of ACBP/DBI constitutes a novel biomarker of chronological aging and facets of biological aging with a prognostic value in cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Proteínas de Transporte , Animais , Humanos , Camundongos , Doenças Cardiovasculares/genética , Coenzima A/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Proteínas Nucleares/metabolismo
7.
Autophagy ; 19(7): 2166-2169, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36579946

RESUMO

DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein) is a phylogenetically conserved paracrine inhibitor of macroautophagy/autophagy. As such, DBI/ACBP acts as a pro-aging molecule. Indeed, we observed that the knockout of ACB1 (the yeast equivalent of human DBI/ACBP) induces autophagy and prolongs lifespan in an autophagy-dependent fashion in chronological lifespan experiments. Intriguingly, circulating DBI/ACBP protein augments with age in humans, and this increase occurs independently from the known correlation of DBI/ACBP with body mass index (BMI). A supraphysiological DBI/ACBP level announces future cardiovascular disease (such as heart surgery, myocardial infarction and stroke) in still healthy individuals, suggesting that, beyond its correlation with chronological age, DBI/ACBP is a biomarker of biological age. Plasma DBI/ACBP concentrations correlate with triglycerides and anticorrelate with high-density lipoprotein. Of note, these associations with cardiovascular risk factors are independent from age and BMI in a multivariate regression model. In mice, we found that antibody-mediated neutralization of DBI/ACBP reduces signs of anthracycline-accelerated cardiac aging including the upregulation of the senescence marker CDKN2A/p16 (cyclin dependent kinase inhibitor 2A) and the functional decline of the heart. In conclusion, it appears that extracellular DBI/ACBP can be targeted to combat age-associated cardiovascular disease.Abbreviations: BMI: body mass index; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CVD: cardiovascular disease; DBI/ACBP: diazepam binding inhibitor, acyl-CoA binding protein; ELISA: enzyme-linked immunosorbent assay; GABA: gamma-aminobutyric acid; GABR: gamma-aminobutyric acid type A receptor.


Assuntos
Doenças Cardiovasculares , Inibidor p16 de Quinase Dependente de Ciclina , Humanos , Camundongos , Animais , Sequência de Bases , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Proteínas de Transporte/metabolismo , Autofagia , Envelhecimento , Ácido gama-Aminobutírico
8.
J Neuroendocrinol ; 34(12): e13218, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36471907

RESUMO

Acyl-CoA binding protein (ACBP), also known as diazepam binding inhibitor (DBI), has recently emerged as a hypothalamic and brainstem gliopeptide regulating energy balance. Previous work has shown that the ACBP-derived octadecaneuropeptide exerts strong anorectic action via proopiomelanocortin (POMC) neuron activation and the melanocortin-4 receptor. Importantly, targeted ACBP loss-of-function in astrocytes promotes hyperphagia and diet-induced obesity while its overexpression in arcuate astrocytes reduces feeding and body weight. Despite this knowledge, the role of astroglial ACBP in adaptive feeding and metabolic responses to acute metabolic challenges has not been investigated. Using different paradigms, we found that ACBP deletion in glial fibrillary acidic protein (GFAP)-positive astrocytes does not affect weight loss when obese male mice are transitioned from a high fat diet to a chow diet, nor metabolic parameters in mice fed with a normal chow diet (e.g., energy expenditure, body temperature) during fasting, cold exposure and at thermoneutrality. In contrast, astroglial ACBP deletion impairs meal pattern and feeding responses during refeeding after a fast and during cold exposure, thereby showing that ACBP is required to stimulate feeding in states of increased energy demand. These findings challenge the general view that astroglial ACBP exerts anorectic effects and suggest that regulation of feeding by ACBP is dependent on metabolic status.


Assuntos
Depressores do Apetite , Inibidor da Ligação a Diazepam , Metabolismo Energético , Animais , Masculino , Camundongos , Astrócitos/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Metabolismo Energético/fisiologia , Hiperfagia/metabolismo
9.
Nucleic Acids Res ; 50(12): 6953-6967, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748856

RESUMO

G-quadruplex structure (G4) is a type of DNA secondary structure that widely exists in the genomes of many organisms. G4s are believed to participate in multiple biological processes. Acyl-CoA binding protein (ACBP), a ubiquitously expressed and highly conserved protein in eukaryotic cells, plays important roles in lipid metabolism by transporting and protecting acyl-CoA esters. Here, we report the functional identification of a G4 in the promoter of the ACBP gene in silkworm and human cancer cells. We found that G4 exists as a conserved element in the promoters of ACBP genes in invertebrates and vertebrates. The BmACBP G4 bound with G4-binding protein LARK regulated BmACBP transcription, which was blocked by the G4 stabilizer pyridostatin (PDS) and G4 antisense oligonucleotides. PDS treatment with fifth instar silkworm larvae decreased the BmACBP expression and triacylglycerides (TAG) level, resulting in reductions in fat body mass, body size and weight and growth and metamorphic rates. PDS treatment and knocking out of the HsACBP G4 in human hepatic adenocarcinoma HepG2 cells inhibited the expression of HsACBP and decreased the TAG level and cell proliferation. Altogether, our findings suggest that G4 of the ACBP genes is involved in regulation of lipid metabolism processes in invertebrates and vertebrates.


Assuntos
Inibidor da Ligação a Diazepam , Metabolismo dos Lipídeos , Humanos , Inibidor da Ligação a Diazepam/genética , Metabolismo dos Lipídeos/genética , DNA/genética , Coenzima A
10.
FASEB J ; 36(7): e22367, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639422

RESUMO

Diazepam binding inhibitor (DBI)-translocator protein (18kDa) (TSPO) signaling in the retina was reported to possess coordinated macroglia-microglia interactions. We investigated DBI-TSPO signaling and its correlation with vascular endothelial growth factor (VEGF), neurotrophic or inflammatory cytokines in neovascular retinopathy, and under hypoxic conditions. The vitreous expression of DBI, VEGF, nerve growth factor (NGF), and interleukin-1beta (IL-1ß) were examined in proliferative diabetic retinopathy (PDR) patients with or without anti-VEGF therapy and nondiabetic controls. Retinal DBI-TSPO signaling and the effect of the anti-VEGF agent were evaluated in a mouse model of oxygen-induced retinopathy (OIR). Interactions between Müller cell-derived VEGF and DBI, as well as cocultured microglial cells under hypoxic conditions, were studied, using Western blot, real-time RT-PCR, enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunofluorescent labeling. Results showed that vitreous levels of DBI, VEGF, NGF, and IL-1ß were significantly higher in PDR patients compared with controls, which further changed after anti-VEGF therapy. A statistical association was found between vitreous DBI and VEGF, NGF, IL-1ß, and age. The application of the anti-VEGF agent in the OIR model induced retinal expression of DBI and NGF, and attenuated inflammation and microglial cell activation. Inhibition of Müller cell-derived VEGF could increase its DBI expression under hypoxic conditions, while the DBI-TSPO signaling pathway is essential for anti-VEGF agents exerting anti-inflammatory and neuroprotective effects, as well as limiting inflammatory magnitude, promoting its neurotrophin production and anti-inflammatory (M2) polarization in microglial cells. These findings suggest the beneficial effect of anti-VEGF therapy on inflammation and neurotrophy of retinal glial cells through modulation of the DBI-TSPO signaling pathway.


Assuntos
Citocinas , Retinopatia Diabética , Animais , Humanos , Camundongos , Citocinas/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator de Crescimento Neural/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Corpo Vítreo/metabolismo
11.
Fungal Genet Biol ; 161: 103695, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513256

RESUMO

Being found in all eukaryotes investigated, acyl-CoA-binding proteins (ACBPs) participate in lipid metabolism via specifically binding acyl-CoA esters with high affinity. The structures and functions of ACBP family proteins have been extensively described in yeasts, fungi, plants and mammals, but not oomycetes. In the present study, seven ACBP genes named PsACBP1-7 were identified from the genome of Phytophthora sojae, an oomycete pathogen of soybean. CRISPR-Cas9 knockout mutants targeting PsACBP1 and PsACBP2 were created for phenotypic assays. PsACBP1 knockout led to defects in sporangia production and virulence. PsACBP2 knockout mutants exhibited impaired vegetative growth, zoospore production, cyst germination and virulence. Moreover, Nile red staining of PsACBP2 knockout and over-expression lines showed that PsACBP2 is involved in the formation of lipid bodies in P. sojae. Our results demonstrate that two ACBP genes are differently required for growth and development, and both are essential for virulence in P. sojae.


Assuntos
Phytophthora , Animais , Coenzima A/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Mamíferos/metabolismo , Glycine max/genética , Virulência/genética
12.
Reproduction ; 163(5): 309-321, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35275842

RESUMO

Decidualization of uterine stromal cells plays an important role in the establishment of normal pregnancy. Previous studies have demonstrated that Acyl-CoA binding protein (Acbp) is critical to cellular proliferation, differentiation, mitochondrial functions, and autophagy. The characterization and physiological function of Acbp during decidualization remain largely unknown. In the present study, we conducted the expression profile of Acbp in the endometrium of early pregnant mice. With the occurrence of decidualization, the expression of Acbp gradually increased. Similarly, Acbp expression was also strongly expressed in decidualized cells following artificial decidualization, both in vivo and in vitro. We applied the mice pseudopregnancy model to reveal that the expression of Acbp in the endometrium of early pregnant mice was not induced by embryonic signaling. Moreover, P4 significantly upregulated the expression of Acbp, whereas E2 appeared to have no regulating effect on Acbp expression in uterine stromal cells. Concurrently, we found that interfering with Acbp attenuated decidualization, and that might due to mitochondrial dysfunctions and the inhibition of fatty acid oxidation. The level of autophagy was increased after knocking down Acbp. During induced decidualization, the expression of ACBP was decreased with the treatment of rapamycin (an autophagy inducer), while increased with the addition of Chloroquine (an autophagy inhibitor). Our work suggests that Acbp plays an essential role in the proliferation and differentiation of stromal cells during decidualization through regulating mitochondrial functions, fatty acid oxidation, and autophagy.


Assuntos
Decídua , Inibidor da Ligação a Diazepam , Animais , Decídua/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Endométrio/metabolismo , Feminino , Camundongos , Gravidez , Pseudogravidez , Células Estromais/metabolismo
13.
Trends Endocrinol Metab ; 32(11): 890-903, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34565656

RESUMO

Four decades ago Costa and colleagues identified a small, secreted polypeptide in the brain that can displace the benzodiazepine diazepam from the GABAA receptor, and was thus termed diazepam binding inhibitor (DBI). Shortly after, an identical polypeptide was identified in liver by its ability to induce termination of fatty acid synthesis, and was named acyl-CoA binding protein (ACBP). Since then, ACBP/DBI has been studied in parallel without a clear and integrated understanding of its dual roles. The first genetic loss-of-function models have revived the field, allowing targeted approaches to better understand the physiological roles of ACBP/DBI in vivo. We discuss the roles of ACBP/DBI in central and tissue-specific functions in mammals, with an emphasis on metabolism and mechanisms of action.


Assuntos
Benzodiazepinas , Ácidos Graxos , Animais , Humanos , Benzodiazepinas/farmacologia , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Ácidos Graxos/metabolismo , Mamíferos/metabolismo
14.
J Neurosci ; 41(33): 7148-7159, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34210784

RESUMO

Following stroke, the survival of neurons and their ability to reestablish connections is critical to functional recovery. This is strongly influenced by the balance between neuronal excitation and inhibition. In the acute phase of experimental stroke, lethal hyperexcitability can be attenuated by positive allosteric modulation of GABAA receptors (GABAARs). Conversely, in the late phase, negative allosteric modulation of GABAAR can correct the suboptimal excitability and improves both sensory and motor recovery. Here, we hypothesized that octadecaneuropeptide (ODN), an endogenous allosteric modulator of the GABAAR synthesized by astrocytes, influences the outcome of ischemic brain tissue and subsequent functional recovery. We show that ODN boosts the excitability of cortical neurons, which makes it deleterious in the acute phase of stroke. However, if delivered after day 3, ODN is safe and improves motor recovery over the following month in two different paradigms of experimental stroke in mice. Furthermore, we bring evidence that, during the subacute period after stroke, the repairing cortex can be treated with ODN by means of a single hydrogel deposit into the stroke cavity.SIGNIFICANCE STATEMENT Stroke remains a devastating clinical challenge because there is no efficient therapy to either minimize neuronal death with neuroprotective drugs or to enhance spontaneous recovery with neurorepair drugs. Around the brain damage, the peri-infarct cortex can be viewed as a reservoir of plasticity. However, the potential of wiring new circuits in these areas is restrained by a chronic excess of GABAergic inhibition. Here we show that an astrocyte-derived peptide, can be used as a delayed treatment, to safely correct cortical excitability and facilitate sensorimotor recovery after stroke.


Assuntos
Inibidor da Ligação a Diazepam/uso terapêutico , Agonistas de Receptores de GABA-A/uso terapêutico , Neurônios/efeitos dos fármacos , Neuropeptídeos/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Receptores de GABA-A/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Adulto , Animais , Astrócitos/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Inibidor da Ligação a Diazepam/deficiência , Inibidor da Ligação a Diazepam/fisiologia , Implantes de Medicamento , Potenciais Somatossensoriais Evocados , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Hidrogéis , Infarto da Artéria Cerebral Média/tratamento farmacológico , Trombose Intracraniana/tratamento farmacológico , Trombose Intracraniana/etiologia , Luz , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/toxicidade , Neurônios/fisiologia , Neuropeptídeos/deficiência , Neuropeptídeos/fisiologia , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/deficiência , Fragmentos de Peptídeos/fisiologia , Ratos , Rosa Bengala/efeitos da radiação , Rosa Bengala/toxicidade , Método Simples-Cego , Acidente Vascular Cerebral/etiologia
15.
Cell Death Dis ; 12(6): 599, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108446

RESUMO

In mice, the plasma concentrations of the appetite-stimulatory and autophagy-inhibitory factor acyl-coenzyme A binding protein (ACBP, also called diazepam-binding inhibitor, DBI) acutely increase in response to starvation, but also do so upon chronic overnutrition leading to obesity. Here, we show that knockout of Acbp/Dbi in adipose tissue is sufficient to prevent high-fat diet-induced weight gain in mice. We investigated ACBP/DBI plasma concentrations in several patient cohorts to discover a similar dual pattern of regulation. In relatively healthy subjects, ACBP/DBI concentrations independently correlated with body mass index (BMI) and age. The association between ACBP/DBI and BMI was lost in subjects that underwent major weight gain in the subsequent 3-9 years, as well as in advanced cancer patients. Voluntary fasting, undernutrition in the context of advanced cancer, as well as chemotherapy were associated with an increase in circulating ACBP/DBI levels. Altogether, these results support the conclusion that ACBP/DBI may play an important role in body mass homeostasis as well as in its failure.


Assuntos
Índice de Massa Corporal , Peso Corporal/efeitos dos fármacos , Inibidor da Ligação a Diazepam/farmacologia , Animais , Estudos de Coortes , Feminino , França , Alemanha , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia
16.
BMC Plant Biol ; 21(1): 94, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588749

RESUMO

BACKGROUND: Acyl-CoA-binding proteins (ACBPs) possess a conserved acyl-CoA-binding (ACB) domain that facilitates binding to acyl-CoA esters and trafficking in eukaryotic cells. Although the various functions of ACBP have been characterized in several plant species, their structure, molecular evolution, expression profile, and function have not been fully elucidated in Zea mays L. RESULTS: Genome-wide analysis identified nine ZmACBP genes in Z. mays, which could be divided into four distinct classes (class I, class II, class III, and class IV) via construction of a phylogenetic tree that included 48 ACBP genes from six different plant species. Transient expression of a ZmACBP-GFP fusion protein in tobacco (Nicotiana tabacum) epidermal cells revealed that ZmACBPs localized to multiple different locations. Analyses of expression profiles revealed that ZmACBPs exhibited temporal and spatial expression changes during abiotic and biotic stresses. Eight of the nine ZmACBP genes were also found to have significant association with agronomic traits in a panel of 500 maize inbred lines. The heterologous constitutive expression of ZmACBP1 and ZmACBP3 in Arabidopsis enhanced the resistance of these plants to salinity and drought stress, possibly through alterations in the level of lipid metabolic and stress-responsive genes. CONCLUSION: The ACBP gene family was highly conserved across different plant species. ZmACBP genes had clear tissue and organ expression specificity and were responsive to both biotic and abiotic stresses, suggesting their roles in plant growth and stress resistance.


Assuntos
Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Zea mays/classificação , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
17.
Glia ; 69(5): 1079-1093, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33105065

RESUMO

The contribution of neuroglial interactions to the regulation of energy balance has gained increasing acceptance in recent years. In this context, endozepines, endogenous analogs of benzodiazepine derived from diazepam-binding inhibitor, are now emerging as major players. Produced by glial cells (astrocytes and tanycytes), endozepines have been known for two decades to exert potent anorexigenic effects by acting at the hypothalamic level. However, it is only recently that their modes of action, including the mechanisms by which they modulate energy metabolism, have begun to be elucidated. The data available today are abundant, significant, and sometimes contradictory, revealing a much more complex regulation than initially expected. Several mechanisms of action of endozepines seem to coexist at the central level, particularly in the hypothalamus. The brainstem has also recently emerged as a potential site of action for endozepines. In addition to their central anorexigenic effects, endozepines may also display peripheral effects promoting orexigenic actions, adding to their complexity and raising yet more questions. In this review, we attempt to provide an overview of our current knowledge in this rapidly evolving field and to pinpoint questions that remain unanswered.


Assuntos
Inibidor da Ligação a Diazepam , Neuroglia , Inibidor da Ligação a Diazepam/metabolismo , Metabolismo Energético , Hipotálamo/metabolismo , Neuroglia/metabolismo , Peptídeos
18.
Neurol Sci ; 42(3): 1003-1007, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32705487

RESUMO

BACKGROUND: Alzheimer's disease (AD) patients often express significant behavioral symptoms: for this reason, accessible related biomarkers could be very useful. Neuroinflammation is a key pathogenic process in both AD and delirium (DEL), a clinical condition with behavioral symptoms resembling those of AD. METHODS: A total of n = 30 AD patients were recruited together with n = 30 DEL patients and n = 15 healthy controls (CTRL). Serum diazepam binding inhibitor (DBI), IL-17, IL-6, and TNF-α were assessed by ELISA. RESULTS: DBI serum levels were increased in AD patients with respect to CTRL (+ 81%), while DEL values were 70% higher than AD. IL-17 was increased in DEL with respect to CTRL (+ 146%), while AD showed dispersed values and failed to reach significant differences. On the other hand, IL-6 showed a more robust increase in DEL with respect to the other two groups (+ 185% and + 205% vs. CTRL and AD, respectively), and TNF-α failed to show any change. CONCLUSIONS: DBI may be a very promising candidate for AD, perhaps marking psychomotor DEL-like symptoms, in view of developing future helping tool for practicing physicians. Furthermore, DBI rise in DEL offers novel cues for a better comprehension of the pathogenesis of this potentially fatal condition.


Assuntos
Doença de Alzheimer , Delírio , Inibidor da Ligação a Diazepam , Biomarcadores , Humanos , Fator de Necrose Tumoral alfa
19.
Microbiome ; 8(1): 69, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434586

RESUMO

BACKGROUND: We have proved fecal microbiota transplantation (FMT) is an efficacious remedy to mitigate acute radiation syndrome (ARS); however, the mechanisms remain incompletely characterized. Here, we aimed to tease apart the gut microbiota-produced metabolites, underpin the therapeutic effects of FMT to radiation injuries, and elucidate the underlying molecular mechanisms. RESULTS: FMT elevated the level of microbial-derived indole 3-propionic acid (IPA) in fecal pellets from irradiated mice. IPA replenishment via oral route attenuated hematopoietic system and gastrointestinal (GI) tract injuries intertwined with radiation exposure without precipitating tumor growth in male and female mice. Specifically, IPA-treated mice represented a lower system inflammatory level, recuperative hematogenic organs, catabatic myelosuppression, improved GI function, and epithelial integrity following irradiation. 16S rRNA gene sequencing and subsequent analyses showed that irradiated mice harbored a disordered enteric bacterial pattern, which was preserved after IPA administration. Notably, iTRAQ analysis presented that IPA replenishment retained radiation-reprogrammed protein expression profile in the small intestine. Importantly, shRNA interference and hydrodynamic-based gene delivery assays further validated that pregnane X receptor (PXR)/acyl-CoA-binding protein (ACBP) signaling played pivotal roles in IPA-favored radioprotection in vitro and in vivo. CONCLUSIONS: These evidences highlight that IPA is a key intestinal microbiota metabolite corroborating the therapeutic effects of FMT to radiation toxicity. Owing to the potential pitfalls of FMT, IPA might be employed as a safe and effective succedaneum to fight against accidental or iatrogenic ionizing ARS in clinical settings. Our findings also provide a novel insight into microbiome-based remedies toward radioactive diseases. Video abstract.


Assuntos
Inibidor da Ligação a Diazepam , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Indóis , Lesões por Radiação , Animais , Linhagem Celular , Inibidor da Ligação a Diazepam/metabolismo , Fezes/química , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos da radiação , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Hematopoese/efeitos dos fármacos , Indóis/administração & dosagem , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Receptor de Pregnano X/metabolismo , RNA Ribossômico 16S/genética , Lesões por Radiação/terapia , Transdução de Sinais/efeitos dos fármacos
20.
Neurotoxicology ; 77: 169-180, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31987860

RESUMO

Malaria is an infectious disease that is caused by different species of Plasmodium. Several antimalarial drugs are used to counter the spread and infectivity of Plasmodium species. However, humans are also vulnerable to many of the antimalarial drugs, including the quinoline-based drugs. In particular, the antimalarial mefloquine has been reported to show adverse neuropsychiatric effects in humans. Though mefloquine is known to be neurotoxic, the molecular mechanisms associated with this phenomenon are still obscure. In this study, we show that mefloquine binds to and inactivates the human acyl-CoA binding protein (hACBP), potentially inducing redox stress in human neuroblastoma cells (IMR-32). Mefloquine occupies the acyl-CoA binding pocket of hACBP by interacting with several of the critical acyl-CoA binding amino acids. This leads to the competitive inhibition of acyl-CoA(s) binding to hACBP and to the accumulation of lipid droplets inside the IMR-32 cells. The accumulation of cytosolic lipid globules and oxidative stress finally correlates with the apoptotic death of cells. Taken together, our study deciphers a mechanistic detail of how mefloquine leads to the death of human cells by perturbing the activity of hACBP and lipid homeostasis.


Assuntos
Antimaláricos/toxicidade , Apoptose/efeitos dos fármacos , Inibidor da Ligação a Diazepam/metabolismo , Mefloquina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Antimaláricos/metabolismo , Linhagem Celular Tumoral , Humanos , Mefloquina/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA