Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 273: 116492, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38762918

RESUMO

Paclitaxel (PTX) is considered the blockbuster chemotherapy treatment for cancer. Paclitaxel's (PTX) oral administration has proven to be extremely difficult, mostly because of its susceptibility to intestinal P-glycoprotein (P-gp) and cytochrome P450 (CYP3A4). The concurrent local inhibition of intestinal P-gp and CYP3A4 is a promising approach to improve the oral bioavailability of paclitaxel while avoiding potential unfavorable side effects of their systemic inhibition. Herein, we report the rational design and evaluation of novel dual potent inhibitors of P-gp and CYP3A4 using an anthranilamide derivative tariquidar as a starting point for their structural optimizations. Compound 14f, bearing N-imidazolylbenzyl side chain, was found to have potent and selective P-gp (EC50 = 28 nM) and CYP3A4 (IC50 = 223 nM) inhibitory activities with low absorption potential (Papp (A-to-B) <0.06). In vivo, inhibitor 14f improved the oral absorption of paclitaxel by 6 times in mice and by 30 times in rats as compared to vehicle, while 14f itself remained poorly absorbed. Compound 14f, possessing dual P-gp and CYP3A4 inhibitory activities, offered additional enhancement in paclitaxel oral absorption compared to tariquidar in mice. Evaluating the CYP effect of 14f on oral absorption of paclitaxel requires considering the variations in CYP expression between animal species. This study provides further medicinal chemistry advice on strategies for resolving concerns with the oral administration of chemotherapeutic agents.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Desenho de Fármacos , ortoaminobenzoatos , Citocromo P-450 CYP3A/metabolismo , Humanos , Animais , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/química , ortoaminobenzoatos/síntese química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Camundongos , Inibidores do Citocromo P-450 CYP3A/farmacologia , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/química , Relação Estrutura-Atividade , Estrutura Molecular , Modelos Moleculares , Ratos , Relação Dose-Resposta a Droga , Paclitaxel/farmacologia , Paclitaxel/química , Masculino
2.
J Med Chem ; 65(1): 191-216, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34928144

RESUMO

Targeted concurrent inhibition of intestinal drug efflux transporter P-glycoprotein (P-gp) and drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4) is a promising approach to improve oral bioavailability of their common substrates such as docetaxel, while avoiding side effects arising from their pan inhibitions. Herein, we report the discovery and characterization of potent small molecule inhibitors of P-gp and CYP3A4 with encequidar (minimally absorbed P-gp inhibitor) as a starting point for optimization. To aid in the design of these dual inhibitors, we solved the high-resolution cryo-EM structure of encequidar bound to human P-gp. The structure guided us to prudently decorate the encequidar scaffold with CYP3A4 pharmacophores, leading to the identification of several analogues with dual potency against P-gp and CYP3A4. In vivo, dual P-gp and CYP3A4 inhibitor 3a improved the oral absorption of docetaxel by 3-fold as compared to vehicle, while 3a itself remained poorly absorbed.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Microscopia Crioeletrônica/métodos , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/química , Desenho de Fármacos , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/química , Docetaxel/administração & dosagem , Inibidores Enzimáticos/química , Humanos , Camundongos
3.
Artigo em Inglês | MEDLINE | ID: mdl-34800750

RESUMO

Euodiae Fructus (EF), the dried unripe scented fruit of Euodia rutaecarpa (Juss.) Benth., was reported to show anti-hypertensive, antitumor, and anti-obesity effects. The main alkaloids of EF were reported as the reason for toxicity of EF by metabolic activation majority through CYP3A. Up till the present moment, the cytotoxicity mechanisms of EF have not yet to be fully clarified. For the purposes of this article, the influence of CYP3A inducer and inhibitor on cytotoxicity of EF and metabolism in L02 cells of five alkaloids related to toxicity of EF were evaluated. The results indicated that CYP3A inducer aggravated the toxicity and CYP3A inhibitor alleviated the toxicity. UPLC-Q-Exactive-MS was used for the identification of five alkaloids of EF in L02 cells. A total of 13 metabolites were detected in L02 cells. In general, five alkaloids were widely metabolized in L02 cells such as oxygenation, demethylation, dehydrogenation, and etc. In addition, oxygenation was the main metabolic pathway. It was inferred that the toxicity of EF was closely related to the CYP3A and the metabolic intermediate might be one of the reasons for the toxicity of EF. Hence, the choice of optimal dose might be critical to avoid the adverse reactions owing to combination of EF and CYP3A inducer.


Assuntos
Alcaloides/química , Inibidores do Citocromo P-450 CYP3A/toxicidade , Medicamentos de Ervas Chinesas/toxicidade , Evodia/toxicidade , Fígado/efeitos dos fármacos , Alcaloides/metabolismo , Alcaloides/toxicidade , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Evodia/química , Evodia/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/toxicidade , Humanos , Fígado/enzimologia , Espectrometria de Massas
4.
J Am Chem Soc ; 143(24): 9191-9205, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110801

RESUMO

We report the synthesis and photochemical and biological characterization of the first selective and potent metal-based inhibitors of cytochrome P450 3A4 (CYP3A4), the major human drug metabolizing enzyme. Five Ru(II)-based derivatives were prepared from two analogs of the CYP3A4 inhibitor ritonavir, 4 and 6: [Ru(tpy)(L)(6)]Cl2 (tpy = 2,2':6',2″-terpyridine) with L = 6,6'-dimethyl-2,2'-bipyridine (Me2bpy; 8), dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2dppn; 10) and 3,6-dimethyl-10,15-diphenylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2Ph2dppn; 11), [Ru(tpy)(Me2bpy)(4)]Cl2 (7) and [Ru(tpy)(Me2dppn)(4)]Cl2 (9). Photochemical release of 4 or 6 from 7-11 was demonstrated, and the spectrophotometric evaluation of 7 showed that it behaves similarly to free 4 (type II heme ligation) after irradiation with visible light but not in the dark. Unexpectedly, the intact Ru(II) complexes 7 and 8 were found to inhibit CYP3A4 potently and specifically through direct binding to the active site without heme ligation. Caged inhibitors 9-11 showed dual action properties by combining photoactivated dissociation of 4 or 6 with efficient 1O2 production. In prostate adenocarcinoma DU-145 cells, compound 9 had the best synergistic effect with vinblastine, the anticancer drug primarily metabolized by CYP3A4 in vivo. Thus, our study establishes a new paradigm in CYP inhibition using metalated complexes and suggests possible utilization of photoactive CYP3A4 inhibitory compounds in clinical applications, such as enhancement of therapeutic efficacy of anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Rutênio/química
5.
Chem Res Toxicol ; 34(7): 1800-1813, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34189909

RESUMO

Erdafitinib (ERD) is a first-in-class pan inhibitor of fibroblast growth factor receptor 1-4 that has garnered global regulatory approval for the treatment of advanced or metastatic urothelial carcinoma. Although it has been previously reported that ERD elicits time-dependent inhibition (TDI) of cytochrome P450 (P450) 3A4 (CYP3A4), the exact biochemical nature underpinning this observation remains obfuscated. Moreover, it is also uninterrogated if CYP3A5-its highly homologous counterpart-could be susceptible to such interactions. Mechanism-based inactivation (MBI) of P450 is a unique subset of TDI that hinges on prior bioactivation of the drug to a reactive intermediate and possesses profound clinical and toxicological implications due to its irreversible nature. Here, we investigated and confirmed that ERD inactivated both CYP3A isoforms in a time-, concentration-, and NADPH-dependent manner with KI, kinact, and partition ratio of 4.01 and 10.04 µM, 0.120 and 0.045 min-1, and 32 and 55 for both CYP3A4 and CYP3A5, respectively, when rivaroxaban was employed as the probe substrate. Co-incubation with an alternative substrate or direct inhibitor of CYP3A attenuated the rate of inactivation, whereas the addition of glutathione or catalase did not induce such protection. The lack of enzyme activity recovery following dialysis for 4 h and oxidation with potassium ferricyanide combined with the lack of a Soret peak in spectral scans collectively substantiated that ERD is an irreversible covalent MBI of CYP3A. Finally, glutathione trapping and high-resolution mass spectrometry experiments illuminated a plausible bioactivation mechanism of ERD by CYP3A arising from metabolic epoxidation of its quinoxaline ring.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Pirazóis/farmacologia , Quinoxalinas/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/química , Humanos , NADP/metabolismo , Pirazóis/química , Quinoxalinas/química
6.
Phytomedicine ; 81: 153416, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33321412

RESUMO

BACKGROUND: Bulbine natalensis is an African-folk medicinal plant used as a dietary supplement for enhancing sexual function and muscle strength in males by presumably boosting testosterone levels, but no scientific information is available about the possible herb-drug interaction (HDI) risk when bulbine-containing supplements are concomitantly taken with prescription drugs. PURPOSE: This study was aimed to investigate the HDI potential of B. natalensis in terms of the pregnane X receptor (PXR)-mediated induction of major drug-metabolizing cytochrome P450 enzyme isoforms (i.e., CYP3A4 and CYP2C9) as well as inhibition of their catalytic activity. RESULTS: We found that a methanolic extract of B. natalensis activated PXR (EC50 6.2 ± 0.6 µg/ml) in HepG2 cells resulting in increased mRNA expression of CYP3A4 (2.40 ± 0.01 fold) and CYP2C9 (3.37 ± 0.3 fold) at 30 µg/ml which was reflected in increased activites of the two enzymes. Among the constituents of B. natalensis, knipholone was the most potent PXR activator (EC50 0.3 ± 0.1 µM) followed by bulbine-knipholone (EC50 2.0 ± 0.5 µM), and 6'-methylknipholone (EC50 4.0 ± 0.5 µM). Knipholone was also the most effective in increasing the expression of CYP3A4 (8.47 ± 2.5 fold) and CYP2C9 (2.64 ± 0.3 fold) at 10 µM. Docking studies further confirmed the unique structural features associated with knipholones for their superior inductive potentials in the activation of PXR compared to other anthraquinones. In a CYP inhibition assay, the methanolic extract as well as the anthraquinones strongly inhibited the catalytic activity of CYP2C9 while, inhibition of CYP3A4 was weak. CONCLUSIONS: These results suggest that consumption of B. natalensis may pose a potential risk for HDI if taken with conventional medications that are substrates of CYP3A4 and CYP2C9 and may contribute to unanticipated adverse reactions or therapeutic failures. Further studies are warranted to validate these findings and establish their clinical relevancy.


Assuntos
Asphodelaceae/química , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Suplementos Nutricionais , Interações Ervas-Drogas , Inibidores do Citocromo P-450 CYP2C9/química , Inibidores do Citocromo P-450 CYP2C9/farmacologia , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacologia , Suplementos Nutricionais/efeitos adversos , Células Hep G2 , Humanos , Masculino , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Receptor de Pregnano X/química , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo
7.
J Med Chem ; 63(13): 7211-7225, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32490678

RESUMO

The recent Ebola epidemics in West Africa underscore the great need for effective and practical therapies for future Ebola virus outbreaks. We have discovered a new series of remarkably potent small molecule inhibitors of Ebola virus entry. These 4-(aminomethyl)benzamide-based inhibitors are also effective against Marburg virus. Synthetic routes to these compounds allowed for the preparation of a wide variety of structures, including a conformationally restrained subset of indolines (compounds 41-50). Compounds 20, 23, 32, 33, and 35 are superior inhibitors of Ebola (Mayinga) and Marburg (Angola) infectious viruses. Representative compounds (20, 32, and 35) have shown good metabolic stability in plasma and liver microsomes (rat and human), and 32 did not inhibit CYP3A4 nor CYP2C9. These 4-(aminomethyl)benzamides are suitable for further optimization as inhibitors of filovirus entry, with the potential to be developed as therapeutic agents for the treatment and control of Ebola virus infections.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Doença pelo Vírus Ebola/virologia , Doença do Vírus de Marburg/virologia , Internalização do Vírus/efeitos dos fármacos , Células A549 , Animais , Antivirais/química , Benzamidas/química , Chlorocebus aethiops , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Toremifeno/química , Toremifeno/metabolismo , Toremifeno/farmacologia , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
8.
CPT Pharmacometrics Syst Pharmacol ; 9(6): 332-341, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32383787

RESUMO

Fenebrutinib is a CYP3A substrate and time-dependent inhibitor, as well as a BCRP and OATP1B transporter inhibitor in vitro. Physiologically-based pharmacokinetic (PBPK) modeling strategies with the ultimate goal of understanding complex drug-drug interactions (DDIs) and proposing doses for untested scenarios were developed. The consistency in the results of two independent approaches, PBPK simulation and endogenous biomarker measurement, supported that the observed transporter DDI is primarily due to fenebrutinib inhibition of intestinal BCRP, rather than hepatic OATP1B. A mechanistic-absorption model accounting for the effects of excipient complexation with fenebrutinib was used to rationalize the unexpected observation of itraconazole-fenebrutinib DDI (maximum plasma concentration (Cmax ) decreased, and area under the curve (AUC) increased). The totality of the evidence from sensitivity analysis and clinical and nonclinical data suggested that fenebrutinib is likely a sensitive CYP3A substrate. This advanced PBPK application allowed the use of model-informed approach to facilitate the development of concomitant medication recommendations for fenebrutinib without requiring additional clinical DDI studies.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Intestinos/efeitos dos fármacos , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Fígado/efeitos dos fármacos , Modelos Biológicos , Proteínas de Neoplasias/antagonistas & inibidores , Piperazinas/farmacocinética , Piridonas/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Biotransformação , Ensaios Clínicos Fase I como Assunto , Simulação por Computador , Inibidores do Citocromo P-450 CYP3A/efeitos adversos , Inibidores do Citocromo P-450 CYP3A/química , Cães , Composição de Medicamentos , Desenvolvimento de Medicamentos , Interações Medicamentosas , Excipientes/química , Humanos , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Neoplasias/metabolismo , Piperazinas/efeitos adversos , Piperazinas/química , Piridonas/efeitos adversos , Piridonas/química , Estudos Retrospectivos
9.
Drug Metab Dispos ; 48(6): 508-514, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193357

RESUMO

Experiments designed to identify the mechanism of cytochrome P450 inactivation are critical to drug discovery. Small molecules irreversibly inhibit P450 enzymatic activity via two primary mechanisms: apoprotein adduct formation or heme modification. Understanding the interplay between chemical structures of reactive electrophiles and the impact on CYP3A4 structure and function can ultimately provide insights into drug design to minimize P450 inactivation. In a previous study, raloxifene and N-(1-pyrene) iodoacetamide (PIA) alkylated CYP3A4 in vitro; however, only raloxifene influenced enzyme activity. Here, two alkylating agents with cysteine selectivity, PIA and pyrene maleimide (PM), were used to investigate this apparent compound-dependent disconnect between CYP3A4 protein alkylation and activity loss. The compound's effect on 1) enzymatic activity, 2) carbon monoxide (CO) binding capacity, 3) intact heme content, and 4) protein conformation were measured. Results showed that PM had a large time-dependent loss of enzyme activity, whereas PIA did not. The differential effect on enzymatic activity between PM and PIA was mirrored in the CO binding data. Despite disruption of CO binding, neither compound affected the heme concentrations, inferring there was no destruction or alkylation of the heme. Lastly, differential scanning fluorescence showed PM-treated CYP3A4 caused a shift in the onset temperature required to induce protein aggregation, which was not observed for CYP3A4 treated with PIA. In conclusion, alkylation of CYP3A4 apoprotein can have a variable impact on catalytic activity, CO binding, and protein conformation that may be compound-dependent. These results highlight the need for careful interpretation of experimental results aimed at characterizing the nature of P450 enzyme inactivation. SIGNIFICANCE STATEMENT: Understanding the mechanism of CYP3A4 time-dependent inhibition is critical to drug discovery. In this study, we use two cysteine-targeting electrophiles to probe how subtle variation in inhibitor structure may impact the mechanism of CYP3A4 time-dependent inhibition and confound interpretation of traditional diagnostic experiments. Ultimately, this simplified system was used to reveal insights into CYP3A4 biochemical behavior. The insights may have implications that aid in understanding the susceptibility of CYP enzymes to the effects of electrophilic intermediates generated via bioactivation.


Assuntos
Apoproteínas/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Alquilação/efeitos dos fármacos , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Monóxido de Carbono/metabolismo , Cisteína/química , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/química , Ensaios Enzimáticos , Iodoacetamida/análogos & derivados , Iodoacetamida/química , Iodoacetamida/farmacologia , Maleimidas/química , Maleimidas/farmacologia , Oxirredução/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo
10.
J Med Chem ; 63(3): 1415-1433, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31965799

RESUMO

The human cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A5 metabolize most drugs and have high similarities in their structure and substrate preference. Whereas CYP3A4 is predominantly expressed in the liver, CYP3A5 is upregulated in cancer, contributing to drug resistance. Selective inhibitors of CYP3A5 are, therefore, critical to validating it as a therapeutic target. Here we report clobetasol propionate (clobetasol) as a potent and selective CYP3A5 inhibitor identified by high-throughput screening using enzymatic and cell-based assays. Molecular dynamics simulations suggest a close proximity of clobetasol to the heme in CYP3A5 but not in CYP3A4. UV-visible spectroscopy and electron paramagnetic resonance analyses confirmed the formation of an inhibitory type I heme-clobetasol complex in CYP3A5 but not in CYP3A4, thus explaining the CYP3A5 selectivity of clobetasol. Our results provide a structural basis for selective CYP3A5 inhibition, along with mechanistic insights, and highlight clobetasol as an important chemical tool for target validation.


Assuntos
Clobetasol/metabolismo , Clobetasol/farmacologia , Inibidores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Heme/metabolismo , Linhagem Celular Tumoral , Clobetasol/química , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/química , Ensaios Enzimáticos , Heme/química , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
11.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941150

RESUMO

Bergamottin (BM, 1), a component of grapefruit juice, acts as an inhibitor of some isoforms of the cytochrome P450 (CYP) enzyme, particularly CYP3A4. Herein, a new bergamottin containing a nitroxide moiety (SL-bergamottin, SL-BM, 10) was synthesized; chemically characterized, evaluated as a potential inhibitor of the CYP2C19, CYP3A4, and CYP2C9 enzymes; and compared to BM and known inhibitors such as ketoconazole (KET) (3A4), warfarin (WAR) (2C9), and ticlopidine (TIC) (2C19). The antitumor activity of the new SL-bergamottin was also investigated. Among the compounds studied, BM showed the strongest inhibition of the CYP2C9 and 2C19 enzymes. SL-BM is a more potent inhibitor of CYP3A4 than the parent compound; this finding was also supported by docking studies, suggesting that the binding positions of BM and SL-BM to the active site of CYP3A4 are very similar, but that SL-BM had a better ∆Gbind value than that of BM. The nitroxide moiety markedly increased the antitumor activity of BM toward HeLa cells and marginally increased its toxicity toward a normal cell line. In conclusion, modification of the geranyl sidechain of BM can result in new CYP3A4 enzyme inhibitors with strong antitumor effects.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A/metabolismo , Furocumarinas , Marcadores de Spin/síntese química , Animais , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacologia , Furocumarinas/química , Furocumarinas/farmacologia , Células HeLa , Humanos , Camundongos , Células NIH 3T3
12.
Mini Rev Med Chem ; 19(3): 250-269, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28847268

RESUMO

OBJECTIVE: Inhibition of dipeptidyl peptidase IV (DPP-4) is currently one of the most valuable and potential chemotherapeutic regimes for the medication of Type 2 Diabetes Mellitus (T2DM). METHOD: Based on linagliptin, this study discusses the design, synthesis and biological evaluation of spiro cyclohexane-1,2'-quinazoline scaffold hybridized with various heterocyclic ring systems through different atomic spacers as a highly potent DPP-4 inhibitors. DPP-4 enzyme assay represented that most of the target compounds are 102-103 folds more active than the reference drug linagliptin (IC50: 0.0005-0.0089 nM vs 0.77 nM; respectively). Moreover, in vivo oral hypoglycemic activity assay revealed that most of the tested candidates were more potent than the reference drug, sitagliptin, producing rapid onset with long duration of activity that extends to 24 h. Interestingly, the derivatives 11, 16, 18a and 23 showed evidence of mild cytochrome P450 3A4 (CYP3A4) inhibition (IC50; > 210 µM) and their acute toxicity (LD50) was more than 1.9 gm/kg. Molecular simulation study of the new quinazoline derivatives explained the obtained biological results. CONCLUSION: Finally, we conclude that our target compounds could be highly beneficial for diabetic patients in the clinic.


Assuntos
Cicloexanos/química , Dipeptidil Peptidase 4/metabolismo , Desenho de Fármacos , Quinazolinas/síntese química , Quinazolinas/farmacologia , Compostos de Espiro/química , Animais , Técnicas de Química Sintética , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/síntese química , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Dose Letal Mediana , Simulação de Acoplamento Molecular , Conformação Proteica , Quinazolinas/química , Quinazolinas/metabolismo , Ratos , Relação Estrutura-Atividade
13.
J Med Chem ; 61(24): 11158-11168, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30481027

RESUMO

Itraconazole has been found to possess potent antiangiogenic activity, exhibiting promising antitumor activity in several human clinical studies. The wider use of itraconazole in the treatment of cancer, however, has been limited by its potent inhibition of the drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4). In an effort to eliminate the CYP3A4 inhibition while retaining its antiangiogenic activity, we designed and synthesized a series of derivatives in which the 1,2,4-triazole ring is replaced with various azoles and nonazoles. Among these analogues, 15n with tetrazole in place of 1,2,4-triazole exhibited optimal inhibition of human umbilical vein endothelial cell proliferation with an IC50 of 73 nM without a significant effect on CYP3A4 (EC50 > 20 µM). Similar to itraconazole, 15n induced Niemann-Pick C phenotype (NPC phenotype) and blocked AMPK/mechanistic target of rapamycin signaling. These results suggest that 15n is a promising angiogenesis inhibitor that can be used in combination with most other known anticancer drugs.


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Itraconazol/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP3A/química , Avaliação Pré-Clínica de Medicamentos/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tetrazóis/química
14.
Molecules ; 23(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486389

RESUMO

Pharmacophore modeling is a widely used strategy for finding new hit molecules. Since not all protein targets have available 3D structures, ligand-based approaches are still useful. Currently, there are just a few free ligand-based pharmacophore modeling tools, and these have a lot of restrictions, e.g., using a template molecule for alignment. We developed a new approach to 3D pharmacophore representation and matching which does not require pharmacophore alignment. This representation can be used to quickly find identical pharmacophores in a given set. Based on this representation, a 3D pharmacophore ligand-based modeling approach to search for pharmacophores which preferably match active compounds and do not match inactive ones was developed. The approach searches for 3D pharmacophore models starting from 2D structures of available active and inactive compounds. The implemented approach was successfully applied for several retrospective studies. The results were compared to a 2D similarity search, demonstrating some of the advantages of the developed 3D pharmacophore models. Also, the generated 3D pharmacophore models were able to match the 3D poses of known ligands from their protein-ligand complexes, confirming the validity of the models. The developed approach is available as an open-source software tool: http://www.qsar4u.com/pages/pmapper.php and https://github.com/meddwl/psearch.


Assuntos
Antagonistas do Receptor A2 de Adenosina/química , Inibidores da Colinesterase/química , Inibidores do Citocromo P-450 CYP3A/química , Modelos Moleculares , Ligantes
15.
Curr Pharm Des ; 24(24): 2765-2773, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30156148

RESUMO

Tacrolimus is used initially as an immunosuppressant drug in solid organ transplant population. This calcineurin inhibitor has also been recommended by KDIGO Clinical Practice Guideline for Glomerulonephritis for the treatment of nephrotic syndrome in children and adults. Tacrolimus is characterized by a narrow therapeutic index and large pharmacokinetic (PK) variations. Therefore, routine Therapeutic Drug Monitoring (TDM) is critical to keep tacrolimus blood levels within the therapeutic range. Tacrolimus is mainly metabolized by cytochrome P450 (CYP) enzymes 3A5 and 3A4. Actually, for pediatric patients, they are totally different to adults. Profound changes in CYP3A expression and activity occur throughout fetal life and in the neonatal and childhood periods thereby influencing their catalytic function. CYP3A7, CYP3A5, and CYP3A4 display an age-dependent maturation pattern. Notably, the CYP3A7-CYP3A4 switch taking place during the very early life will affect tacrolimus metabolism. Meanwhile, CYP3A isoforms are polymorphic enzymes, especially for CYP3A5. The guideline has recommended that the tacrolimus dosage should be adjusted according to the CYP3A5 genotype. Additionally, genetic CYP3A4 variation (e.g., CYP3A4*22) is also associated with interindividual variability of exposure level to tacrolimus. However, age (ontogeny) sometimes trumps genetics (genotype) in determining the enzymatic functions (phenotype) in pediatric patients. It's important to discriminate at what age the ontogeny plays key roles and at what age genetic variation become a major determinant. Thus, we need to better understand the mechanisms driving the CYP3A maturation and integrate ontogeny and genetics into the tacrolimus disposition, thereby tailoring the dosage individually for pediatric NS patients at different developmental stages.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Imunossupressores/farmacologia , Neoplasias Renais/tratamento farmacológico , Síndrome Nefrótica/tratamento farmacológico , Tacrolimo/farmacologia , Citocromo P-450 CYP3A/genética , Inibidores do Citocromo P-450 CYP3A/química , Humanos , Imunossupressores/química , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Tacrolimo/química
16.
Bioorg Med Chem Lett ; 28(18): 3046-3049, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30115511

RESUMO

This work describes the rational amelioration of mechanism-based inactivation (MBI) of Cytochrome P450 (CYP) 3A4 in a human hematopoietic prostaglandin D synthase (hH-PGDS) inhibitor (cpd 1). We utilized metabolism reports in order to check if patterns in the metabolism of 1 and similar compounds by CYP3A4 could be deciphered. Then we used structure based design, first modifying the CYP3A4 crystal structure (pdb code: 4NY4) by adding an oxyferryl moiety to the heme, followed by validating the modified structure to obtain the 1' and 4 position oxidation products of midazolam and then recapitulating the metabolism patterns deciphered previously for 1 and analogs. We checked if the pattern deciphered could lead to a putative reactive moiety. Finally we used the docking pose of 1 into this model of the modified CYP3A4 crystal structure to guide transformation of 1 into MBI-free H-PGDS inhibitors.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Indóis/farmacologia , Sulfonamidas/farmacologia , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/química , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
17.
Eur J Med Chem ; 151: 723-739, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29665526

RESUMO

The current work presents the synthesis and biological evaluation of new series of coumarin hydrazide-hydrazone derivatives that showed in vitro broad spectrum antitumor activities against resistant pancreatic carcinoma (Panc-1), hepatocellular carcinoma (HepG2) and leukemia (CCRF) cell lines using doxorubicin as reference standard. Bromocoumarin hydrazide-hydrazone derivative (BCHHD) 11b showed excellent anticancer activity against all tested cancer cell lines. Enzyme assays showed that BCHHD 11b induced apoptosis due to activation of caspases 3/7. Moreover, 11b inhibited GST and CYP3A4 in a dose dependent manner and the induced cell death could be attributed to metabolic inhibition. Moreover, 11b microarray analysis showed significant up- and down-regulation of many genes in the treated cells related to apoptosis, cell cycle, tumor growth and suppressor genes. All of the above presents BCHHD 11b as a potent anticancer agent able to overcome drug resistance. In addition, compound 11b was able to serve as a chemical carrier for 99mTc and the in vivo biodistribution study of 99mTc-11b complex revealed a remarkable targeting ability of 99mTc into solid tumor showing that 99mTc-11b might be used as a promising radiopharmaceutical imaging agent for cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cumarínicos/química , Cumarínicos/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Halogenação , Humanos , Hidrazonas/síntese química , Hidrazonas/farmacocinética , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Distribuição Tecidual
18.
Mol Pharm ; 15(3): 705-720, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-28853901

RESUMO

In this study, we catalog structure activity relationships (SAR) of several short chain fatty acid (SCFA)-modified hexosamine analogues used in metabolic glycoengineering (MGE) by comparing in silico and experimental measurements of physiochemical properties important in drug design. We then describe the impact of these compounds on selected biological parameters that influence the pharmacological properties and safety of drug candidates by monitoring P-glycoprotein (Pgp) efflux, inhibition of cytochrome P450 3A4 (CYP3A4), hERG channel inhibition, and cardiomyocyte cytotoxicity. These parameters are influenced by length of the SCFAs (e.g., acetate vs n-butyrate), which are added to MGE analogues to increase the efficiency of cellular uptake, the regioisomeric arrangement of the SCFAs on the core sugar, the structure of the core sugar itself, and by the type of N-acyl modification (e.g., N-acetyl vs N-azido). By cataloging the influence of these SAR on pharmacological properties of MGE analogues, this study outlines design considerations for tuning the pharmacological, physiochemical, and the toxicological parameters of this emerging class of small molecule drug candidates.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Desenho de Fármacos , Ácidos Graxos Voláteis/farmacologia , Hexosaminas/farmacologia , Engenharia Metabólica/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/química , Avaliação Pré-Clínica de Medicamentos , Ácidos Graxos Voláteis/química , Hexosaminas/química , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Cultura Primária de Células , Ratos , Relação Estrutura-Atividade , Testes de Toxicidade/métodos , Regulador Transcricional ERG/antagonistas & inibidores
19.
Molecules ; 22(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099769

RESUMO

Amlodipine (AML) is available as a racemate, i.e., a mixture of R- and S-enantiomers. Its inhibitory potency towards nine cytochromes P450 (CYP) was studied to evaluate the drug-drug interactions between the enantiomers. Enzyme inhibition was evaluated using specific CYP substrates in human liver microsomes. With CYP3A, both enantiomers exhibited reversible and time-dependent inhibition. S-AML was a stronger reversible inhibitor of midazolam hydroxylation: the Ki values of S- and R-AML were 8.95 µM, 14.85 µM, respectively. Computational docking confirmed that the enantiomers interact differently with CYP3A: the binding free energy of S-AML in the active site was greater than that for R-AML (-7.6- vs. -6.7 kcal/mol). Conversely, R-AML exhibited more potent time-dependent inhibition of CYP3A activity (KI 8.22 µM, Kinact 0.065 min-1) than S-AML (KI 14.06 µM, Kinact 0.041 min-1). R-AML was also a significantly more potent inhibitor of CYP2C9 (Ki 12.11 µM/S-AML 21.45 µM) and CYP2C19 (Ki 5.97 µM/S-AML 7.22 µM. In conclusion, results indicate that clinical use of S-AML has an advantage not only because of greater pharmacological effect, but also because of fewer side effects and drug-drug interactions with cytochrome P450 substrates due to absence of R-AML.


Assuntos
Anlodipino/química , Anlodipino/farmacologia , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sítios de Ligação , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Humanos , Hidroxilação , Cinética , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Termodinâmica
20.
Pharm Res ; 34(12): 2842-2861, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28956218

RESUMO

PURPOSE: The aim of this research was to study the interplay of solid and solution state phase transformations during the dissolution of ritonavir (RTV) amorphous solid dispersions (ASDs). METHODS: RTV ASDs with polyvinylpyrrolidone (PVP), polyvinylpyrrolidone vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared at 10-50% drug loading by solvent evaporation. The miscibility of RTV ASDs was studied before and after exposure to 97% relative humidity (RH). Non-sink dissolution studies were performed on fresh and moisture-exposed ASDs. RTV and polymer release were monitored using ultraviolet-visible spectroscopy. Techniques including fluorescence spectroscopy, confocal imaging, scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and nanoparticle tracking analysis (NTA) were utilized to monitor solid and the solution state phase transformations. RESULTS: All RTV-PVP and RTV-PVPVA ASDs underwent moisture-induced amorphous-amorphous phase separation (AAPS) on high RH storage whereas RTV-HPMCAS ASDs remained miscible. Non-sink dissolution of PVP- and PVPVA-based ASDs at low drug loadings led to rapid RTV and polymer release resulting in concentrations in excess of amorphous solubility, liquid-liquid phase separation (LLPS) and amorphous nanodroplet formation. High drug loading PVP- and PVPVA-based ASDs did not exhibit LLPS upon dissolution as a consequence of extensive AAPS in the hydrated ASD matrix. All RTV-HPMCAS ASDs led to LLPS upon dissolution. CONCLUSIONS: RTV ASD dissolution is governed by a competition between the dissolution rate and the rate of phase separation in the hydrated ASD matrix. LLPS was observed for ASDs where the drug release was polymer controlled and only ASDs that remained miscible during the initial phase of dissolution led to LLPS. Techniques such as fluorescence spectroscopy, confocal imaging and SEM were useful in understanding the phase behavior of ASDs upon hydration and dissolution and were helpful in elucidating the mechanism of generation of amorphous nanodroplets.


Assuntos
Inibidores do Citocromo P-450 CYP3A/química , Excipientes/química , Inibidores da Protease de HIV/química , Ritonavir/química , Cristalização , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Inibidores da Protease de HIV/administração & dosagem , Umidade , Metilcelulose/análogos & derivados , Metilcelulose/química , Transição de Fase , Povidona/química , Ritonavir/administração & dosagem , Solubilidade , Compostos de Vinila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA