Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000531

RESUMO

Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients' A>I(G) RNA-editing profiles.


Assuntos
Adenosina Desaminase , Neoplasias da Mama , Edição de RNA , Proteínas de Ligação a RNA , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Feminino , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Inosina/metabolismo , Inosina/genética , Animais , Guanosina/metabolismo , Dano ao DNA
2.
Cell Biol Toxicol ; 40(1): 57, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39060787

RESUMO

It is well established that sevoflurane exposure leads to widespread neuronal cell death in the developing brain. Adenosine deaminase acting on RNA-1 (ADAR1) dependent adenosine-to-inosine (A-to-I) RNA editing is dynamically regulated throughout brain development. The current investigation is designed to interrogate the contributed role of ADAR1 in developmental sevoflurane neurotoxicity. Herein, we provide evidence to show that developmental sevoflurane priming triggers neuronal pyroptosis, apoptosis and necroptosis (PANoptosis), and elicits the release of inflammatory factors including IL-1ß, IL-18, TNF-α and IFN-γ. Additionally, ADAR1-P150, but not ADAR1-P110, depresses cellular PANoptosis and inflammatory response by competing with Z-DNA/RNA binding protein 1 (ZBP1) for binding to Z-RNA in the presence of sevoflurane. Further investigation demonstrates that ADAR1-dependent A-to-I RNA editing mitigates developmental sevoflurane-induced neuronal PANoptosis. To restore RNA editing, we utilize adeno-associated virus (AAV) to deliver engineered circular ADAR-recruiting guide RNAs (cadRNAs) into cells, which is capable of recruiting endogenous adenosine deaminases to promote cellular A-to-I RNA editing. As anticipated, AAV-cadRNAs diminishes sevoflurane-induced cellular Z-RNA production and PANoptosis, which could be abolished by ADAR1-P150 shRNA transfection. Moreover, AAV-cadRNAs delivery ameliorates developmental sevoflurane-induced spatial and emotional cognitive deficits without influence on locomotor activity. Taken together, these results illustrate that ADAR1-P150 exhibits a prominent role in preventing ZBP1-dependent PANoptosis through A-to-I RNA editing in developmental sevoflurane neurotoxicity. Application of engineered cadRNAs to rectify the compromised ADAR1-dependent A-to-I RNA editing provides an inspiring direction for possible clinical preventions and therapeutics.


Assuntos
Adenosina Desaminase , Adenosina , Edição de RNA , Proteínas de Ligação a RNA , Sevoflurano , Animais , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Apoptose/efeitos dos fármacos , Inosina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Piroptose/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
3.
Genes (Basel) ; 15(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062677

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing is an important post-transcriptional modification mediated by the adenosine deaminases acting on RNA (ADAR) family of enzymes, expanding the transcriptome by altering selected nucleotides A to I in RNA molecules. Recently, A-to-I editing has been explored for correcting disease-causing mutations in RNA using therapeutic guide oligonucleotides to direct ADAR editing at specific sites. Humans have two active ADARs whose preferences and specificities are not well understood. To investigate their substrate specificity, we introduced hADAR1 and hADAR2, respectively, into Schizosaccharomyces pombe (S. pombe), which lacks endogenous ADARs, and evaluated their editing activities in vivo. Using transcriptome sequencing of S. pombe cultured at optimal growth temperature (30 °C), we identified 483 A-to-I high-confident editing sites for hADAR1 and 404 for hADAR2, compared with the non-editing wild-type control strain. However, these sites were mostly divergent between hADAR1 and hADAR2-expressing strains, sharing 33 common sites that are less than 9% for each strain. Their differential specificity for substrates was attributed to their differential preference for neighboring sequences of editing sites. We found that at the -3-position relative to the editing site, hADAR1 exhibits a tendency toward T, whereas hADAR2 leans toward A. Additionally, when varying the growth temperature for hADAR1- and hADAR2-expressing strains, we observed increased editing sites for them at both 20 and 35 °C, compared with them growing at 30 °C. However, we did not observe a significant shift in hADAR1 and hADAR2's preference for neighboring sequences across three temperatures. The vast changes in RNA editing sites at lower and higher temperatures were also observed for hADAR2 previously in budding yeast, which was likely due to the influence of RNA folding at these different temperatures, among many other factors. We noticed examples of longer lengths of dsRNA around the editing sites that induced editing at 20 or 35 °C but were absent at the other two temperature conditions. We found genes' functions can be greatly affected by editing of their transcripts, for which over 50% of RNA editing sites for both hADAR1 and hADAR2 in S. pombe were in coding sequences (CDS), with more than 60% of them resulting in amino acid changes in protein products. This study revealed the extensive differences in substrate selectivity between the two active human ADARS, i.e., ADAR1 and ADAR2, and provided novel insight when utilizing the two different enzymes for in vivo treatment of human genetic diseases using the RNA editing approach.


Assuntos
Adenosina Desaminase , Edição de RNA , Proteínas de Ligação a RNA , Schizosaccharomyces , Schizosaccharomyces/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Humanos , Especificidade por Substrato , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Adenosina/metabolismo , Adenosina/genética , Inosina/genética , Inosina/metabolismo
4.
Bioorg Med Chem ; 110: 117837, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39013280

RESUMO

RNA molecules contain diverse modified nucleobases that play pivotal roles in numerous biological processes. Adenosine-to-inosine (A-to-I) RNA editing, one of the most prevalent RNA modifications in mammalian cells, is linked to a multitude of human diseases. To unveil the functions of A-to-I RNA editing, accurate quantification of inosine at specific sites is essential. In this study, we developed an endonuclease-mediated cleavage and real-time fluorescence quantitative PCR method for A-to-I RNA editing (EM-qPCR) to quantitatively analyze A-to-I RNA editing at a single site. By employing this method, we successfully quantified the levels of A-to-I RNA editing on various transfer RNA (tRNA) molecules at position 34 (I34) in mammalian cells with precision. Subsequently, this method was applied to tissues from sleep-deprived mice, revealing a notable alteration in the levels of I34 between sleep-deprived and control mice. The proposed method sets a precedent for the quantitative analysis of A-to-I RNA editing at specific sites, facilitating a deeper understanding of the biological implications of A-to-I RNA editing.


Assuntos
Adenosina , Inosina , Edição de RNA , Inosina/metabolismo , Inosina/química , Adenosina/metabolismo , Adenosina/química , Adenosina/análise , Animais , Camundongos , Humanos , Endonucleases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
5.
Genes (Basel) ; 15(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39062643

RESUMO

Cancer is a complex and heterogeneous disease, in which a number of genetic and epigenetic changes occur in tumor onset and progression. Recent studies indicate that changes at the RNA level are also involved in tumorigenesis, such as adenosine-to-inosine (A-to-I) RNA editing. Here, we systematically investigate transcriptome-wide A-to-I editing events in a large number of samples from Non-Hodgkin lymphomas (NHLs). Using a computational pipeline that determines significant differences in editing level between NHL and normal samples at known A-to-I editing sites, we identify a number of differentially edited editing sites between NHL subtypes and normal samples. Most of the differentially edited sites are located in non-coding regions, and many such sites show a strong correlation between gene expression level and editing efficiency, indicating that RNA editing might have direct consequences for the cancer cell's aberrant gene regulation status in these cases. Moreover, we establish a strong link between RNA editing and NHL by demonstrating that NHL and normal samples and even NHL subtypes can be distinguished based on genome-wide RNA editing profiles alone. Our study establishes a strong link between RNA editing, cancer and aberrant gene regulation in NHL.


Assuntos
Linfoma não Hodgkin , Edição de RNA , Linfoma não Hodgkin/genética , Adenosina/genética , Inosina/genética , Análise de Sequência de RNA , Expressão Gênica , Perfilação da Expressão Gênica , Família Multigênica
6.
Genome Biol ; 25(1): 173, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956576

RESUMO

BACKGROUND: RNA-seq has brought forth significant discoveries regarding aberrations in RNA processing, implicating these RNA variants in a variety of diseases. Aberrant splicing and single nucleotide variants (SNVs) in RNA have been demonstrated to alter transcript stability, localization, and function. In particular, the upregulation of ADAR, an enzyme that mediates adenosine-to-inosine editing, has been previously linked to an increase in the invasiveness of lung adenocarcinoma cells and associated with splicing regulation. Despite the functional importance of studying splicing and SNVs, the use of short-read RNA-seq has limited the community's ability to interrogate both forms of RNA variation simultaneously. RESULTS: We employ long-read sequencing technology to obtain full-length transcript sequences, elucidating cis-effects of variants on splicing changes at a single molecule level. We develop a computational workflow that augments FLAIR, a tool that calls isoform models expressed in long-read data, to integrate RNA variant calls with the associated isoforms that bear them. We generate nanopore data with high sequence accuracy from H1975 lung adenocarcinoma cells with and without knockdown of ADAR. We apply our workflow to identify key inosine isoform associations to help clarify the prominence of ADAR in tumorigenesis. CONCLUSIONS: Ultimately, we find that a long-read approach provides valuable insight toward characterizing the relationship between RNA variants and splicing patterns.


Assuntos
Haplótipos , Humanos , Linhagem Celular Tumoral , Polimorfismo de Nucleotídeo Único , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias Pulmonares/genética , Splicing de RNA , Inosina/metabolismo , Inosina/genética , Análise de Sequência de RNA , Adenocarcinoma de Pulmão/genética , Edição de RNA , Software
7.
J Mol Evol ; 92(4): 488-504, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39012510

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing recodes the genetic information. Apart from diversifying the proteome, another tempting advantage of RNA recoding is to correct deleterious DNA mutation and restore ancestral allele. Solid evidences for beneficial restorative editing are very rare in animals. By searching for "convergent recoding" under a phylogenetic context, we proposed this term for judging the potential restorative functions of particular editing site. For the well-known mammalian Gln>Arg (Q>R) recoding site, its ancestral state in vertebrate genomes was the pre-editing Gln, and all 470 available mammalian genomes strictly avoid other three equivalent ways to achieve Arg in protein. The absence of convergent recoding from His>Arg, or synonymous mutations on Gln codons, could be attributed to the strong maintenance on editing motif and structure, but the absence of direct A-to-G mutation is extremely unexpected. With similar ideas, we found cases of convergent recoding in Drosophila genus, reducing the possibility of their restorative function. In summary, we defined an interesting scenario of convergent recoding, the occurrence of which could be used as preliminary judgements for whether a recoding site has a sole restorative role. Our work provides novel insights to the natural selection and evolution of RNA editing.


Assuntos
Adenosina , Códon , Evolução Molecular , Inosina , Filogenia , Edição de RNA , Edição de RNA/genética , Animais , Inosina/genética , Adenosina/genética , Adenosina/metabolismo , Códon/genética , Seleção Genética , Humanos , Drosophila/genética
8.
PLoS Pathog ; 20(6): e1012238, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843141

RESUMO

Although lack of ADAR (adenosine deaminase acting on RNA) orthologs, genome-wide A-to-I editing occurs specifically during sexual reproduction in a number of filamentous ascomycetes, including Fusarium graminearum and Neurospora crassa. Unlike ADAR-mediated editing in animals, fungal A-to-I editing has a strong preference for hairpin loops and U at -1 position, which leads to frequent editing of UAG and UAA stop codons. Majority of RNA editing events in fungi are in the coding region and cause amino acid changes. Some of these editing events have been experimentally characterized for providing heterozygote and adaptive advantages in F. graminearum. Recent studies showed that FgTad2 and FgTad3, 2 ADAT (adenosine deaminase acting on tRNA) enzymes that normally catalyze the editing of A34 in the anticodon of tRNA during vegetative growth mediate A-to-I mRNA editing during sexual reproduction. Stage specificity of RNA editing is conferred by stage-specific expression of short transcript isoforms of FgTAD2 and FgTAD3 as well as cofactors such as AME1 and FIP5 that facilitate the editing of mRNA in perithecia. Taken together, fungal A-to-I RNA editing during sexual reproduction is catalyzed by ADATs and it has the same sequence and structural preferences with editing of A34 in tRNA.


Assuntos
Adenosina Desaminase , Edição de RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , Adenosina/metabolismo , Adenosina/genética , Inosina/metabolismo , Inosina/genética , Fusarium/genética , Neurospora crassa/genética
9.
Fly (Austin) ; 18(1): 2367359, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38889318

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing recodes the genome and confers flexibility for the organisms to adapt to the environment. It is believed that RNA recoding sites are well suited for facilitating adaptive evolution by increasing the proteomic diversity in a temporal-spatial manner. The function and essentiality of a few conserved recoding sites are recognized. However, the experimentally discovered functional sites only make up a small corner of the total sites, and there is still the need to expand the repertoire of such functional sites with bioinformatic approaches. In this study, we define a new category of RNA editing sites termed 'conserved editing with non-conserved recoding' and systematically identify such sites in Drosophila editomes, figuring out their selection pressure and signals of adaptation at inter-species and intra-species levels. Surprisingly, conserved editing sites with non-conserved recoding are not suppressed and are even slightly overrepresented in Drosophila. DNA mutations leading to such cases are also favoured during evolution, suggesting that the function of those recoding events in different species might be diverged, specialized, and maintained. Finally, structural prediction suggests that such recoding in potassium channel Shab might increase ion permeability and compensate the effect of low temperature. In conclusion, conserved editing with non-conserved recoding might be functional as well. Our study provides novel aspects in considering the adaptive evolution of RNA editing sites and meanwhile expands the candidates of functional recoding sites for future validation.


Assuntos
Adenosina , Drosophila , Inosina , Edição de RNA , Animais , Inosina/metabolismo , Inosina/genética , Drosophila/genética , Drosophila/metabolismo , Adenosina/metabolismo , Adenosina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolução Molecular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
10.
Viruses ; 16(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932237

RESUMO

The genomes of positive-sense (+) single-stranded RNA (ssRNA) viruses are believed to be subjected to a wide range of RNA modifications. In this study, we focused on the chikungunya virus (CHIKV) as a model (+) ssRNA virus to study the landscape of viral RNA modification in infected human cells. Among the 32 distinct RNA modifications analysed by mass spectrometry, inosine was found enriched in the genomic CHIKV RNA. However, orthogonal validation by Illumina RNA-seq analyses did not identify any inosine modification along the CHIKV RNA genome. Moreover, CHIKV infection did not alter the expression of ADAR1 isoforms, the enzymes that catalyse the adenosine to inosine conversion. Together, this study highlights the importance of a multidisciplinary approach to assess the presence of RNA modifications in viral RNA genomes.


Assuntos
Vírus Chikungunya , Genoma Viral , Processamento Pós-Transcricional do RNA , RNA Viral , Transcriptoma , Vírus Chikungunya/genética , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Febre de Chikungunya/virologia , Inosina/metabolismo , Inosina/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Adenosina/metabolismo , Adenosina Desaminase
11.
Virus Res ; 346: 199413, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848818

RESUMO

The conversion of Adenosine (A) to Inosine (I), by Adenosine Deaminases Acting on RNA or ADARs, is an essential post-transcriptional modification that contributes to proteome diversity and regulation in metazoans including humans. In addition to its transcriptome-regulating role, ADARs also play a major part in immune response to viral infection, where an interferon response activates interferon-stimulated genes, such as ADARp150, in turn dynamically regulating host-virus interactions. A previous report has shown that infection from reoviruses, despite strong activation of ADARp150, does not influence the editing of some of the major known editing targets, while likely editing others, suggesting a potentially nuanced editing pattern that may depend on different factors. However, the results were based on a handful of selected editing sites and did not cover the entire transcriptome. Thus, to determine whether and how reovirus infection specifically affects host ADAR editing patterns, we analyzed a publicly available deep-sequenced RNA-seq dataset, from murine fibroblasts infected with wild-type and mutant reovirus strains that allowed us to examine changes in editing patterns on a transcriptome-wide scale. To the best of our knowledge, this is the first transcriptome-wide report on host editing changes after reovirus infection. Our results demonstrate that reovirus infection induces unique nuanced editing changes in the host, including introducing sites uniquely edited in infected samples. Genes with edited sites are overrepresented in pathways related to immune regulation, cellular signaling, metabolism, and growth. Moreover, a shift in editing targets has also been observed, where the same genes are edited in infection and control conditions but at different sites, or where the editing rate is increased for some and decreased for other differential targets, supporting the hypothesis of dynamic and condition-specific editing by ADARs.


Assuntos
Adenosina Desaminase , Fibroblastos , Inosina , Edição de RNA , Transcriptoma , Animais , Camundongos , Fibroblastos/virologia , Fibroblastos/metabolismo , Inosina/metabolismo , Inosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Adenosina/metabolismo , Adenosina/genética , Infecções por Reoviridae/virologia , Infecções por Reoviridae/genética , Interações Hospedeiro-Patógeno , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reoviridae/genética , Reoviridae/fisiologia
12.
Cell ; 187(14): 3602-3618.e20, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38823389

RESUMO

Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.


Assuntos
Neoplasias , Nucleotídeos de Purina , Purinas , Animais , Camundongos , Purinas/metabolismo , Purinas/biossíntese , Neoplasias/metabolismo , Neoplasias/patologia , Nucleotídeos de Purina/metabolismo , Humanos , Inosina/metabolismo , Hipoxantina/metabolismo , Camundongos Endogâmicos C57BL , Adenina/metabolismo , Linhagem Celular Tumoral , Feminino
13.
Nat Commun ; 15(1): 5366, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926387

RESUMO

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries offer more nuanced and accurate insights into the regulatory mechanisms of RNA editing in the human brain.


Assuntos
Adenosina Desaminase , Adenosina , Autopsia , Encéfalo , Inosina , Edição de RNA , Proteínas de Ligação a RNA , Humanos , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Encéfalo/metabolismo , Inosina/metabolismo , Inosina/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Córtex Pré-Frontal/metabolismo , Mudanças Depois da Morte , Masculino
14.
Nucleic Acids Res ; 52(12): 6733-6747, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38828787

RESUMO

Adenosine Deaminases Acting on RNA (ADARs) are enzymes that catalyze the conversion of adenosine to inosine in RNA duplexes. These enzymes can be harnessed to correct disease-causing G-to-A mutations in the transcriptome because inosine is translated as guanosine. Guide RNAs (gRNAs) can be used to direct the ADAR reaction to specific sites. Chemical modification of ADAR guide strands is required to facilitate delivery, increase metabolic stability, and increase the efficiency and selectivity of the editing reaction. Here, we show the ADAR reaction is highly sensitive to ribose modifications (e.g. 4'-C-methylation and Locked Nucleic Acid (LNA) substitution) at specific positions within the guide strand. Our studies were enabled by the synthesis of RNA containing a new, ribose-modified nucleoside analog (4'-C-methyladenosine). Importantly, the ADAR reaction is potently inhibited by LNA or 4'-C-methylation at different positions in the ADAR guide. While LNA at guide strand positions -1 and -2 block the ADAR reaction, 4'-C-methylation only inhibits at the -2 position. These effects are rationalized using high-resolution structures of ADAR-RNA complexes. This work sheds additional light on the mechanism of ADAR deamination and aids in the design of highly selective ADAR guide strands for therapeutic editing using chemically modified RNA.


Assuntos
Adenosina Desaminase , Edição de RNA , Ribose , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/química , Ribose/química , Ribose/metabolismo , Humanos , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Metilação , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química , Nucleosídeos/química , Nucleosídeos/metabolismo , RNA/metabolismo , RNA/química , Inosina/metabolismo , Inosina/química
15.
Immunobiology ; 229(3): 152812, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38781756

RESUMO

Kangfuxin has been widely recognized for its use in treating ulcerative conditions and mucositis, primarily due to its anti-inflammatory properties, which promote cell proliferation, granulation tissue growth, and angiogenesis. However, the exact mechanisms underlying these effects remain poorly understood. In this study, we employed high-throughput mass spectrometry to identify 11 compounds in Kangfuxin, including uracil, hypoxanthine, xanthine, inosine, glutamic acid, glycine, alanine, valine, isoleucine, leucine, and lysine. Notably, the antipyretic and anti-inflammatory properties of inosine, one of these compounds, have not been well characterized. To address this gap, we induced fever in vivo using lipopolysaccharide (LPS) and conducted various experiments, including the analysis of endogenous mediators, inflammatory factors, quantitative polymerase chain reaction (QPCR), Western blotting, and hematoxylin and eosin (HE) staining. Our findings indicate that inosine significantly reduces LPS-induced fever, inhibits the expression of inflammatory factors, and alleviates the inflammatory response. These results suggest that inosine may serve as a potential therapeutic target for inflammatory diseases.


Assuntos
Anti-Inflamatórios , Inosina , Lipopolissacarídeos , Inosina/farmacologia , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Antipiréticos/farmacologia , Masculino , Inflamação/tratamento farmacológico , Febre/tratamento farmacológico , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
16.
BMC Biol ; 22(1): 106, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715001

RESUMO

BACKGROUND: The significance of A-to-I RNA editing in nervous system development is widely recognized; however, its influence on retina development remains to be thoroughly understood. RESULTS: In this study, we performed RNA sequencing and ribosome profiling experiments on developing mouse retinas to characterize the temporal landscape of A-to-I editing. Our findings revealed temporal changes in A-to-I editing, with distinct editing patterns observed across different developmental stages. Further analysis showed the interplay between A-to-I editing and alternative splicing, with A-to-I editing influencing splicing efficiency and the quantity of splicing events. A-to-I editing held the potential to enhance translation diversity, but this came at the expense of reduced translational efficiency. When coupled with splicing, it could produce a coordinated effect on gene translation. CONCLUSIONS: Overall, this study presents a temporally resolved atlas of A-to-I editing, connecting its changes with the impact on alternative splicing and gene translation in retina development.


Assuntos
Biossíntese de Proteínas , Edição de RNA , Retina , Animais , Camundongos , Retina/metabolismo , Retina/embriologia , Processamento Alternativo , Inosina/metabolismo , Inosina/genética , Adenosina/metabolismo
18.
BMC Genomics ; 25(1): 431, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693480

RESUMO

Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.


Assuntos
COVID-19 , Edição de RNA , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virologia , SARS-CoV-2/genética , Adenosina/metabolismo , Inosina/metabolismo , Inosina/genética , Transcriptoma , Olho/metabolismo , Olho/virologia
19.
Neuron ; 112(15): 2558-2580.e13, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38761794

RESUMO

Neurodegenerative diseases are commonly classified as proteinopathies that are defined by the aggregation of a specific protein. Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are classified as synucleinopathies since α-synuclein (α-syn)-containing inclusions histopathologically define these diseases. Unbiased biochemical analysis of PD and DLB patient material unexpectedly revealed novel pathological inclusions in the nucleus comprising adenosine-to-inosine (A-to-I)-edited mRNAs and NONO and SFPQ proteins. These inclusions showed no colocalization with Lewy bodies and accumulated at levels comparable to α-syn. NONO and SFPQ aggregates reduced the expression of the editing inhibitor ADAR3, increasing A-to-I editing mainly within human-specific, Alu-repeat regions of axon, synaptic, and mitochondrial transcripts. Inosine-containing transcripts aberrantly accumulated in the nucleus, bound tighter to recombinant purified SFPQ in vitro, and potentiated SFPQ aggregation in human dopamine neurons, resulting in a self-propagating pathological state. Our data offer new insight into the inclusion composition and pathophysiology of PD and DLB.


Assuntos
Doença por Corpos de Lewy , Fator de Processamento Associado a PTB , Doença de Parkinson , Edição de RNA , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fator de Processamento Associado a PTB/metabolismo , Fator de Processamento Associado a PTB/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Inosina/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Masculino , Idoso , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Feminino , RNA Mensageiro/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Idoso de 80 Anos ou mais
20.
Anal Chem ; 96(21): 8730-8739, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743814

RESUMO

Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and m6A modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications. To address this gap, we introduced an innovative technique called deamination-assisted reverse transcription stalling (DARTS), specifically designed for the simultaneous quantification of A-to-I editing and m6A at the same RNA sites. DARTS leverages the selective deamination activity of the engineered TadA-TadA8e protein, which converts adenosine residues to inosine, in combination with the unique property of Bst 2.0 DNA polymerase, which stalls when encountering inosine during reverse transcription. This approach enables the accurate quantification of A-to-I editing, m6A, and unmodified adenosine at identical RNA sites. The DARTS method is remarkable for its ability to directly quantify two distinct types of RNA modifications simultaneously, a capability that has remained largely unexplored in the field of RNA biology. By facilitating a comprehensive analysis of the co-occurrence and interaction between A-to-I editing and m6A modifications, DARTS opens new avenues for exploring the complex regulatory networks modulated by different RNA modifications.


Assuntos
Adenosina , Inosina , Edição de RNA , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/metabolismo , Inosina/metabolismo , Inosina/análogos & derivados , Inosina/química , Desaminação , RNA/metabolismo , RNA/genética , RNA/análise , Transcrição Reversa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA