Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biomed Pharmacother ; 176: 116882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876046

RESUMO

BACKGROUND: Several opioids have pharmacogenetic and drug-drug interactions which may compromise their analgesic effectiveness, but are not routinely implemented into supportive pain management. We hypothesized that CYP2D6 phenotypes and concomitant use of CYP2D6 substrates or inhibitors would correlate with opioid analgesic outcomes. MATERIALS AND METHODS: An observational cross-sectional study was conducted with 263 adult chronic non cancer pain (CNCP) patients from a real-world pain unit under long-term CYP2D6-related opioid treatment (tramadol, hydromorphone, tapentadol or oxycodone). Metabolizer phenotype (ultrarapid [UM], normal [NM], intermediate [IM] or poor [PM]) was determined by the CYP2D6 genotype. The socio-demographic (sex, age, employment status), clinical (pain intensity and relief, neuropathic component, quality of life, disability, anxiety and depression), pharmacological (opioid doses and concomitant pharmacotherapy) and safety (adverse events) variables were recorded. RESULTS: The whole population (66 % female, 65 (14) years old, 70 % retired and 63 % attended for low back pain) were classified as PM (5 %), IM (32 %), NM (56 %) and UM (6 %). Multiple linear and logistic regressions showed higher pain intensity and neuropathic component at younger ages when using any CYP2D6 substrate (p = 0.022) or inhibitor (p = 0.030) drug, respectively, with poorer pain relief when CYP2D6 inhibitors (p=0.030) were present. CONCLUSION: The concomitant use of CYP2D6 substrates or inhibitors during opioid therapy for CNCP may result in lack of analgesic effectiveness. This aspect could be relevant for pharmacological decision making during CNCP management.


Assuntos
Analgésicos Opioides , Inibidores do Citocromo P-450 CYP2D6 , Citocromo P-450 CYP2D6 , Interações Medicamentosas , Manejo da Dor , Humanos , Masculino , Feminino , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2D6/genética , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Estudos Transversais , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP2D6/efeitos adversos , Pessoa de Meia-Idade , Idoso , Manejo da Dor/métodos , Dor Crônica/tratamento farmacológico , Resultado do Tratamento , Adulto , Medição da Dor
2.
Drug Metab Dispos ; 51(3): 293-305, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36446607

RESUMO

This study aimed to explore the cytochrome P450 (CYP) metabolic and inhibitory profile of hydroxychloroquine (HCQ). Hydroxychloroquine metabolism was studied using human liver microsomes (HLMs) and recombinant CYP enzymes. The inhibitory effects of HCQ and its metabolites on nine CYPs were also determined in HLMs, using an automated substrate cocktail method. Our metabolism data indicated that CYP3A4, CYP2D6, and CYP2C8 are the key enzymes involved in HCQ metabolism. All three CYPs formed the primary metabolites desethylchloroquine (DCQ) and desethylhydroxychloroquine (DHCQ) to various degrees. Although the intrinsic clearance (CLint) value of HCQ depletion by recombinant CYP2D6 was > 10-fold higher than that by CYP3A4 (0.87 versus 0.075 µl/min/pmol), scaling of recombinant CYP CLint to HLM level resulted in almost equal HLM CLint values for CYP2D6 and CYP3A4 (11 and 14 µl/min/mg, respectively). The scaled HLM CLint of CYP2C8 was 5.7 µl/min/mg. Data from HLM experiments with CYP-selective inhibitors also suggested relatively equal roles for CYP2D6 and CYP3A4 in HCQ metabolism, with a smaller contribution by CYP2C8. In CYP inhibition experiments, HCQ, DCQ, DHCQ, and the secondary metabolite didesethylchloroquine were direct CYP2D6 inhibitors, with 50% inhibitory concentration (IC50) values between 18 and 135 µM. HCQ did not inhibit other CYPs. Furthermore, all metabolites were time-dependent CYP3A inhibitors (IC50 shift 2.2-3.4). To conclude, HCQ is metabolized by CYP3A4, CYP2D6, and CYP2C8 in vitro. HCQ and its metabolites are reversible CYP2D6 inhibitors, and HCQ metabolites are time-dependent CYP3A inhibitors. These data can be used to improve physiologically-based pharmacokinetic models and update drug-drug interaction risk estimations for HCQ. SIGNIFICANCE STATEMENT: While CYP2D6, CYP3A4, and CYP2C8 have been shown to mediate chloroquine biotransformation, it appears that the role of CYP enzymes in hydroxychloroquine (HCQ) metabolism has not been studied. In addition, little is known about the CYP inhibitory effects of HCQ. Here, we demonstrate that CYP2D6, CYP3A4, and CYP2C8 are the key enzymes involved in HCQ metabolism. Furthermore, our findings show that HCQ and its metabolites are inhibitors of CYP2D6, which likely explains the previously observed interaction between HCQ and metoprolol.


Assuntos
Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Hidroxicloroquina/metabolismo , Hidroxicloroquina/farmacologia , Citocromo P-450 CYP2C8/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Microssomos Hepáticos/metabolismo
3.
J Oncol Pharm Pract ; 29(4): 1002-1005, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36380705

RESUMO

INTRODUCTION: In recent years, oral antineoplastic agents are commonly used in antitumor therapy. The interaction between drugs may affect the efficacy of drugs or lead to adverse reactions. We describe the case of a patient who presented acute liver injury, possibly induced by the concomitant use of metoprolol and dacomitinib. CASE REPORT: A 62-year-old male patient with non-small cell lung cancer was admitted for anti-cancer treatment. He regularly took metoprolol tartrate 12.5 mg, 2/day for hypertension. He was treated with dacomitinib according to EGFR Exon21 L858R positive. After 3 days of dacomitinib, the patient's alanine aminotransferase (ALT) and glutathione aminotransferase (AST) increased, and the heart rate and systolic blood pressure of the patient decreased significantly. The patient was diagnosed with acute liver injury. MANAGEMENT AND OUTCOMES: Dacomitinib was discontinued and glutathione, magnesium isoglycyrrhizinate were given to treat acute liver injury. Two days after discontinued dacomitinib, the patient's heart rate increased, but the ALT and AST of the patient elevated again. Metoprolol tartrate was subsequently discontinued and the ALT and AST gradually decreased and the patient discharged from the hospital eight days later with his liver function improved. DISCUSSION: To our knowledge, this is the first case in the literature of acute liver injury possibly induced by the interaction between metoprolol and dacomitinib. The interaction most likely arose because dacomitinib is a CYP2D6 strong inhibitor and could therefore impair the metabolism of metoprolol (a CYP2D6 substrate) and increase its serum concentration. Therefore, hepatic function should be carefully monitored in patients treated with dacomitinib and metoprolol and other inhibitors or inducers of CYP2D6.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Humanos , Pessoa de Meia-Idade , Metoprolol/efeitos adversos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2D6/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Interações Medicamentosas , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP2D6/uso terapêutico , Fígado
4.
Eur J Clin Pharmacol ; 78(10): 1623-1632, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35871665

RESUMO

PURPOSE: To compare the co-prescription of metoprolol and potent CYP2D6-inhibiting antidepressants before and during a 10-year period after implementation of an optimized drug interaction database into clinical decision support systems in Norway. METHODS: The study was a retrospective, cross-sequential nationwide analysis of drug-dispensing data retrieved from the Norwegian Prescription Database over a 1-year period before (2007) and two 1-year periods after (2012 and 2017) implementation of a drug interaction database providing recommendations on non-interacting alternative medications. Primary outcome was changes in co-prescription rates of metoprolol and the potent CYP2D6-inhibiting antidepressants fluoxetine, paroxetine, or bupropion relative to alternative antidepressants with no or limited CYP2D6 inhibitory potential. To control for potential secular trend bias, a comparison group consisting of atenolol/bisoprolol users was included. RESULTS: The co-prescription rate of metoprolol with potent CYP2D6 inhibitors declined following implementation of the optimized database, by 21% (P < 0.001) after 5 years and by 40% (P < 0.001) after 10 years. Compared with atenolol/bisoprolol users, patients treated with metoprolol had significantly reduced likelihood of being prescribed a CYP2D6-inhibiting antidepressant in the two post-implementation periods (OR 0.61 (95% CI 0.54-0.69) and OR 0.45 (95% CI 0.40-0.51), respectively, versus OR 0.84 (95% CI 0.74-0.94) prior to implementation). Small and mostly insignificant differences in average daily metoprolol dosage were found between patients treated with the various antidepressants. CONCLUSION: The present study suggests that implementation of a drug interaction database providing recommendations on non-interacting drug alternatives contributes to reduced co-prescribing of drug combinations associated with potentially serious adverse effects.


Assuntos
Inibidores do Citocromo P-450 CYP2D6 , Citocromo P-450 CYP2D6 , Interações Medicamentosas , Antidepressivos/efeitos adversos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Atenolol , Bisoprolol , Bupropiona/uso terapêutico , Citocromo P-450 CYP2D6/genética , Inibidores do Citocromo P-450 CYP2D6/efeitos adversos , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP2D6/uso terapêutico , Prescrições de Medicamentos , Fluoxetina/uso terapêutico , Humanos , Metoprolol/efeitos adversos , Paroxetina/uso terapêutico , Estudos Retrospectivos
5.
Curr Drug Metab ; 22(11): 882-892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191696

RESUMO

BACKGROUND: Herbal medicine Angelica dahurica is widely employed for the treatment of rheumatism and pain relief in China. Oxypeucedanin is a major component in the herb. OBJECTIVES: The objectives of this study are aimed at the investigation of mechanism-based inactivation of CYP2B6 and CYP2D6 by oxypeucedanin, characterization of the reactive metabolites associated with the enzyme inactivation, and identification of the P450s participating in the bioactivation of oxypeucedanin. METHODS: Oxypeucedanin was incubated with liver microsomes or recombinant CYPs2B6 and 2D6 under designed conditions, and the enzyme activities were measured by monitoring the generation of the corresponding products. The resulting reactive intermediates were trapped with GSH and analyzed by LC-MS/MS. RESULTS: Microsomal incubation with oxypeucedanin induced a time-, concentration-, and NADPH-dependent inhibition of CYPs2B6 and 2D6 with kinetic values of KI/kinact 1.82 µM/0.07 min-1 (CYP2B6) and 8.47 µM/0.044 min-1 (CYP2D6), respectively. Ticlopidine and quinidine attenuated the observed time-dependent enzyme inhibitions. An epoxide and/or γ-ketoenal intermediate(s) derived from oxypeucedanin was/were trapped in microsomal incubations. CYP3A4 was the primary enzyme involved in the bioactivation of oxypeucedanin. CONCLUSION: Oxypeucedanin was a mechanism-based inactivator of CYP2B6 and CYP2D6. An epoxide and/or γ- ketoenal intermediate(s) may be responsible for the inactivation of the two enzymes.


Assuntos
Inibidores do Citocromo P-450 CYP2B6/farmacologia , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Furocumarinas/farmacologia , Catalase/metabolismo , Citocromo P-450 CYP2B6/efeitos dos fármacos , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2D6/efeitos dos fármacos , Citocromo P-450 CYP2D6/metabolismo , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Quinidina/farmacologia , Superóxido Dismutase/metabolismo , Ticlopidina/farmacologia
6.
J Clin Psychopharmacol ; 41(3): 281-285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33905640

RESUMO

PURPOSE: The aim of this study was to investigate the potential dose-dependent CYP2D6 inhibition by bupropion (BUP) in patients with depression. METHODS: Patients combining BUP with venlafaxine were included from a therapeutic drug monitoring (TDM) database at the Diakonhjemmet Hospital (Oslo, Norway). The O/N-desmethylvenlafaxine metabolic ratio measured in TDM samples was used as a biomarker for CYP2D6 phenotype and was compared between patients treated with BUP 150 mg/d and 300 mg/d or greater. In addition, reference groups of venlafaxine-treated patients genotyped as CYP2D6 poor metabolizers (PMs, no CYP2D6 activity) and normal metabolizers (NMs, fully functional CYP2D6 activity) were included. FINDINGS: A total of 221 patients were included in the study. The median O/N-desmethylvenlafaxine metabolic ratio was significantly higher in patients treated with BUP 150 mg/d (n = 59) versus 300 mg/d or greater (n = 34, 1.77 vs 0.96, P < 0.001). In CYP2D6 NMs (n = 62) and PMs (n = 66), the median metabolic ratios were 40.55 and 0.48, respectively. For patients treated with BUP 150 mg/d, 11 (19%) of the 59 patients were phenoconverted to PMs, whereas this was the case for 17 (50%) of the 34 patients treated with BUP 300 mg/d or greater. CONCLUSIONS: Bupropion exhibits a clear dose-dependent CYP2D6 inhibitory effect during treatment of patients with depression. This finding is of clinical relevance when adjusting dosing of CYP2D6 substrates during comedication with BUP. Half of the patients treated with high-dose BUP are converted to CYP2D6 PM phenotype. Because of the variability in CYP2D6 inhibition, TDM of CYP2D6 substrates should be considered to provide individualized dose adjustments during comedication with BUP.


Assuntos
Antidepressivos de Segunda Geração/administração & dosagem , Bupropiona/administração & dosagem , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Depressão/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antidepressivos de Segunda Geração/farmacologia , Bupropiona/farmacologia , Citocromo P-450 CYP2D6/efeitos dos fármacos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Succinato de Desvenlafaxina/farmacocinética , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Cloridrato de Venlafaxina/administração & dosagem , Adulto Jovem
7.
J Clin Pharmacol ; 61(9): 1195-1205, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33894017

RESUMO

Veliparib (ABT-888) is a poly(ADP-ribose) polymerase inhibitor in development for the treatment of high-grade ovarian cancer or BRCA-mutated breast cancer in combination with carboplatin and paclitaxel. The population pharmacokinetics of veliparib were characterized using combined data from 1470 adult subjects with ovarian cancer, breast cancer, or other solid tumors enrolled in 6 phase 1 studies, 1 phase 2 study, and 2 phase 3 studies of veliparib oral doses of 10 to 400 mg twice daily as monotherapy or in combination with chemotherapy. A 1-compartment model with linear clearance and first-order absorption best characterized veliparib pharmacokinetics. The predicted apparent oral clearance (CL/F) and volume of distribution (Vc /F) were 479 L/day and 152 L, respectively. The significant covariates in the final model included albumin, creatinine clearance, strong inhibitors of cytochrome P450 (CYP) 2D6, and sex on CL/F and albumin, body weight, and sex on Vc /F. Mild and moderate renal impairment increased veliparib median (95%CI) steady-state AUC (AUCss ) by 27.3% (23.7%-30.9%) and 65.4% (56.0%-75.5%), respectively, compared with normal renal function. Male subjects had 16.5% (7.53%-23.9%) lower AUCss compared with female subjects and coadministration with strong CYP2D6 inhibitors increased AUCss by 13.0% (6.11%-20.8%). Race, age, region, cancer type, or enzyme (CYP3A4, CYP2C19) or transporter (P-glycoprotein, multidrug and toxin extrusion protein 1/2, organic cation transporter 2) inhibiting/inducing comedications were not found to significantly impact veliparib pharmacokinetics. Other than baseline creatinine clearance and hence renal impairment effect on veliparib clearance, no other covariates had a clinically meaningful effect on veliparib exposure warranting dose adjustment.


Assuntos
Benzimidazóis/farmacocinética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica , Área Sob a Curva , Benzimidazóis/uso terapêutico , Peso Corporal , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Creatinina/sangue , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Relação Dose-Resposta a Droga , Humanos , Proteínas de Membrana Transportadoras/agonistas , Taxa de Depuração Metabólica , Modelos Biológicos , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Albumina Sérica/análise , Fatores Sexuais
8.
Bioorg Chem ; 109: 104695, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33647743

RESUMO

Globally cancer is the second leading cause of death. So that this work is an attempt to develop new effective anti-cancer agents. In line with pharmacophoric features of VEGFR-2 kinase inhibitors, new nineteen quinazolin-4-one derivatives were designed, synthesized and biologically evaluated for their potential anticancer activity. All target compounds were evaluated in vitro for VEGFR-2 tyrosine kinase inhibition. Then, nine compounds of best results were further investigated by in vitro assay against three human cancer cell lines, namely HepG2, PC3 and MCF. N'-{2-](3-Ethyl-6-nitro-4-oxo-3,4-dihydroquinazoline-2-yl)thio[acetyl}benzohydrazide (36) was found to be the most potent candidate as it showed IC50 = 4.6 ± 0.06 µM against VEGFR-2 kinase. It also exhibited IC50 = 17.23 ± 1.5, 26.10 ± 2.2 and 30.85 ± 2.3 µg/mL against HepG2, PC3 and MCF, respectively. At the same time it showed IC50 = 145.93 ± 1.1 µg/mL against the normal human lung fibroblasts cell line (WI-38), indicating good selectivity index. Further investigation into HepG2 cell cycle showed the ability of compound 36 to induce apoptosis and arrest cell growth at G2/M phase. Moreover, docking studies demonstrated the ability of compound 36 to bind VEGFR-2 in a correct manner making three essential hydrogen bonds with the key residues Glu885, Asp1046 and Cys919. In sum, this work suggests that compound 36 can serve as a lead for development of effective anticancer agents targeting VEGFR-2.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular Tumoral , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/química , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica
9.
Biomed Pharmacother ; 131: 110732, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32942157

RESUMO

Polyphenolic compounds (including flavonoids, chalcones, phenolic acids, and furanocoumarins) represent a common part of our diet, but are also the active ingredients of several dietary supplements and/or medications. These compounds undergo extensive metabolism by human biotransformation enzymes and the microbial flora of the colon. CYP2D6 enzyme metabolizes approximately 25% of the drugs, some of which has narrow therapeutic window. Therefore, its inhibition can lead to the development of pharmacokinetic interactions and the disruption of drug therapy. In this study, the inhibitory effects of 17 plant-derived compounds and 19 colonic flavonoid metabolites on CYP2D6 were examined, employing two assays with different test substrates. The O-demethylation of dextromethorphan was tested employing CypExpress 2D6 kit coupled to HPLC analysis; while the O-demethylation of another CYP2D6 specific substrate (AMMC) was investigated in a plate reader assay with BioVision Fluorometric CYP2D6 kit. Interestingly, some compounds (e.g., bergamottin) inhibited both dextromethorphan and AMMC demethylation; however, certain substances proved to be inhibitors only in one of the assays applied. Our results demonstrate that some polyphenols and colonic metabolites are inhibitors of CYP2D6-catalyzed reactions. Nevertheless, the inhibitory effects showed strong substrate dependence.


Assuntos
Colo/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP2D6/metabolismo , Polifenóis/farmacologia , Acetamidas/metabolismo , Dextrometorfano/metabolismo , Flavonoides/farmacologia , Humanos , Polifenóis/metabolismo , Piridazinas/metabolismo
10.
J Med Chem ; 63(14): 7721-7739, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573250

RESUMO

A systematic exploration of bioisosteric replacements for furan and thiophene cores in a series of potent A2BAR antagonists has been carried out using the nitrogen-walk approach. A collection of 42 novel alkyl 4-substituted-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylates, which contain 18 different pentagonal heterocyclic frameworks at position 4, was synthesized and evaluated. This study enabled the identification of new ligands that combine remarkable affinity (Ki < 30 nM) and exquisite selectivity. The structure-activity relationship (SAR) trends identified were substantiated by a molecular modeling study, based on a receptor-driven docking model and including a systematic free energy perturbation (FEP) study. Preliminary evaluation of the CYP3A4 and CYP2D6 inhibitory activity in optimized ligands evidenced weak and negligible activity, respectively. The stereospecific interaction between hA2BAR and the eutomer of the most attractive novel antagonist (S)-18g (Ki = 3.66 nM) was validated.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Imidazóis/farmacologia , Pirimidinas/farmacologia , Receptor A2B de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Inibidores do Citocromo P-450 CYP2D6/síntese química , Inibidores do Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Humanos , Imidazóis/síntese química , Imidazóis/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
11.
Inflammation ; 43(5): 1999-2009, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594336

RESUMO

Inflammatory bowel disease composed of ulcerative colitis and Crohn's disease is a disorder that may involve entire gastrointestinal tract. Its pathogenesis is mainly an immune-mediated inflammation. Recently, it has been indicated that bupropion possesses anti-inflammatory properties; hence, the objective of this experiment is the investigation of the anti-inflammatory influence of bupropion on colonic lesions that emerged following the intrarectal administration of acetic acid. Thirty-six male Wistar rats were allocated randomly into six groups, including control, acetic acid, dexamethasone (2 mg/kg), and bupropion (40, 80, and 160 mg/kg). Colitis was induced by intrarectal administration of acetic acid in all study groups except control group, and animals were treated by oral administration of dexamethasone and bupropion. While macroscopic and microscopic lesions were observed after colitis induction, administration of dexamethasone and bupropion 160 mg/kg led to the remarkable improvement in lesions. In addition, the expression of TLR4 and NF-ĸB was decreased after colitis induction; however, treatment with dexamethasone (2 mg/kg) and bupropion (160 mg/kg) resulted in a significant decrease in their expression. Regarding biochemical factors, following colitis induction, TNF-α level and MPO activity were increased; nevertheless, dexamethasone (2 mg/kg) and bupropion (160 mg/kg) decreased the TNF-α and MPO activity. In conclusion, bupropion exerts anti-inflammatory influence through suppressing the TLR4 and NF-ĸB expression in the rat model of acute colitis.


Assuntos
Ácido Acético/toxicidade , Bupropiona/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Antibacterianos/toxicidade , Bupropiona/farmacologia , Colite/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP2D6/uso terapêutico , Relação Dose-Resposta a Droga , Masculino , NF-kappa B/biossíntese , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/biossíntese
12.
AAPS J ; 21(6): 107, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31637538

RESUMO

The multikinase inhibitor sorafenib (SOR) is used to treat patients with hepatocellular and renal carcinomas. SOR undergoes CYP-mediated biotransformation to a pharmacologically active N-oxide metabolite (SNO) that has been shown to accumulate to varying extents in individuals. Kinase inhibitors like SOR are frequently coadministered with a range of other drugs to improve the efficacy of anticancer drug therapy and to treat comorbidities. Recent evidence has suggested that SNO is more effective than SOR as an inhibitor of CYP3A4-mediated midazolam 1'-hydroxylation. CYP2D6 is also reportedly inhibited by SOR. The present study assessed the possibility that SNO might contribute to CYP2D6 inhibition. The inhibition kinetics of CYP2D6-mediated dextromethorphan O-demethylation were analyzed in human hepatic microsomes, with SNO found to be ~ 19-fold more active than SOR (Kis 1.8 ± 0.3 µM and 34 ± 11 µM, respectively). Molecular docking studies of SOR and SNO were undertaken using multiple crystal structures of CYP2D6. Both molecules mediated interactions with key amino acid residues in putative substrate recognition sites of CYP2D6. However, a larger number of H-bonding interactions was noted between the N-oxide moiety of SNO and active site residues that account for its greater inhibition potency. These findings suggest that SNO has the potential to contribute to pharmacokinetic interactions involving SOR, perhaps in those individuals in whom SNO accumulates.


Assuntos
Antineoplásicos/metabolismo , Inibidores do Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Microssomos Hepáticos/metabolismo , Óxidos/metabolismo , Sorafenibe/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Citocromo P-450 CYP2D6/química , Inibidores do Citocromo P-450 CYP2D6/química , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Óxidos/química , Óxidos/farmacologia , Sorafenibe/química , Sorafenibe/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologia
13.
Protein J ; 38(5): 515-524, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31004256

RESUMO

Glutathione reductase (GR) is a homodimeric enzyme playing an important role in the regeneration of the central antioxidant molecule reduced glutathione (GSH) from oxidized glutathione (GSSG) at the expense of a molecule of NADPH. GSH scavenges and eliminates superoxide and hydroxyl radicals non-enzymatically or serves as an electron donor for several enzymes. Fluoxetine (FLU), a selective serotonin reuptake inhibitor, is widely prescribed in the treatment of major depressive disorder. Here, using enzyme kinetic studies and molecular docking simulations, we aimed at disclosing the mechanistic and structural aspects of the interaction between GR and FLU. Affecting enzyme activity in a dose-dependent manner, FLU was shown to be a moderately potent (IC50 = 0.88 mM) inhibitor of GR. When the variable substrate was GSSG, the type of inhibition was linear mixed-type competitive (Ki = 279 ± 32 µM; α = 5.48 ± 1.29). When the variable substrate was NADPH, however, the type of inhibition was non-competitive (Ki = 879 ± 82 µM). The observed difference in inhibition types was attributed to the binding of FLU in the large intermonomer cavity of GR, where it hampered catalysis and interfered with substrate binding. Overall, although it is anticipated that long-term use of FLU leads to acquired GR deficiency, the inhibitory action of FLU on GR may be therapeutically exploited in anti-cancer research.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Inibidores Enzimáticos/farmacologia , Fluoxetina/farmacologia , Glutationa Redutase/antagonistas & inibidores , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Glutationa Redutase/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , NADP/metabolismo
14.
Breast Cancer Res Treat ; 173(3): 521-532, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30411242

RESUMO

PURPOSE: Tamoxifen is one of the principal treatments for estrogen receptor (ER)-positive breast cancer. Unfortunately, between 30 and 50% of patients receiving this hormonal therapy relapse. Since CYP2D6 genetic variants have been reported to play an important role in survival outcomes after treatment with tamoxifen, this study sought to summarize and critically appraise the available scientific evidence on this topic. METHODS: A systematic literature review was conducted to identify studies investigating associations between CYP2D6 genetic variation and survival outcomes after tamoxifen treatment. Critical appraisal of the retrieved scientific evidence was performed, and recommendations were developed for CYP2D6 genetic testing in the context of tamoxifen therapy. RESULTS: Although conflicting literature exists, the majority of the current evidence points toward CYP2D6 genetic variation affecting survival outcomes after tamoxifen treatment. Of note, review of the CYP2D6 genotyping assays used in each of the studies revealed the importance of comprehensive genotyping strategies to accurately predict CYP2D6 metabolizer phenotypes. CONCLUSIONS AND RECOMMENDATIONS: Critical appraisal of the literature provided evidence for the value of comprehensive CYP2D6 genotyping panels in guiding treatment decisions for non-metastatic ER-positive breast cancer patients. Based on this information, it is recommended that alternatives to standard tamoxifen treatments may be considered in CYP2D6 poor or intermediate metabolizers.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Citocromo P-450 CYP2D6/genética , Variação Genética , Receptores de Estrogênio/genética , Alelos , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Tomada de Decisão Clínica , Fatores de Confusão Epidemiológicos , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP2D6/uso terapêutico , Gerenciamento Clínico , Feminino , Genótipo , Humanos , Farmacogenética , Guias de Prática Clínica como Assunto , Prognóstico , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
15.
Cancer Causes Control ; 30(1): 103-112, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30542984

RESUMO

PURPOSE: Tamoxifen is widely used to reduce the risk of breast cancer (BC) recurrence and extend disease-free survival among women with estrogen-sensitive breast cancers. Tamoxifen efficacy is thought to be attributable to its active metabolite, which is formed through a reaction catalyzed by the P450 enzyme, CYP2D6. Inhibition of tamoxifen metabolism as a result of germline genetic variation and/or use of CYP2D6-inhibiting medications ("inhibitors") is hypothesized to increase the risk of adverse BC outcomes among women taking tamoxifen. METHODS: The present cohort study of 960 women diagnosed with early-stage BC between 1993 and 1999 examined the association between concomitant use of CYP2D6 inhibitors and adjuvant tamoxifen and the risk of adverse BC outcomes (recurrence, second primary BC, BC mortality), both overall and according to CYP2D6 metabolic phenotype. RESULTS: Six or more months of CYP2D6 inhibitor use concomitant with tamoxifen was not associated with any appreciable increase in risk of recurrence or second primary BC or BC mortality, and there was no clear evidence of variation by CYP2D6 metabolic phenotype. CONCLUSIONS: These results are consistent with the relatively few other large, population-based studies conducted to date that have not observed an increased risk of adverse BC outcomes associated with CYP2D6 inhibition.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Citocromo P-450 CYP2D6/genética , Tamoxifeno/uso terapêutico , Idoso , Neoplasias da Mama/genética , Estudos de Coortes , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Fenótipo
16.
J Med Chem ; 61(16): 7168-7188, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30052039

RESUMO

CXCR4 is a G-protein-coupled receptor that interacts with its cognate ligand, CXCL12, to synchronize many physiological responses and pathological processes. Disruption of the CXCL12-CXCR4 circuitry by small-molecule antagonists has emerged as a promising strategy for cancer intervention. We previously disclosed a hit-to-lead effort that led to the discovery of a series of tetrahydroisoquinoline-based CXCR4 antagonists exemplified by the lead compound TIQ15. Herein, we describe our medicinal-chemistry efforts toward the redesign of TIQ15 as a result of high mouse-microsomal clearance, potent CYP2D6 inhibition, and poor membrane permeability. Guided by the in vitro ADME data of TIQ15, structural modifications were executed to provide compound 12a, which demonstrated a reduced potential for first-pass metabolism while maintaining CXCR4 potency. Subsequent SAR studies and multiparameter optimization of 12a resulted in the identification of compound 25o, a highly potent, selective, and metabolically stable CXCR4 antagonist possessing good intestinal permeability and low risk of CYP-mediated drug-drug interactions.


Assuntos
Receptores CXCR4/antagonistas & inibidores , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/farmacocinética , Animais , Células Cultivadas , Inibidores do Citocromo P-450 CYP2D6/química , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Humanos , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Receptores CXCR4/química , Receptores CXCR4/metabolismo , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
17.
Drug Metab Dispos ; 46(8): 1137-1145, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29773554

RESUMO

Nitidine chloride (NC) is a benzophenanthridine alkaloid isolated from the roots of Zanthoxylum nitidum (Roxb.) DC, a widely used traditional herbal medicine. Several reports have revealed NC's multiple pharmacologic properties. The inhibitory effects of NC on human cytochrome P450 enzymes were investigated in the present study. We found that NC caused time- and concentration-dependent inhibition of CYP2D6, and more than 50% of CYP2D6 activity was suppressed after a 15-minute incubation with NC at 100 µM in the primary incubation mixtures, with KI of 4.36 µM, kinact of 0.052 minute-1, and a partition ratio of approximately 290. Moreover, the loss of CYP2D6 activity required the presence of NADPH. Superoxide dismutase/catalase and glutathione showed minor protection against the NC-induced enzyme inhibition. Quinidine as a competitive inhibitor of CYP2D6 slowed down the inactivation by NC. Trapping experiments using N-acetylcysteine demonstrated that quinone and/or carbene intermediate(s) were/was generated in human liver microsomal incubations with NC. In addition, potassium ferricyanide prevented the enzyme from the inactivation mediated by NC, which provided evidence that inhibition of CYP2D6 resulted from heme destruction by the formation of a carbene-iron complex. CYP1A2 was found to be the major enzyme involved in the generation of NC quinone metabolites. In conclusion, NC is a mechanism-based inactivator of CYP2D6. The generation of a carbene intermediate might be mainly responsible for the enzyme inactivation.


Assuntos
Benzofenantridinas/farmacologia , Citocromo P-450 CYP2D6/metabolismo , Catalase/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Glutationa/metabolismo , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Quinidina/farmacologia , Superóxido Dismutase/metabolismo
18.
J Med Chem ; 61(3): 946-979, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29350534

RESUMO

CXCR4 is a seven-transmembrane receptor expressed by hematopoietic stem cells and progeny, as well as by ≥48 different cancers types. CXCL12, the only chemokine ligand of CXCR4, is secreted within the tumor microenvironment, providing sanctuary for CXCR4+ tumor cells from immune surveillance and chemotherapeutic elimination by (1) stimulating prosurvival signaling and (2) recruiting CXCR4+ immunosuppressive leukocytes. Additionally, distant CXCL12-rich niches attract and support CXCR4+ metastatic growths. Accordingly, CXCR4 antagonists can potentially obstruct CXCR4-mediated prosurvival signaling, recondition the CXCR4+ leukocyte infiltrate from immunosuppressive to immunoreactive, and inhibit CXCR4+ cancer cell metastasis. Current small molecule CXCR4 antagonists suffer from poor oral bioavailability and off-target liabilities. Herein, we report a series of novel tetrahydroisoquinoline-containing CXCR4 antagonists designed to improve intestinal absorption and off-target profiles. Structure-activity relationships regarding CXCR4 potency, intestinal permeability, metabolic stability, and cytochrome P450 inhibition are presented.


Assuntos
Absorção Fisico-Química , Inibidores do Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Descoberta de Drogas , Receptores CXCR4/antagonistas & inibidores , Tetra-Hidroisoquinolinas/metabolismo , Tetra-Hidroisoquinolinas/farmacologia , Linhagem Celular , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/química , Humanos , Permeabilidade , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/química
19.
J Med Chem ; 60(15): 6678-6692, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28671458

RESUMO

Porcupine is an O-acyltransferase that regulates Wnt secretion. Inhibiting porcupine may block the Wnt pathway which is often dysregulated in various cancers. Consequently porcupine inhibitors are thought to be promising oncology therapeutics. A high throughput screen against porcupine revealed several potent hits that were confirmed to be Wnt pathway inhibitors in secondary assays. We developed a pharmacophore model and used the putative bioactive conformation of a xanthine inhibitor for scaffold hopping. The resulting maleimide scaffold was optimized to subnanomolar potency while retaining good physical druglike properties. A preclinical development candidate was selected for which extensive in vitro and in vivo profiling is reported.


Assuntos
Aciltransferases/antagonistas & inibidores , Antineoplásicos/farmacologia , Maleimidas/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Piridazinas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Inibidores do Citocromo P-450 CYP1A2/administração & dosagem , Inibidores do Citocromo P-450 CYP1A2/síntese química , Inibidores do Citocromo P-450 CYP1A2/farmacocinética , Inibidores do Citocromo P-450 CYP1A2/farmacologia , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Inibidores do Citocromo P-450 CYP2D6/síntese química , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Feminino , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Maleimidas/administração & dosagem , Maleimidas/síntese química , Maleimidas/farmacocinética , Camundongos Endogâmicos BALB C , Camundongos Nus , Microssomos Hepáticos/metabolismo , Piridazinas/administração & dosagem , Piridazinas/síntese química , Piridazinas/farmacocinética , Ratos , Relação Estrutura-Atividade , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Pharm Biol ; 55(1): 1868-1874, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28614988

RESUMO

CONTEXT: Dihydromyricetin (DHM) is the most abundant and active flavonoid component isolated from Ampelopsis grossedentata (Hand-Mazz) W.T. Wang (Vitaceae) and it possesses numerous pharmacological activities. However, whether DHM affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear. MATERIALS AND METHODS: The inhibitory effects of DHM on eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) were investigated in vitro using human liver microsomes (HLMs). RESULTS: The results showed that DHM could inhibit the activity of CYP3A4, CYP2E1 and CYP2D6, with IC50 values of 14.75, 25.74 and 22.69 µM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that DHM was not only a non-competitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2E1 and CYP2D6, with Ki values of 6.06, 9.24 and 10.52 µM, respectively. In addition, DHM is a time-dependent inhibitor for CYP3A4 with KI/Kinact value of 12.17/0.057 min-1 µM-1. DISCUSSION AND CONCLUSION: The in vitro studies of DHM with CYP isoforms indicate that DHM has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4, CYP2E1 and CYP2D6. Further clinical studies are needed to evaluate the significance of this interaction.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Flavonóis/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Antioxidantes/farmacologia , Ligação Competitiva , Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/química , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Humanos , Cinética , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA