Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 693
Filtrar
1.
In Vivo ; 38(3): 1127-1132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688656

RESUMO

BACKGROUND/AIM: Patients with pneumonia after prolonged neutropenia are at increased risk for acute respiratory distress syndrome (ARDS). The key molecule of endothelial barrier breakdown in sepsis is lipopolysaccharide (LPS), which is a component of the outer membrane of gram-negative bacterial cell walls. Maintaining increased cyclic adenosine monophosphate (cAMP) levels in endothelial cells is effective in preventing endothelial dysfunction and microvascular permeability. The aim of this study was to elucidate whether roflumilast, a phosphodiesterase-4 (PDE-4) inhibitor, is effective in LPS-induced acute lung injury (ALI) during neutropenia recovery in a murine model. MATERIALS AND METHODS: To induce neutropenia, all mice were administered intraperitoneal cyclophosphamide. On day 2 after neutropenia, mice were administered LPS by intra-tracheal instillation. In the prevention group, roflumilast was given orally on day 0, when neutropenia was induced. In the treatment group, roflumilast was administered orally 1 hour after LPS injection. RESULTS: Roflumilast attenuated histopathological changes associated with LPS-induced lung injury. The accumulation of neutrophils and the concentrations of inflammatory cytokines IL-1ß, TNF-α, and IL-6 in bronchoalveolar lavage fluids were inhibited effectively by roflumilast. Also, MMP-9 and TGF-ß expression was attenuated in the roflumilast group. CONCLUSION: Roflumilast significantly attenuated LPS-induced ALI during neutropenia recovery.


Assuntos
Lesão Pulmonar Aguda , Aminopiridinas , Benzamidas , Ciclopropanos , Modelos Animais de Doenças , Lipopolissacarídeos , Neutropenia , Inibidores da Fosfodiesterase 4 , Animais , Aminopiridinas/farmacologia , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lipopolissacarídeos/efeitos adversos , Camundongos , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Neutropenia/tratamento farmacológico , Neutropenia/induzido quimicamente , Inibidores da Fosfodiesterase 4/farmacologia , Citocinas/metabolismo , Masculino , Líquido da Lavagem Broncoalveolar , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo
2.
Mol Biol Rep ; 51(1): 510, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622307

RESUMO

Phosphodiesterases (PDEs) have become a promising therapeutic target for various disorders. PDEs are a vast and diversified family of enzymes that degrade cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have several biochemical and physiological functions. Phosphodiesterase 4 (PDE4) is the most abundant PDE in the central nervous system (CNS) and is extensively expressed in the mammalian brain, where it catalyzes the hydrolysis of intracellular cAMP. An alteration in the balance of PDE4 and cAMP results in the dysregulation of different biological mechanisms involved in neurodegenerative diseases. By inhibiting PDE4 with drugs, the levels of cAMP inside the cells could be stabilized, which may improve the symptoms of mental and neurological disorders such as memory loss, depression, and Parkinson's disease (PD). Though numerous studies have shown that phosphodiesterase 4 inhibitors (PDE4Is) are beneficial in PD, there are presently no approved PDE4I drugs for PD. This review presents an overview of PDE4Is and their effects on PD, their possible underlying mechanism in the restoration/protection of dopaminergic cell death, which holds promise for developing PDE4Is as a treatment strategy for PD. Methods on how these drugs could be effectively delivered to develop as a promising treatment for PD have been suggested.


Assuntos
Dietilestilbestrol/análogos & derivados , Doenças Neurodegenerativas , Doença de Parkinson , Inibidores da Fosfodiesterase 4 , Animais , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Doença de Parkinson/tratamento farmacológico , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , AMP Cíclico/metabolismo , Doenças Neurodegenerativas/metabolismo , GMP Cíclico/metabolismo , Mamíferos/metabolismo
3.
Respir Investig ; 62(3): 455-461, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547757

RESUMO

BACKGROUND: Many disease-causing variants in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene remain uncharacterized and untreated. Restoring the function of the impaired CFTR protein is the goal of personalized medicine, particularly in patients carrying rare CFTR variants. In this study, functional defects related to the rare R334W variant were evaluated after treatment with CFTR modulators or Roflumilast, a phosphodiesterase-4 inhibitor (PDE4i). METHODS: Rectal organoids from subjects with R334W/2184insA and R334W/2183AA > G genotypes were used to perform the Forskolin-induced swelling (FIS) assay. Organoids were left drug-untreated or treated with modulators VX-770 (I), VX-445 (E), and VX-661 (T) mixed, and their combination (ETI). Roflumilast (R) was used alone or as a combination of I + R. RESULTS: Our data show a significant increase in FIS rate following treatment with I alone. The combined use of modulators, such as ETI, did not increase further swelling than I alone, nor in protein maturation. Treatment with R shows an increase in FIS response similar to those of I, and the combination R + I significantly increases the rescue of CFTR activity. CONCLUSIONS: Equivalent I and ETI treatment efficacy was observed for both genotypes. Furthermore, significant organoid swelling was observed with combined I + R used that supports the recently published data describing a potentiating effect of only I in patients carrying the variant R334W and, at the same time, corroborating the role of strategies that include PDE4 inhibitors further to potentiate the effect of I for this variant.


Assuntos
Aminopiridinas , Benzamidas , Fibrose Cística , Inibidores da Fosfodiesterase 4 , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Fibrose Cística/genética , Fibrose Cística/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/metabolismo , Colforsina/metabolismo , Colforsina/farmacologia , Organoides/metabolismo , Mutação , Ciclopropanos
4.
J Med Chem ; 67(6): 4855-4869, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38489246

RESUMO

Atopic dermatitis is a chronic relapsing skin disease characterized by recurrent, pruritic, localized eczema, while PDE4 inhibitors have been reported to be effective as antiatopic dermatitis agents. 3',4-O-dimethylcedrusin (DCN) is a natural dihydrobenzofuran neolignan isolated from Magnolia biondii with moderate potency against PDE4 (IC50 = 3.26 ± 0.28 µM) and a binding mode similar to that of apremilast, an approved PDE4 inhibitor for the treatment of psoriasis. The structure-based optimization of DCN led to the identification of 7b-1 that showed high inhibitory potency on PDE4 (IC50 = 0.17 ± 0.02 µM), good anti-TNF-α activity (EC50 = 0.19 ± 0.10 µM), remarkable selectivity profile, and good skin permeability. The topical treatment of 7b-1 resulted in the significant benefits of pharmacological intervention in a DNCB-induced atopic dermatitis-like mice model, demonstrating its potential for the development of novel antiatopic dermatitis agents.


Assuntos
Dermatite Atópica , Lignanas , Inibidores da Fosfodiesterase 4 , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Dinitroclorobenzeno/farmacologia , Dinitroclorobenzeno/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , Inibidores do Fator de Necrose Tumoral/farmacologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Citocinas/farmacologia , Pele
5.
Int J Cancer ; 154(11): 1987-1998, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319157

RESUMO

Approximately 5% of colorectal cancers (CRCs) have a gain-of-function mutation in the GNAS gene, which leads to the activation of cAMP-dependent signaling pathways and associates with poor prognosis. We investigated the effect of an activating GNAS mutation in CRC cell lines on gene expression and cell proliferation in vitro, and tumor growth in vivo. GNAS-mutated (GNASmt) HCT116 cells showed stimulated synthesis of cAMP as compared to parental (Par) cells. The most upregulated gene in the GNASmt cells was cAMP-hydrolyzing phosphodiesterase 4D (PDE4D) as detected by RNA sequencing. To further validate our finding, we analyzed PDE4D expression in a set of human CRC tumors (n = 35) and demonstrated overexpression in GNAS mutant CRC tumors as compared to GNAS wild-type tumors. The GNASmt HCT116 cells proliferated more slowly than the Par cells. PDE4 inhibitor Ro 20-1724 and PDE4D subtype selective inhibitor GEBR-7b further suppressed the proliferation of GNASmt cells without an effect on Par cells. The growth inhibitory effect of these inhibitors was also seen in the intrinsically GNAS-mutated SK-CO-1 CRC cell line having high levels of cAMP synthesis and PDE4D expression. In vivo, GNASmt HCT116 cells formed smaller tumors than the Par cells in nude mice. In conclusion, our findings demonstrate that GNAS mutation results in the growth suppression of CRC cells. Moreover, the GNAS mutation-induced overexpression of PDE4D provides a potential avenue to impede the proliferation of CRC cells through the use of PDE4 inhibitors.


Assuntos
Cromograninas , Neoplasias Colorretais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Animais , Humanos , Camundongos , Cromograninas/genética , Cromograninas/metabolismo , Neoplasias Colorretais/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HCT116 , Camundongos Nus , Mutação , Inibidores da Fosfodiesterase 4/farmacologia
6.
Eur J Pharmacol ; 962: 176202, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37996010

RESUMO

Phosphodiesterase 4 (PDE4) inhibitors are expected to exhibit efficacy against inflammatory diseases due to their broad pharmacological activity. The launched PDE4 inhibitors apremilast, crisaborole, and roflumilast have not exhibited sufficient inhibitory potential due to poor margins of effectiveness and tolerability. In this report, we describe the non-clinical efficacy, brain translocation, and vomit-inducing effects of ME3183 compared with apremilast. ME3183 showed extensive cytokine suppression in vitro studies using human peripheral blood mononuclear cells and T cells. ME3183 also significantly suppressed skin inflammation in a chronic oxazolone-induced dermatitis model and showed antipruritic effects in a substance P-induced mouse pruritus model. In these in vitro and in vivo studies, ME3183 also significantly suppressed cytokines, and focusing on tumor necrosis factor-α as a psoriasis-related cytokine and interleukin-4 as an atopic dermatitis-related cytokine, ME3183 potently inhibited both cytokines. ME3183 showed in vivo efficacy at lower doses than apremilast. The brain distribution of ME3183 was sufficiently low in mice and rats. The effective dose of ME3183 for emesis was similar to that of apremilast in ferrets. Given its high-potency inhibitory effects, ME3183 would have a wide margin of efficacy and tolerability. These wide margins demonstrate the effectiveness of ME3183 in treating many inflammatory diseases, such as psoriasis and atopic dermatitis. An on-going phase 2 trial is expected to further demonstrate the efficacy and safety of ME3183.


Assuntos
Dermatite Atópica , Inibidores da Fosfodiesterase 4 , Psoríase , Animais , Camundongos , Humanos , Ratos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Leucócitos Mononucleares , Furões , Psoríase/patologia , Citocinas , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(6): 4419-4434, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38108836

RESUMO

Asthma is a disease characterized by chronic inflammation and hyper responsiveness of airways. We aimed to assess the relaxant potential of phosphodiesterase-4 (PDE4) inhibitors N-sulfonilhidrazonic derivatives on non-asthmatic and asthmatic guinea pig trachea. Firstly, guinea pigs were sensitized and challenged with ovalbumin, and then morphological, and contractile changes were evaluated resulting from asthma, followed by evaluation of relaxant effect of derivatives on guinea pig trachea and the cAMP levels measurement by ELISA. It has been evidenced hypertrophy of airway smooth muscle, inflammatory infiltrate, and vascular abnormalities. Moreover, only sensitized tracheal rings were responsive to OVA. Contractile response to histamine, but not to carbachol, was greater in sensitized animals, however the relaxant response to aminophylline and isoprenaline were the same in non-asthmatics and asthmatics. N-sulfonilhidrazonic derivatives presented equipotent relaxant action independent of epithelium, with exception of LASSBio-1850 that presented a low efficacy (< 50%) and LASSBio-1847 with a 4-fold higher potency on asthmatics. LASSBio-1847 relaxant curve was impaired in the presence of propranolol and potentiated by isoprenaline in both groups. Furthermore, relaxation was potentiated 54- and 4-fold by forskolin in non-asthmatics and asthmatics, respectively. Likewise, LASSBio-1847 potentiated relaxant curve of aminophylline 147- and 4-fold in both groups. The PKA inhibitor H-89 impaired the relaxant potency of the derivative. Finally, LASSBio-1847 increased tracheal intracellular cAMP levels similarly to rolipram, selective PDE4 inhibitor, in both animals. LASSBio-1847 showed to be promising to relax guinea pig trachea from non-sensitized and sensitized guinea pigs by activation of ß2-adrenergic receptors/AC/cAMP pathway.


Assuntos
Asma , Broncodilatadores , AMP Cíclico , Modelos Animais de Doenças , Inibidores da Fosfodiesterase 4 , Traqueia , Animais , Cobaias , Inibidores da Fosfodiesterase 4/farmacologia , Asma/tratamento farmacológico , Asma/fisiopatologia , Traqueia/efeitos dos fármacos , Masculino , Broncodilatadores/farmacologia , AMP Cíclico/metabolismo , Músculo Liso/efeitos dos fármacos , Ovalbumina , Relaxamento Muscular/efeitos dos fármacos , Aminofilina/farmacologia
8.
Psychopharmacology (Berl) ; 241(4): 805-816, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114603

RESUMO

RATIONALE: Phosphodiesterase 4D negative allosteric modulators (PDE4D NAMs) enhance memory and cognitive function in animal models without emetic-like side effects. However, the relationship between increased cyclic adenosine monophosphate (cAMP) signaling and the effects of PDE4D NAM remains elusive. OBJECTIVE: To investigate the roles of hippocampal cAMP metabolism and synaptic activation in the effects of D159687, a PDE4D NAM, under baseline and learning-stimulated conditions. RESULTS: At 3 mg/kg, D159687 enhanced memory formation and consolidation in contextual fear conditioning; however, neither lower (0.3 mg/kg) nor higher (30 mg/kg) doses induced memory-enhancing effects. A biphasic (bell-shaped) dose-response effect was also observed in a scopolamine-induced model of amnesia in the Y-maze, whereas D159687 dose-dependently caused an emetic-like effect in the xylazine/ketamine anesthesia test. At 3 mg/kg, D159687 increased cAMP levels in the hippocampal CA1 region after conditioning in the fear conditioning test, but not in the home-cage or conditioning cage (i.e., context only). By contrast, 30 mg/kg of D159687 increased hippocampal cAMP levels under all conditions. Although both 3 and 30 mg/kg of D159687 upregulated learning-induced Fos expression in the hippocampal CA1 30 min after conditioning, 3 mg/kg, but not 30 mg/kg, of D159687 induced phosphorylation of synaptic plasticity-related proteins such as cAMP-responsive element-binding protein, synaptosomal-associated protein 25 kDa, and the N-methyl-D-aspartate receptor subunit NR2A. CONCLUSIONS: Our findings suggest that learning-stimulated conditions can alter the effects of a PDE4D NAM on hippocampal cAMP levels and imply that a PDE4D NAM exerts biphasic memory-enhancing effects associated with synaptic plasticity-related signaling activation.


Assuntos
Compostos Benzidrílicos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Compostos de Fenilureia , Inibidores da Fosfodiesterase 4 , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Eméticos/metabolismo , Eméticos/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Transdução de Sinais , Hipocampo
9.
ACS Appl Bio Mater ; 7(1): 369-378, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150107

RESUMO

Vesicular carriers of drugs are popular for specific targeting and delivery. The most popular vesicles among these are liposomes. However, they suffer from some inherent limitations. In this work, alternative vesicles with enhanced stability, i.e., niosomes and bilosomes have been prepared, characterized, and their delivery efficiency studied. Bilosomes have the additional advantage of being able to withstand the harsh environment of the gastrointestinal tract (GIT). The taurine-derived bile salt (NaTC) was incorporated into the bilosome bilayer. The inspiration behind NaTC insertion is the recent reports on antiaging action and immune function of taurine. Fluorescence probing was used to study the vesicle environment. The entrapment and subsequent release of the important cAMP-specific PDE4 inhibitor/drug Rolipram, which has antibreast cancer properties, was assessed on the breast cancer cell line MCF-7. Rolipram has important therapeutic applications, one of the most significant in recent times being the treatment of Covid-19-triggered pneumonia and cytokine storms. As for cancer chemotherapy, the localization of drug, targeted delivery, and sustained release are extremely important issues, and it seemed worthwhile to explore the potential of the bilosomes and niosomes to entrap and release Rolipram. The important finding is that niosomes perform much better than bilosomes in the hormone-responsive breast cancer mileau MCF-7. Moreover, there was a 4-fold decrease in the IC50 of Rolipram encapsulated in niosomes compared to Rolipram alone. On the other hand, bilosome-encapsulated Rolipram shows higher IC50 value. The results can be further understood by molecular docking studies.


Assuntos
Neoplasias da Mama , Inibidores da Fosfodiesterase 4 , Humanos , Feminino , Rolipram/farmacologia , Rolipram/uso terapêutico , Lipossomos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Simulação de Acoplamento Molecular , Taurina
10.
Clin Exp Rheumatol ; 41(12): 2493-2501, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149513

RESUMO

OBJECTIVES: The aim of the study was to culture vital salivary gland organoids obtained through labial or parotid biopsy of primary Sjögren's syndrome (pSS) patients in order to evaluate their morphological and functional features in basal condition and after stimulation with Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) activator forskolin and phosphodiesterase 4 (PDE4) inhibitor apremilast, their in vitro regenerative capacity and the immune-histological resemblance with original tissue. METHODS: Salivary gland tissues from five pSS patients were processed to obtain vital organoids; swelling assay and cell proliferation tests were performed after forskolin and apremilast application. Immunochemistry evaluation on original salivary gland tissue and corresponding organoids was performed, and secretomics analysis was conducted to assess their functional status. REULTS: After application of forskolin and apremilast, we observed organoid swelling after 30 minutes, compatible with a positive functional status and enhancement of saliva production. In 3 cases, apremilast induced organoid proliferation. All cases were positive for cytokeratin 14 (CK14) and most for cytokeratin 5 (CK5). All the cases were positive for amylase; its secretion, and thus functional status of organoids, was confirmed by its high concentration in the culture medium. A focal ductal differentiation was found in some cases, highlighted by epithelial membrane antigen (EMA) positivity. The more differentiated EMA positive areas were negative for the staminal marker CK14, showing a sort of "complementary staining". CONCLUSIONS: Our data highlighted that differentiated cells and vital functional organoids that recapitulate the development of original salivary glands can be obtained from pSS epithelium. For the first time, the direct stimulating effect of PDE4 inhibitor apremilast on pSS human salivary gland organoids is reported, opening new perspectives on targeting oral dryness with drugs that combine secretagogue and immunomodulatory effects.


Assuntos
Inibidores da Fosfodiesterase 4 , Síndrome de Sjogren , Humanos , Inibidores da Fosfodiesterase 4/farmacologia , Secretagogos , Colforsina , Glândulas Salivares , Organoides/metabolismo , Organoides/patologia
11.
Am J Ther ; 30(6): e535-e542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37921681

RESUMO

BACKGROUND: Plaque psoriasis is a chronic dermatologic autoimmune disease that affects adults and children. Roflumilast 0.3% cream is currently the only topical phosphodiesterase 4 inhibitor indicated for the treatment of plaque psoriasis in patients 12 years or older. PHARMACODYNAMICS AND PHARMACOKINETICS: Roflumilast inhibits phosphodiesterase 4 inhibitor enzyme leading to the accumulation of cyclic adenosine monophosphate, which suppresses the inflammatory mediators interferon-γ and tumor necrosis factor-α. Roflumilast, applied once daily, reaches steady state by day 15 and has a half life of approximately 4 days in adults. Roflumilast undergoes extensive hepatic metabolism by cytochrome P450 enzymes and conjugation. Roflumilast is 99% bound to plasma proteins. CLINICAL TRIALS: Roflumilast efficacy and safety were evaluated in the DERMIS-1 and DERMIS-2 clinical trials. These identically designed, double-blind, vehicle-controlled phase 3 trials randomized 881 patients to roflumilast 0.3% cream or vehicle, applied once daily for 8 weeks. In DERMIS-1, the Investigator Global Assessment success rate was 42.4% with roflumilast 0.3% cream compared with 6.1% with the vehicle (32.3%-46.9%; P <0.001). Similarly, in DERMIS-2, the Investigator Global Assessment success rate was 37.5% with roflumilast 0.3% cream compared with 6.9% with the vehicle (20.8%-36.9%; P <0.001). Of 881 participants, 1% discontinued treatment with roflumilast cream due to adverse reactions compared with 1.3% treated with vehicle. Urticaria at the application site (0.3%) was the most common adverse reaction that led to discontinuation of roflumilast. THERAPEUTIC ADVANCE: To date, topical corticosteroids are the most commonly used agents to treat mild plaque psoriasis. Sensitive areas are often challenging to treat with existing topical therapy, including corticosteroids. Topical roflumilast has shown to be effective in treating sensitive areas, including skin folds, and may be an alternative to systemic therapy for some patients. The Food and Drug Administration approved topical roflumilast for the treatment of plaque psoriasis, including intertriginous areas, for patients 12 years or older.


Assuntos
Fármacos Dermatológicos , Inibidores da Fosfodiesterase 4 , Psoríase , Adulto , Criança , Humanos , Inibidores da Fosfodiesterase 4/efeitos adversos , Resultado do Tratamento , Psoríase/tratamento farmacológico , Glucocorticoides/uso terapêutico , Emolientes , Fármacos Dermatológicos/efeitos adversos , Método Duplo-Cego , Índice de Gravidade de Doença
12.
Int J Neuropsychopharmacol ; 26(9): 585-598, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490542

RESUMO

BACKGROUND: Alzheimer disease (AD) and depression often cooccur, and inhibition of phosphodiesterase-4 (PDE4) has been shown to ameliorate neurodegenerative illness. Therefore, we explored whether PDE4 inhibitor rolipram might also improve the symptoms of comorbid AD and depression. METHODS: APP/PS1/tau mice (10 months old) were treated with or without daily i.p. injections of rolipram for 10 days. The animal groups were compared in behavioral tests related to learning, memory, anxiety, and depression. Neurochemical measures were conducted to explore the underlying mechanism of rolipram. RESULTS: Rolipram attenuated cognitive decline as well as anxiety- and depression-like behaviors. These benefits were attributed at least partly to the downregulation of amyloid-ß, Amyloid precursor protein (APP), and Presenilin 1 (PS1); lower tau phosphorylation; greater neuronal survival; and normalized glial cell function following rolipram treatment. In addition, rolipram upregulated B-cell lymphoma-2 (Bcl-2) and downregulated Bcl-2-associated X protein (Bax) to reduce apoptosis; it also downregulated interleukin-1ß, interleukin-6, and tumor necrosis factor-α to restrain neuroinflammation. Furthermore, rolipram increased cAMP, PKA, 26S proteasome, EPAC2, and phosphorylation of ERK1/2 while decreasing EPAC1. CONCLUSIONS: Rolipram may mitigate cognitive deficits and depression-like behavior by reducing amyloid-ß pathology, tau phosphorylation, neuroinflammation, and apoptosis. These effects may be mediated by stimulating cAMP/PKA/26S and cAMP/exchange protein directly activated by cAMP (EPAC)/ERK signaling pathways. This study suggests that PDE4 inhibitor rolipram can be an effective target for treatment of comorbid AD and depression.


Assuntos
Doença de Alzheimer , Inibidores da Fosfodiesterase 4 , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Rolipram/farmacologia , Camundongos Transgênicos , Inibidores da Fosfodiesterase 4/farmacologia , Doenças Neuroinflamatórias , Presenilina-1/metabolismo , Presenilina-1/farmacologia , Depressão/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/tratamento farmacológico , Apoptose , Modelos Animais de Doenças
13.
Future Med Chem ; 15(13): 1185-1207, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37470147

RESUMO

The PDE4 enzyme family is specifically responsible for hydrolyzing cAMP and plays a vital role in regulating the balance of second messengers. As a crucial regulator in signal transduction, PDE4 has displayed promising pharmacological targets in a variety of diseases, for which its inhibitors have been used as a therapeutic strategy. This review provides a comprehensive summary of the development of PDE4 inhibitors in the past few years, along with the structure, clinical and research progress of multiple inhibitors of PDE4, focusing on the research and development strategies of PDE4 inhibitors. We hope our analysis will provide a significant reference for the future development of new PDE4 inhibitors.


Assuntos
Inibidores da Fosfodiesterase 4 , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Transdução de Sinais
14.
BMC Neurosci ; 24(1): 39, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525115

RESUMO

BACKGROUND: Several phosphodiesterase 4 (PDE4) inhibitors have emerged as potential therapeutics for central nervous system (CNS) diseases. This study investigated the pharmacological effects of two selective PDE4 inhibitors, roflumilast and zatolmilast, against lipopolysaccharide-induced neuroinflammation. RESULTS: In BV-2 cells, the PDE4 inhibitor roflumilast reduced the production of nitric oxide and tumor necrosis factor-α (TNF-α) by inhibiting NF-κB phosphorylation. Moreover, mice administered roflumilast had significantly reduced TNF-α, interleukin-1ß (IL-1ß), and IL-6 levels in plasma and brain tissues. By contrast, zatolmilast, a PDE4D inhibitor, showed no anti-neuroinflammatory effects in vitro or in vivo. Next, in vitro and in vivo pharmacokinetic studies of these compounds in the brain were performed. The apparent permeability coefficients of 3 µM roflumilast and zatolmilast were high (> 23 × 10-6 cm/s) and moderate (3.72-7.18 × 10-6 cm/s), respectively, and increased in a concentration-dependent manner in the MDR1-MDCK monolayer. The efflux ratios were < 1.92, suggesting that these compounds are not P-glycoprotein substrates. Following oral administration, both roflumilast and zatolmilast were slowly absorbed and eliminated, with time-to-peak drug concentrations of 2-2.3 h and terminal half-lives of 7-20 h. Assessment of their brain dispositions revealed the unbound brain-to-plasma partition coefficients of roflumilast and zatolmilast to be 0.17 and 0.18, respectively. CONCLUSIONS: These findings suggest that roflumilast, but not zatolmilast, has the potential for use as a therapeutic agent against neuroinflammatory diseases.


Assuntos
Inibidores da Fosfodiesterase 4 , Camundongos , Animais , Inibidores da Fosfodiesterase 4/farmacologia , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa , Aminopiridinas/farmacologia , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico
15.
Adv Pharmacol ; 98: 55-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37524492

RESUMO

Phosphodiesterase enzymes (PDE) have long been known as regulators of cAMP and cGMP, second messengers involved in various signaling pathways and expressed in a variety of cell types implicated in respiratory diseases such as airway smooth muscle and inflammatory cells making them a key target for the treatment of lung diseases as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, and pulmonary hypertension (PH). The first reported PDE inhibitor was the xanthine, theophylline, described as a non-specific PDE inhibitor and whilst this drug is effective, it also has a range of unwanted side effects. In an attempt to improve the therapeutic window of xanthines, a number of selective PDE inhibitors have been developed for the treatment of respiratory diseases with only the selective PDE 4 inhibitor, roflumilast, being approved for the treatment of severe COPD. However, roflumilast also has a very narrow therapeutic window due to a number of important doses limiting side effects, particularly in the gastrointestinal tract. However, there continues to be research carried out in this field to identify improved selective PDE inhibitors, both by targeting other PDE subtypes (e.g., PDE 7 found in a number of inflammatory and immune cells) and through development of selective PDE inhibitors for pulmonary administration to reduce systemic exposure and improve the side effect profile. This approach has been exemplified by the development of ensifentrine, a dual PDE 3-PDE 4 inhibitor, an inhaled drug that has recently completed two successful Phase III clinical trials in patients with COPD.


Assuntos
Pneumopatias , Inibidores da Fosfodiesterase 4 , Doença Pulmonar Obstrutiva Crônica , Humanos , Inibidores da Fosfodiesterase 4/efeitos adversos , Pneumopatias/tratamento farmacológico , Pneumopatias/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Aminopiridinas/efeitos adversos
16.
J Cyst Fibros ; 22(3): 548-559, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37147251

RESUMO

BACKGROUND: Preclinical cell-based assays that recapitulate human disease play an important role in drug repurposing. We previously developed a functional forskolin induced swelling (FIS) assay using patient-derived intestinal organoids (PDIOs), allowing functional characterization of CFTR, the gene mutated in people with cystic fibrosis (pwCF). CFTR function-increasing pharmacotherapies have revolutionized treatment for approximately 85% of people with CF who carry the most prevalent F508del-CFTR mutation, but a large unmet need remains to identify new treatments for all pwCF. METHODS: We used 76 PDIOs not homozygous for F508del-CFTR to test the efficacy of 1400 FDA-approved drugs on improving CFTR function, as measured in FIS assays. The most promising hits were verified in a secondary FIS screen. Based on the results of this secondary screen, we further investigated CFTR elevating function of PDE4 inhibitors and currently existing CFTR modulators. RESULTS: In the primary screen, 30 hits were characterized that elevated CFTR function. In the secondary validation screen, 19 hits were confirmed and categorized in three main drug families: CFTR modulators, PDE4 inhibitors and tyrosine kinase inhibitors. We show that PDE4 inhibitors are potent CFTR function inducers in PDIOs where residual CFTR function is either present, or created by additional compound exposure. Additionally, upon CFTR modulator treatment we show rescue of CF genotypes that are currently not eligible for this therapy. CONCLUSION: This study exemplifies the feasibility of high-throughput compound screening using PDIOs. We show the potential of repurposing drugs for pwCF carrying non-F508del genotypes that are currently not eligible for therapies. ONE-SENTENCE SUMMARY: We screened 1400 FDA-approved drugs in CF patient-derived intestinal organoids using the previously established functional FIS assay, and show the potential of repurposing PDE4 inhibitors and CFTR modulators for rare CF genotypes.


Assuntos
Fibrose Cística , Inibidores da Fosfodiesterase 4 , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Reposicionamento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Inibidores da Fosfodiesterase 4/uso terapêutico , Mutação , Colforsina , Genótipo , Organoides
17.
Eur J Med Chem ; 256: 115374, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150057

RESUMO

It is well known that chronic obstructive pulmonary disease (COPD) patients are always trapped in the vicious circle of inflammation and oxidative stress, therefore anti-inflammatory and antioxidant bifunctional agents may interrupt this vicious cycle in COPD. Phosphodiesterase 4 (PDE4) inhibitors, as anti-inflammatory drugs, have been used for COPD treatment in clinical, and the PDE4 inhibitors with antioxidant properties may be a good strategy to design bifunctional agents for COPD. Sappanone A was the first PDE4 inhibitor with antioxidant properties we identified from natural products in our previous study, which was used by us as a hit compound to design new bifunctional agents for COPD in this study. 27 derivatives of sappanone A including homoisoflavonoids, aurones and chalcones were designed and synthesized by innovatively fusing the antioxidant pharmacophore of catechol from polyphenols and the pharmacophore of catechol ether abstracted from the PDE4 inhibitors of the catechol ether class such as rolipram, roflumilast and apremilast respectively. All the compounds were assayed for the PDE4 inhibitory and radical scavenging against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) activities in vitro. Herein we obtained a series of bifunctional compounds with better PDE4 inhibitory activity than sappanone A, and their free radical scavenging activities were superior to edaravone in vitro. In addition, they can reduce tumour necrosis factor-alpha (TNF-α) production induced by lipopolysaccharide (LPS) in RAW264.7 macrophages and malondialdehyde (MDA) production induced by Fe2+ in mouse lung homogenate. Meanwhile, it showed outstanding abilities in reducing Fe3+ and complexing Fe2+. 6o, as the candidate anti-inflammatory and antioxidant bifunctional compound, exhibited good drug-likeness, ADME (Absorption, Distribution, Metabolism, Excretion) properties and human liver microsomal stability. In vivo, 6o (50 mg/kg and 100 mg/kg, i. p.) distinctly prevented LPS-induced serum levels of TNF-α in mice. In conclusion, the preliminary investigation provided a novel class of PDE4 inhibitors with antioxidant properties as bifunctional agents for the potential treatment of COPD, which can interrupt the vicious cycle of chronic inflammation and oxidative stress in COPD.


Assuntos
Inibidores da Fosfodiesterase 4 , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Inflamação/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Éteres
18.
Cell Death Dis ; 14(4): 273, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072403

RESUMO

A growing body of epidemiological evidence suggests that nonalcoholic fatty liver disease (NAFLD) is an independent risk factor for chronic kidney disease (CKD), but the regulatory mechanism linking NAFLD and CKD remains unclear. Our previous studies have shown that overexpression of PDE4D in mouse liver is sufficient for NAFLD, but little is known about its role in kidney injury. Here, liver-specific PDE4D conditional knockout (LKO) mice, adeno-associated virus 8 (AAV8)-mediated gene transfer of PDE4D and the PDE4 inhibitor roflumilast were used to assess the involvement of hepatic PDE4D in NAFLD-associated renal injury. We found that mice fed a high-fat diet (HFD) for 16 weeks developed hepatic steatosis and kidney injury, with an associated increase in hepatic PDE4D but no changes in renal PDE4D. Furthermore, liver-specific knockout of PDE4D or pharmacological inhibition of PDE4 with roflumilast ameliorated hepatic steatosis and kidney injury in HFD-fed diabetic mice. Correspondingly, overexpression of hepatic PDE4D resulted in significant renal damage. Mechanistically, highly expressed PDE4D in fatty liver promoted the production and secretion of TGF-ß1 into blood, which triggered kidney injury by activating SMADs and subsequent collagen deposition. Our findings revealed PDE4D might act as a critical mediator between NAFLD and associated kidney injury and indicated PDE4 inhibitor roflumilast as a potential therapeutic strategy for NAFLD-associated CKD.


Assuntos
Diabetes Mellitus Experimental , Hepatopatia Gordurosa não Alcoólica , Inibidores da Fosfodiesterase 4 , Insuficiência Renal Crônica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Diabetes Mellitus Experimental/complicações , Inibidores da Fosfodiesterase 4/farmacologia , Fígado , Rim , Insuficiência Renal Crônica/complicações , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
19.
Cell Mol Neurobiol ; 43(6): 2713-2741, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37074485

RESUMO

Clinicians and researchers are exploring safer and novel treatment strategies for treating the ever-prevalent Parkinson's disease (PD) across the globe. Several therapeutic strategies are used clinically for PD, including dopamine replacement therapy, DA agonists, MAO-B blockers, COMT blockers, and anticholinergics. Surgical interventions such as pallidotomy, particularly deep brain stimulation (DBS), are also employed. However, they only provide temporal and symptomatic relief. Cyclic adenosine monophosphate (cAMP) is one of the secondary messengers involved in dopaminergic neurotransmission. Phosphodiesterase (PDE) regulates cAMP and cGMP intracellular levels. PDE enzymes are subdivided into families and subtypes which are expressed throughout the human body. PDE4 isoenzyme- PDE4B subtype is overexpressed in the substantia nigra of the brain. Various studies have implicated multiple cAMP-mediated signaling cascades in PD, and PDE4 is a common link that can emerge as a neuroprotective and/or disease-modifying target. Furthermore, a mechanistic understanding of the PDE4 subtypes has provided perceptivity into the molecular mechanisms underlying the adverse effects of phosphodiesterase-4 inhibitors (PDE4Is). The repositioning and development of efficacious PDE4Is for PD have gained much attention. This review critically assesses the existing literature on PDE4 and its expression. Specifically, this review provides insights into the interrelated neurological cAMP-mediated signaling cascades involving PDE4s and the potential role of PDE4Is in PD. In addition, we discuss existing challenges and possible strategies for overcoming them.


Assuntos
Doença de Parkinson , Inibidores da Fosfodiesterase 4 , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , AMP Cíclico/metabolismo , Transdução de Sinais/fisiologia
20.
J Pharmacol Exp Ther ; 386(1): 45-55, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37041087

RESUMO

PDE4 inhibitors are expected to be anti-inflammatory agents based on their mechanism of action, but the application of this drug class is limited by a narrow therapeutic window due to adverse effects associated with gastrointestinal function. Difamilast, a novel selective phosphodiesterase 4 (PDE4) inhibitor, demonstrated significant efficacy without adverse reactions such as nausea and diarrhea in patients with atopic dermatitis (AD) and was recently approved in Japan. In this study, we investigated the pharmacological and pharmacokinetic properties of difamilast to provide nonclinical data to help understand the clinical effects. Difamilast selectively inhibited recombinant human PDE4 activity in assays. The IC50 of difamilast against PDE4B, a PDE4 subtype that plays an important role in the inflammatory response, was 0.0112 µM, representing a 6.6-fold decrease compared with the IC50 against PDE4D (0.0738 µM), a subtype that can trigger emesis. Difamilast inhibited TNF-α production in human (IC50 = 0.0109 µM) and mouse (IC50 = 0.0035 µM) peripheral blood mononuclear cells and improved skin inflammation in a mouse model of chronic allergic contact dermatitis. These effects of difamilast on TNF-α production and dermatitis were superior to those of other topical PDE4 inhibitors: CP-80633, cipamfylline, and crisaborole. In pharmacokinetic studies using miniature pigs and rats, the concentrations of difamilast in the blood and brain after topical application were not sufficient to support pharmacological activity. This nonclinical study contributes to explain the efficacy and safety of difamilast with a sufficient therapeutic window in the clinical trials. SIGNIFICANCE STATEMENT: This is the first report on the nonclinical pharmacological profile of difamilast ointment, a novel topical PDE4 inhibitor that demonstrated utility in clinical trials in patients with atopic dermatitis. Difamilast, which has high PDE4 selectivity (especially for the PDE4B subtype), ameliorated chronic allergic contact dermatitis in mice after topical application, with a pharmacokinetic profile in animals that suggests few systemic side effects; thus, difamilast is a promising new therapeutic treatment for atopic dermatitis.


Assuntos
Dermatite Alérgica de Contato , Dermatite Atópica , Inibidores da Fosfodiesterase 4 , Humanos , Camundongos , Ratos , Animais , Suínos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Leucócitos Mononucleares , Fator de Necrose Tumoral alfa , Dermatite Alérgica de Contato/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA