Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Protein Expr Purif ; 222: 106534, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38897399

RESUMO

Tribolium castaneum, also known as the red flour beetle, is a polyphagous pest that seriously damages agricultural products, including stored and processed grains. Researchers have aimed to discover alternative pest control mechanisms that are less harmful to the ecosystem than those currently used. We conduct the purification and characterization of a protease inhibitor from C. plumieri seeds and an in vitro evaluation of its insecticidal potential against the insect pest T. castaneum. The trypsin inhibitor was isolated from C. plumieri seeds in a single-step DEAE-Sepharose column chromatography and had a molecular mass of 50 kDA. When analyzed for interaction with different proteolytic enzymes, the inhibitor exhibited specificity against trypsin and no activity against other serine proteases such as chymotrypsin and elastase-2. The isolated inhibitor was able to inhibit digestive enzymes of T. castaneum from extracts of the intestine of this insect. Therefore, we conclude that the new protease inhibitor, specific in tryptic inhibition, of protein nature from the seeds of C. plumieri was effective in inhibiting the digestive enzymes of T. castaneum and is a promising candidate in the ecological control of pests.


Assuntos
Tribolium , Inibidores da Tripsina , Animais , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Tribolium/enzimologia , Tribolium/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/antagonistas & inibidores , Sementes/química , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química
2.
Biochem J ; 481(11): 717-739, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38752933

RESUMO

Typical Kunitz proteins (I2 family of the MEROPS database, Kunitz-A family) are metazoan competitive inhibitors of serine peptidases that form tight complexes of 1:1 stoichiometry, mimicking substrates. The cestode Echinococcus granulosus, the dog tapeworm causing cystic echinococcosis in humans and livestock, encodes an expanded family of monodomain Kunitz proteins, some of which are secreted to the dog host interface. The Kunitz protein EgKU-7 contains, in addition to the Kunitz domain with the anti-peptidase loop comprising a critical arginine, a C-terminal extension of ∼20 amino acids. Kinetic, electrophoretic, and mass spectrometry studies using EgKU-7, a C-terminally truncated variant, and a mutant in which the critical arginine was substituted by alanine, show that EgKU-7 is a tight inhibitor of bovine and canine trypsins with the unusual property of possessing two instead of one site of interaction with the peptidases. One site resides in the anti-peptidase loop and is partially hydrolyzed by bovine but not canine trypsins, suggesting specificity for the target enzymes. The other site is located in the C-terminal extension. This extension can be hydrolyzed in a particular arginine by cationic bovine and canine trypsins but not by anionic canine trypsin. This is the first time to our knowledge that a monodomain Kunitz-A protein is reported to have two interaction sites with its target. Considering that putative orthologs of EgKU-7 are present in other cestodes, our finding unveils a novel piece in the repertoire of peptidase-inhibitor interactions and adds new notes to the evolutionary host-parasite concerto.


Assuntos
Echinococcus granulosus , Proteínas de Helminto , Echinococcus granulosus/enzimologia , Echinococcus granulosus/genética , Echinococcus granulosus/metabolismo , Animais , Cães , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/química , Inibidores da Tripsina/metabolismo , Inibidores da Tripsina/química , Bovinos , Sequência de Aminoácidos , Tripsina/química , Tripsina/metabolismo
3.
J Agric Food Chem ; 72(18): 10439-10450, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676695

RESUMO

Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-ß-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.


Assuntos
Neoplasias Colorretais , Extratos Vegetais , Proteínas de Plantas , Setaria (Planta) , Inibidores da Tripsina , Animais , Humanos , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Setaria (Planta)/genética , Setaria (Planta)/química , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/química
4.
Protein J ; 43(2): 333-350, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347326

RESUMO

A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 µM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and ß-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.


Assuntos
Cajanus , Folhas de Planta , Humanos , Cajanus/química , Folhas de Planta/química , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo
5.
Chembiochem ; 24(20): e202300453, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37584529

RESUMO

The ability to photochemically activate a drug, both when and where needed, requires optimisation of the difference in biological activity between each isomeric state. As a step to this goal, we report small-molecule- and peptide-based inhibitors of the same protease-trypsin-to better understand how photoswitchable drugs interact with their biological target. The best peptidic inhibitor displayed a more than fivefold difference in inhibitory activity between isomeric states, whereas the best small-molecule inhibitor only showed a 3.4-fold difference. Docking and molecular modelling suggest this result is due to a large change in 3D structure in the key binding residues of the peptidic inhibitor upon isomerisation; this is not observed for the small-molecule inhibitor. Hence, we demonstrate that significant structural changes in critical binding motifs upon irradiation are essential for maximising the difference in biological activity between isomeric states. This is an important consideration in the design of future photoswitchable drugs for clinical applications.


Assuntos
Peptídeos Cíclicos , Peptídeos , Tripsina/metabolismo , Modelos Moleculares , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química
6.
ACS Appl Mater Interfaces ; 13(38): 45236-45243, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34520186

RESUMO

Gold nanorods possess optical properties that are tunable and highly sensitive to variations in their aspect ratio (length/width). Therefore, the development of a sensing platform where the gold nanorod morphology (i.e., aspect ratio) is modulated in response to an analyte holds promise in achieving ultralow detection limits. Here, we use a dithiol peptide as an enzyme substrate during nanorod growth. The sensing mechanism is enabled by the substrate design, where the dithiol peptide contains an enzyme cleavage site in-between cysteine amino acids. When cleaved, the peptide dramatically impacts gold nanorod growth and the resulting optical properties. We demonstrate that the optical response can be correlated with enzyme concentration and achieve a 45 pM limit of detection. Furthermore, we extend this sensing platform to colorimetrically detect tumor-associated inhibitors in a biologically relevant medium. Overall, these results present a subnanomolar method to detect proteases that are critical biomarkers found in cancers, infectious diseases, and inflammatory disorders.


Assuntos
Nanotubos/química , Peptídeos/química , Tripsina/análise , Animais , Aprotinina/química , Aprotinina/urina , Biomarcadores/análise , Biomarcadores/química , Bovinos , Colorimetria , Ensaios Enzimáticos/métodos , Ouro/química , Humanos , Limite de Detecção , Estudo de Prova de Conceito , Proteólise , Suínos , Tripsina/química , Inibidores da Tripsina/química , Inibidores da Tripsina/urina
7.
J Oleo Sci ; 70(8): 1051-1058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349086

RESUMO

This study aimed to examine the chemical composition of wheat germ oil extracted by three different methods, and to evaluate its inhibitory effect on the cyclooxygenase and proteinase activities. The results showed that the contents of policosanols, tocopherols and phytosterols were affected by the extraction procedure. However, the fatty acid composition of the different oil extracts was nearly the same. Among the tested oils samples, cold pressed oil exhibited the strongest inhibitory activity against proteinase (93.4%, IC50 =195.7 µg/mL) and cyclooxygenase 1 (80.5%, IC50 =58.6 µg/mL). Furthermore, the cold pressed oil had the highest content of octacosanol, ß-sitosterol and α-linolenic acid, suggesting that those bioactive compounds could be essential for the potent ani-cyclooxygenase activity. The present data revealed that wheat germ oil contained cyclooxygenase and trypsin inhibitors, which are the promising therapeutic target for the treatment of various inflammatory diseases. Thus, wheat germ oil might be used to develop functional foods and pharmaceutic products for the human health.


Assuntos
Anti-Inflamatórios/química , Inibidores de Ciclo-Oxigenase/química , Óleos de Plantas/química , Triticum/química , Inibidores da Tripsina/química , Anti-Inflamatórios/análise , Anti-Inflamatórios/isolamento & purificação , Inibidores de Ciclo-Oxigenase/análise , Inibidores de Ciclo-Oxigenase/isolamento & purificação , Álcoois Graxos/análise , Álcoois Graxos/química , Álcoois Graxos/isolamento & purificação , Extração Líquido-Líquido/métodos , Fitosteróis/análise , Fitosteróis/química , Fitosteróis/isolamento & purificação , Óleos de Plantas/análise , Óleos de Plantas/isolamento & purificação , Tocoferóis/análise , Tocoferóis/química , Tocoferóis/isolamento & purificação , Inibidores da Tripsina/análise , Inibidores da Tripsina/isolamento & purificação
8.
J Basic Microbiol ; 61(8): 709-720, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34228389

RESUMO

Trypsin is a protein-digesting enzyme that is essential for the growth and regeneration of bone, muscle, cartilage, skin, and blood. The trypsin inhibitors have various role in diseases such as inflammation, Alzheimer's disease, pancreatitis, rheumatoid arthritis, cancer prognosis, metastasis and so forth. From 10 endophytic fungi isolated, we were able to screen only one strain with the required activity. The fungus with activity was obtained as an endophyte from Dendrophthoe falcata and was later identified as Nigrospora sphaerica. The activity was checked by enzyme assays using trypsin. The fungus was fermented and the metabolites were extracted and further purified by bioassay-guided chromatographic methods and the compound isolated was identified using gas chromatography-mass spectrometry. The compound was identified as quercetin. Docking studies were employed to study the interaction. The absorption, distribution, metabolism, and excretion analysis showed satisfactory results and the compound has no AMES and hepatotoxicity. This study reveals the ability of N. sphaerica to produce bioactive compound quercetin has been identified as a potential candidate for trypsin inhibition. The present communication describes the first report claiming that N. sphaerica strain AVA-1 can produce quercetin and it can be considered as a sustainable source of trypsin active-site inhibitors.


Assuntos
Ascomicetos/metabolismo , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Tripsina/metabolismo , Antioxidantes , Endófitos/metabolismo , Fermentação , Loranthaceae , Simulação de Acoplamento Molecular , Inibidores da Tripsina/metabolismo , Inibidores da Tripsina/farmacologia
9.
Curr Opin Chem Biol ; 63: 145-151, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34004409

RESUMO

Targeted therapy of cancer is considered as promising alternative approach to conventional chemotherapy and radiotherapy. Recent advancements in biotechnology have significantly improved the identification of novel radiopharmaceuticals allowing for more accurate imaging and therapeutic targeting of epithelial tumors. The successful development of radiotracers critically depends on the selection and validation of the tumor-specific target structure, the technical approach employed for the identification of a target-specific ligand, and the evaluation and improvement of the binding properties and the pharmacokinetic profile of the ligand by biotechnological procedures or chemical modification, respectively. Employing rational design of a quinoline-based fibroblast activation protein inhibitor (FAPI) and 'high-through put' display technology using a sunflower trypsin inhibitor1-based peptide library, several FAPI derivatives and a novel αvß6 integrin-binding peptide (SFITGv6) were identified. FAPI and SFITGv6 represent powerful radiopharmaceuticals for diagnostic imaging and/or endoradiotherapy of FAP- and αvß6 integrin-expressing epithelial tumors, respectively.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Neoplasias/diagnóstico , Neoplasias/radioterapia , Medicina de Precisão/métodos , Compostos Radiofarmacêuticos/química , Animais , Antineoplásicos/farmacocinética , Diagnóstico por Imagem/métodos , Endopeptidases , Inibidores Enzimáticos/farmacocinética , Helianthus/química , Humanos , Ligantes , Proteínas de Membrana/antagonistas & inibidores , Terapia de Alvo Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacocinética , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Quinolinas/química , Quinolinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Inibidores da Tripsina/química , Inibidores da Tripsina/farmacocinética
10.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805525

RESUMO

Food proteins and peptides are able to exert a variety of well-known bioactivities, some of which are related to well-being and disease prevention in humans and animals. Currently, an active trend in research focuses on chronic inflammation and oxidative stress, delineating their major pathogenetic role in age-related diseases and in some forms of cancer. The present study aims to investigate the potential effects of pseudocereal proteins and their derived peptides on chronic inflammation and oxidative stress. After purification and attribution to protein classes according to classic Osborne's classification, the immune-modulating, antioxidant, and trypsin inhibitor activities of proteins from quinoa (Chenopodium quinoa Willd.), amaranth (Amaranthus retroflexus L.), and buckwheat (Fagopyrum esculentum Moench) seeds have been assessed in vitro. The peptides generated by simulated gastro-intestinal digestion of each fraction have been also investigated for the selected bioactivities. None of the proteins or peptides elicited inflammation in Caco-2 cells; furthermore, all protein fractions showed different degrees of protection of cells from IL-1ß-induced inflammation. Immune-modulating and antioxidant activities were, in general, higher for the albumin fraction. Overall, seed proteins can express these bioactivities mainly after hydrolysis. On the contrary, higher trypsin inhibitor activity was expressed by globulins in their intact form. These findings lay the foundations for the exploitation of these pseudocereal seeds as source of anti-inflammatory molecules.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Fatores Imunológicos/farmacologia , Proteínas de Vegetais Comestíveis/isolamento & purificação , Proteínas de Vegetais Comestíveis/farmacologia , Sementes/química , Amaranthus/química , Anti-Inflamatórios não Esteroides/química , Antioxidantes/farmacologia , Células CACO-2 , Fracionamento Químico , Chenopodium quinoa/química , Fagopyrum/química , Humanos , Fatores Imunológicos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Proteínas de Vegetais Comestíveis/farmacocinética , Inibidores da Tripsina/química , Inibidores da Tripsina/farmacologia
11.
ACS Chem Biol ; 16(5): 829-837, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881318

RESUMO

Angiogenesis is important for tumor growth, and accordingly, targeting angiogenesis has become an important pathway for antitumor therapy. A novel proapoptotic peptide, CIGB-300 (P15-Tat), has been shown to be involved in the casein kinase II phosphorylation pathway, conferring it with antiangiogenic activity. Cyclic peptides have been widely used as scaffolds in drug design studies due to their high stability and favorable biopharmaceutical properties. Here, we chose two very stable cyclic trypsin inhibitors, MCoTI-II and SFTI-1, as frameworks to incorporate the bioactive epitope P15 into various backbone loops. NMR studies revealed that all re-engineered analogs had similar secondary structures to their native cyclic frameworks. One key analog, MCoP15, displayed significant improvement for inhibiting human umbilical vein endothelial cell migration, was nontoxic, and had higher stability than the P15 epitope alone. Overall, the results show the value of P15 being engineered into cyclic trypsin inhibitor scaffolds for improving antiangiogenic activity and stability. More broadly, the study highlights the versatility of cyclic peptide frameworks in drug design for antiangiogenic therapies.


Assuntos
Inibidores da Angiogênese/química , Colágeno/química , Ciclotídeos/química , Neovascularização Patológica/tratamento farmacológico , Fragmentos de Peptídeos/química , Peptídeos Cíclicos/química , Inibidores da Tripsina/química , Sequência de Aminoácidos , Inibidores da Angiogênese/metabolismo , Caseína Quinase II/metabolismo , Movimento Celular/efeitos dos fármacos , Colágeno/metabolismo , Desenho de Fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Fragmentos de Peptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Inibidores da Tripsina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
J Sci Food Agric ; 101(5): 2090-2099, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32978811

RESUMO

BACKGROUND: Lignin extracted from Canna edulis Ker residues shows a strong inhibitory effect on α-glucosidase and a promoting effect on α-amylase. Protease activity inhibition may play a key role in disease processes, such as metastasis, tumor invasion and bacterial colonization. Hence, in the present study, the inhibitory mechanism of lignin on trypsin was examined, including the interaction type, thermodynamic parameters, structure, reaction site and molecular docking. RESULTS: The isolated lignin presented an inhibitory effect on trypsin activity with an IC50 value of 1.35 µmol L-1 . This inhibition was a mixed linear type with a constant Ki of 3.92 µmol L-1 . The lignin could bind with the key amino acid residue Ser195 on the active site of the trypsin molecule to inhibit its activity, and the phenolic hydroxyl group and -OH on the ß-O-4 structure of the lignin molecule were the major groups bound with trypsin. CONCLUSION: These results illustrate the inhibitory effects of Canna edulis residue lignin on protease, which helps with respect to understanding the possible application of lignin in the food industry in functional foods. © 2020 Society of Chemical Industry.


Assuntos
Inibidores de Glicosídeo Hidrolases/química , Lignina/química , Extratos Vegetais/química , Inibidores da Tripsina/química , Zingiberales/química , Sítios de Ligação , Cinética , Simulação de Acoplamento Molecular , Termodinâmica , Tripsina/química , alfa-Amilases , alfa-Glucosidases/química
13.
Plant Cell Rep ; 40(1): 97-109, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33048182

RESUMO

KEY MESSAGE: Here, we reported that a pathogen- and herbivore-induced Kunitz trypsin inhibitor gene, NaKTI2, is required for herbivore resistance, and transcriptionally regulated mainly by NaWRKY3 and NaWRKY6 but not Jasmonate signaling. Plant protease inhibitor (PI) occurs widely in plant species, and is considered as an important part of plant defense arsenal against herbivores. Transcriptome analysis of Nicotiana attenuata leaves revealed that a Kunitz trypsin inhibitor gene, NaKTI2, was highly elicited after inoculation of Alternaria alternata (tobacco pathotype). However, the roles of NaKTI2 in pathogen- and herbivore resistance and its regulation were unclear. NaKTI2 had typical domains of Kunitz trypsin inhibitors and exhibited a high level of trypsin protease inhibitor activities when transiently over-expressed. The transcripts of NaKTI2 could be induced by A. alternata and Spodoptera litura oral secretions (OS). Silencing NaKTI2 via virus-induced gene silencing technique has no influence on lesion diameters developed on N. attenuata leaves after A. alternata inoculation, but S. litura larvae gained more mass and had higher survivorship on NaKTI2-silenced plants. Meanwhile, the expression of NaPI, a PI gene essential for herbivore resistance previously identified in N. attenuata, was not affected in NaKTI2-silenced plants. Unlike NaPI, which was predominantly regulated by jasmonate (JA) signaling, OS-elicited NaKTI2 transcripts were only slightly reduced in JA-deficient plants, but were dramatically decreased in NaWRKY3- and NaWRKY6- silenced plants, respectively. Further electromobility shift assays indicated that NaWRKY3 and NaWRKY6 could directly bind to the promoter regions of NaKTI2 in vitro. Taken together, our results demonstrate that in addition to NaPI, NaKTI2, a pathogen- and herbivore-induced Kunitz trypsin inhibitor gene, is also required for herbivore resistance, and mainly regulated by NaWRKY3 and NaWRKY6.


Assuntos
Herbivoria , Nicotiana/fisiologia , Proteínas de Plantas/metabolismo , Inibidores da Tripsina/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Alternaria , Animais , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Larva , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Spodoptera/fisiologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Inibidores da Tripsina/química
14.
Protein Pept Lett ; 28(6): 665-674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33191881

RESUMO

BACKGROUND: Protease inhibitors have been isolated from plants and present several biological activities, including immunomodulatory action. OBJECTIVE: This work aimed to evaluate a Moringa oleifera flower trypsin inhibitor (MoFTI) for acute toxicity in mice, hemolytic activity on mice erythrocytes and immunomodulatory effects on mice splenocytes. METHODS: The acute toxicity was evaluated using Swiss female mice that received a single dose of the vehicle control or MoFTI (300 mg/kg, i.p.). Behavioral alterations were observed 15-240 min after administration, and survival, weight gain, and water and food consumption were analyzed daily. Organ weights and hematological parameters were analyzed after 14 days. Hemolytic activity of MoFTI was tested using Swiss female mice erythrocytes. Splenocytes obtained from BALB/c mice were cultured in the absence or presence of MoFTI for the evaluation of cell viability and proliferation. Mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) levels were also determined. Furthermore, the culture supernatants were analyzed for the presence of cytokines and nitric oxide (NO). RESULTS: MoFTI did not cause death or any adverse effects on the mice except for abdominal contortions at 15-30 min after administration. MoFTI did not exhibit a significant hemolytic effect. In addition, MoFTI did not induce apoptosis or necrosis in splenocytes and had no effect on cell proliferation. Increases in cytosolic and mitochondrial ROS release, as well as Δψm reduction, were observed in MoFTI-treated cells. MoFTI was observed to induce TNF-α, IFN-γ, IL-6, IL-10, and NO release. CONCLUSION: These results contribute to the ongoing evaluation of the antitumor potential of MoFTI and its effects on other immunological targets.


Assuntos
Moringa oleifera/enzimologia , Proteínas de Plantas , Inibidores da Tripsina , Animais , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Flores/química , Hemólise/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Proteínas de Plantas/toxicidade , Baço/citologia , Testes de Toxicidade Aguda , Inibidores da Tripsina/química , Inibidores da Tripsina/metabolismo , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/toxicidade
15.
J Am Soc Mass Spectrom ; 31(9): 1833-1843, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32872784

RESUMO

Natural product extracts present inherently complex matrices in which the identification of novel bioactive peptide species is challenged by low-abundance masses and significant structural and sequence diversity. Additionally, discovery efforts often result in the re-identification of known compounds, where modifications derived in vivo or during sample handling may obscure true sequence identity. Herein, we identify mass spectral (MS2) "fingerprint" ions characteristic of cyclotides, a diverse and biologically active family of botanical cysteine-rich peptides, based on regions of high sequence homology. We couple mass shift analysis with MS2 spectral fingerprint ions cross referenced with CyBase-a cyclotide database-to discern unique mass species in Viola communis extracts from mass species that are likely already characterized and those with common modifications. The approach is extended to a related class of cysteine-rich peptides, the trypsin inhibitors, using the characterized botanical species Lagenaria siceraria. Coupling the observation of highly abundant MS2 ions with mass shift analysis, we identify a new set of small, highly disulfide-bound cysteine-rich L. siceraria peptides.


Assuntos
Ciclotídeos , Cisteína/química , Extratos Vegetais , Espectrometria de Massas em Tandem/métodos , Cucurbitaceae/química , Ciclotídeos/análise , Ciclotídeos/química , Dissulfetos/análise , Extratos Vegetais/análise , Extratos Vegetais/química , Proteínas de Plantas/análise , Proteínas de Plantas/química , Inibidores da Tripsina/análise , Inibidores da Tripsina/química , Viola/química
16.
Food Chem ; 333: 127503, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32683258

RESUMO

Protein isolates were prepared from wet heat processed (APIp) and unprocessed alfalfa seeds (APIc) and characterized for composition and functionality at different pH. APIc and APIp exhibited high content of all the essential amino acids. Antinutrient content of APIp was lower in comparison to APIc and marked reduction in the trypsin inhibitor (85.97%) and lectin activity (100%) was observed. Processing did not cause much reduction of bioactive constituents and antioxidant activity of APIp. Alfalfa protein isolates exhibited complex polypeptide banding ranging from molecular weight of 11-75 kDa. APIp exhibited change in the conformation of protein discerned as alteration in interrelated nuances of ATR-FTIR spectra, XRD-pattern, morphology, charge on proteins and reduced solubility in comparison to APIc due to processing. APIp exhibited marked improvement in the functional properties in comparison to APIc discerned as improved hydration, surface active and gelation properties. Highest hydration and surface active properties were exhibited at pH 9.0, even though APIp at pH 7.0 showed fairly similar functional properties as APIc and APIp at pH 9.0. APIp exhibited reduced least gelation concentration in comparison to APIc at pH 7.0 and also engendered gelation at pH 4.0 and 9.0 contrary to APIc.


Assuntos
Aminoácidos Essenciais/química , Medicago sativa/química , Proteínas de Plantas/química , Concentração de Íons de Hidrogênio , Medicago sativa/efeitos dos fármacos , Peso Molecular , Proteínas de Plantas/isolamento & purificação , Solubilidade , Inibidores da Tripsina/química
17.
Analyst ; 145(9): 3329-3338, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32207499

RESUMO

A label-free biosensor was fabricated for the detection of trypsin by using a peptide-functionalized quartz crystal microbalance gold electrode. The synthetized peptide chains were immobilized tightly on the QCM electrode via a self-assembly method, which formed a thin and approximate rigid layer of peptides. The detection signal was achieved by calculating the mass changes on the QCM electrode because the peptide chains could be specifically cleaved in the carboxyl terminuses of arginine and lysine by trypsin. When gold nanoparticles were coupled to the peptide chains, the sensing signal would be amplified 10.9 times. Furthermore, the sensor interface shows a lower resonance resistance change when the peptide chain is immobilized horizontally. Independent detections in parallel on different electrodes have a wide linear range. Under the optimum conditions, the signal-amplified biosensor allowed the measurement of trypsin over the range of 0-750 ng mL-1 with a detection limit of 8.6 ng mL-1. Moreover, for screening the inhibitor of trypsin, the IC50 values were obtained to be 1.85 µg mL-1 for benzamidine hydrochloride and 20.5 ng mL-1 for the inhibitor from soybean.


Assuntos
Técnicas Biossensoriais/métodos , Peptídeos/química , Tripsina/análise , Benzamidinas/química , Benzamidinas/metabolismo , Eletrodos , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Técnicas de Microbalança de Cristal de Quartzo , Glycine max/química , Glycine max/metabolismo , Tripsina/metabolismo , Inibidores da Tripsina/química , Inibidores da Tripsina/metabolismo
18.
Appl Biochem Biotechnol ; 191(3): 1207-1222, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32006248

RESUMO

Soybean Kunitz trypsin inhibitor (SKTI), extracted from soybean (Glycine max L.) seeds, possesses insect resistance and anti-tumor properties. But its specific mechanisms of action are not yet known. This article reports an efficient method to produce recombinant SKTI (rSKTI) in Escherichia coli, reveals some biochemical properties of rSKTI, and discusses the inhibition mechanism of SKTI. The rSKTI was expressed as inclusion body in E. coli BL21 (DE3). After refolding, the active rSKTI was obtained and was further purified with anion-exchange chromatography (DEAE-FF) efficiently. There were similar biochemical properties between SKTI and rSKTI. The optimum pH and the optimum temperature were pH 8.0 and 35 °C, respectively, being stable during pH 7.0-11.0 and below 37 °C. The activity against trypsin was inhibited by Co2+, Mn2+, Fe3+, Al3+, and epoxy chloropropane. Inhibition kinetic assay of SKTI against trypsin as Lineweaver-Burk plots analysis both showed an unchanged Km and a decreased Vmax with N-benzoyl-L-arginine ethyl ester (BAEE) as substrate. Molecular modeling showed Arg63 of SKTI (active residue of SKTI) that interacts with four residues of trypsin, including three catalytic site (His57, Asp102, and Ser195) and one binding site (Asp189), forming five interactions. These provide reference for understanding the inhibition mechanism of such kind of Kunitz trypsin inhibitors.


Assuntos
Glycine max/química , Inibidor da Tripsina de Soja de Kunitz/química , Inibidores da Tripsina/química , Sítios de Ligação , Domínio Catalítico , Cromatografia por Troca Iônica , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Íons , Cinética , Modelos Moleculares , Oxirredução , Dobramento de Proteína , Sementes/química , Solventes , Temperatura , Tripsina/química
19.
Biochemistry ; 59(3): 285-289, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31644266

RESUMO

The modular biosynthetic pathway of ribosomally synthesized and post-translationally modified peptides (RiPPs) enhances their engineering potential for exploring new structures and biological functions. The ω-ester-containing peptides (OEPs), a subfamily of RiPPs, have distinct side-to-side ester or amide linkages and frequently present more than one macrocyclic domain in a "beads-on-a-string" structure. In an effort to improve the engineering potential of RiPPs, we present here the idea that the multidomain architecture of an OEP, plesiocin, can be exploited to create a bifunctional modified peptide. Characterization of plesiocin variants revealed that strong chymotrypsin inhibition relies on the bicyclic structure of the domain in which a leucine residue in the hairpin loop functions as a specificity determinant. Four domains of plesiocin promote simultaneous binding of multiple enzymes, where the C-terminal domain binds chymotrypsin most efficiently. Using this information, we successfully engineered a plesiocin variant in which two different domains inhibit chymotrypsin and trypsin. This result suggests that the multidomain architecture of OEPs is a useful platform for engineering multifunctional hybrid RiPPs.


Assuntos
Quimotripsina/antagonistas & inibidores , Peptídeos/química , Engenharia de Proteínas , Vias Biossintéticas/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Quimotripsina/química , Clonagem Molecular , Escherichia coli/genética , Ésteres/química , Peptídeos/genética , Peptídeos/isolamento & purificação , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação Proteica/genética , Domínios Proteicos/genética , Processamento de Proteína Pós-Traducional/genética , Ribossomos/química , Ribossomos/genética , Tripsina/química , Tripsina/genética , Inibidores da Tripsina/química
20.
Mol Biochem Parasitol ; 233: 111217, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31454544

RESUMO

The inhibitors produced by the parasitic worms successfully protect them from the host's proteases and are supposed to underlie the host-parasite specificity. Our previous study has shown that the extracts from the pike tapeworm Triaenophorus nodulosus inhibit host proteinases and commercial trypsin. We aimed to isolate and identify the components responsible for trypsin inactivation. After a two-step separation the molecular masses were measured by SE-HPLC. The sample proved to contain four fractions represented by polypeptides (1-45 kDa) and low-molecular hydrophobic compounds. According to SDS-PAGE analysis, the major polypeptides in the fractions displaying the highest inhibition had masses of 14.4 kDa. The study culminated in partial N-terminal amino acid sequence analysis with a further search for homology. The research revealed two novel Kunitz-type proteins potentially responsible for the inhibitory capacity of the tapeworms against trypsin. Our findings extend the list of cestodes relying on Kunitz-type proteins in the host-parasite molecular cross-talk.


Assuntos
Cestoides/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Inibidores da Tripsina/química , Animais , Infecções por Cestoides/metabolismo , Esocidae/parasitologia , Tripsina/metabolismo , Inibidores da Tripsina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA