Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.187
Filtrar
1.
PLoS One ; 19(5): e0301252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696454

RESUMO

Bacteria are exposed to reactive oxygen and nitrogen species that provoke oxidative and nitrosative stress which can lead to macromolecule damage. Coping with stress conditions involves the adjustment of cellular responses, which helps to address metabolic challenges. In this study, we performed a global transcriptomic analysis of the response of Pseudomonas extremaustralis to nitrosative stress, induced by S-nitrosoglutathione (GSNO), a nitric oxide donor, under microaerobic conditions. The analysis revealed the upregulation of genes associated with inositol catabolism; a compound widely distributed in nature whose metabolism in bacteria has aroused interest. The RNAseq data also showed heightened expression of genes involved in essential cellular processes like transcription, translation, amino acid transport and biosynthesis, as well as in stress resistance including iron-dependent superoxide dismutase, alkyl hydroperoxide reductase, thioredoxin, and glutathione S-transferase in response to GSNO. Furthermore, GSNO exposure differentially affected the expression of genes encoding nitrosylation target proteins, encompassing metalloproteins and proteins with free cysteine and /or tyrosine residues. Notably, genes associated with iron metabolism, such as pyoverdine synthesis and iron transporter genes, showed activation in the presence of GSNO, likely as response to enhanced protein turnover. Physiological assays demonstrated that P. extremaustralis can utilize inositol proficiently under both aerobic and microaerobic conditions, achieving growth comparable to glucose-supplemented cultures. Moreover, supplementing the culture medium with inositol enhances the stress tolerance of P. extremaustralis against combined oxidative-nitrosative stress. Concordant with the heightened expression of pyoverdine genes under nitrosative stress, elevated pyoverdine production was observed when myo-inositol was added to the culture medium. These findings highlight the influence of nitrosative stress on proteins susceptible to nitrosylation and iron metabolism. Furthermore, the activation of myo-inositol catabolism emerges as a protective mechanism against nitrosative stress, shedding light on this pathway in bacterial systems, and holding significance in the adaptation to unfavorable conditions.


Assuntos
Inositol , Estresse Nitrosativo , Pseudomonas , Inositol/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , S-Nitrosoglutationa/metabolismo , S-Nitrosoglutationa/farmacologia , Aerobiose , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Estresse Oxidativo
2.
mSphere ; 9(4): e0006124, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38564709

RESUMO

Mycobacterium tuberculosis (Mtb), the pathogenic bacterium that causes tuberculosis, has evolved sophisticated defense mechanisms to counteract the cytotoxicity of reactive oxygen species (ROS) generated within host macrophages during infection. The melH gene in Mtb and Mycobacterium marinum (Mm) plays a crucial role in defense mechanisms against ROS generated during infection. We demonstrate that melH encodes an epoxide hydrolase and contributes to ROS detoxification. Deletion of melH in Mm resulted in a mutant with increased sensitivity to oxidative stress, increased accumulation of aldehyde species, and decreased production of mycothiol and ergothioneine. This heightened vulnerability is attributed to the increased expression of whiB3, a universal stress sensor. The absence of melH also resulted in reduced intracellular levels of NAD+, NADH, and ATP. Bacterial growth was impaired, even in the absence of external stressors, and the impairment was carbon source dependent. Initial MelH substrate specificity studies demonstrate a preference for epoxides with a single aromatic substituent. Taken together, these results highlight the role of melH in mycobacterial bioenergetic metabolism and provide new insights into the complex interplay between redox homeostasis and generation of reactive aldehyde species in mycobacteria. IMPORTANCE: This study unveils the pivotal role played by the melH gene in Mycobacterium tuberculosis and in Mycobacterium marinum in combatting the detrimental impact of oxidative conditions during infection. This investigation revealed notable alterations in the level of cytokinin-associated aldehyde, para-hydroxybenzaldehyde, as well as the redox buffer ergothioneine, upon deletion of melH. Moreover, changes in crucial cofactors responsible for electron transfer highlighted melH's crucial function in maintaining a delicate equilibrium of redox and bioenergetic processes. MelH prefers epoxide small substrates with a phenyl substituted substrate. These findings collectively emphasize the potential of melH as an attractive target for the development of novel antitubercular therapies that sensitize mycobacteria to host stress, offering new avenues for combating tuberculosis.


Assuntos
Proteínas de Bactérias , Cisteína , Metabolismo Energético , Glicopeptídeos , Homeostase , Mycobacterium tuberculosis , Oxirredução , Estresse Oxidativo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antituberculosos/farmacologia , Ergotioneína/metabolismo , Inositol/metabolismo , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Deleção de Genes
3.
ACS Chem Neurosci ; 15(7): 1366-1377, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503425

RESUMO

The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding. In this study, for the first time, the roles of natural brain osmolytes are being investigated for their potential effects on regulating the conformational stability of the tau monomer (tauM) and its propensity to aggregate or disaggregate. Herein, the effects of physiological osmolytes myo-inositol, taurine, trimethyl amine oxide (TMAO), betaine, sorbitol, glycerophosphocholine (GPC), and citrulline on tau's aggregation state were investigated. The overall results indicate the ability of sorbitol and GPC to maintain the monomeric form and prevent aggregation of tau, whereas myo-inositol, taurine, TMAO, betaine, and citrulline promote tau aggregation to different degrees, as revealed by protein morphology in atomic force microscopy images. Biochemical and biophysical methods also revealed that tau proteins adopt different conformations under the influence of these osmolytes. TauM in the presence of all osmolytes expressed no toxicity when tested by a lactate dehydrogenase assay. Investigating the conformational stability of tau in the presence of osmolytes may provide a better understanding of the complex nature of tau aggregation in AD and the protective and/or chaotropic nature of osmolytes.


Assuntos
Doença de Alzheimer , Metilaminas , Proteínas tau , Humanos , Proteínas tau/metabolismo , Betaína , Citrulina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Taurina/farmacologia , Inositol/metabolismo , Sorbitol/metabolismo
4.
J Biol Chem ; 300(2): 105657, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224949

RESUMO

The yeast Snf1/AMP-activated kinase (AMPK) maintains energy homeostasis, controlling metabolic processes and glucose derepression in response to nutrient levels and environmental cues. Under conditions of nitrogen or glucose limitation, Snf1 regulates pseudohyphal growth, a morphological transition characterized by the formation of extended multicellular filaments. During pseudohyphal growth, Snf1 is required for wild-type levels of inositol polyphosphate (InsP), soluble phosphorylated species of the six-carbon cyclitol inositol that function as conserved metabolic second messengers. InsP levels are established through the activity of a family of inositol kinases, including the yeast inositol polyphosphate kinase Kcs1, which principally generates pyrophosphorylated InsP7. Here, we report that Snf1 regulates Kcs1, affecting Kcs1 phosphorylation and inositol kinase activity. A snf1 kinase-defective mutant exhibits decreased Kcs1 phosphorylation, and Kcs1 is phosphorylated in vivo at Ser residues 537 and 646 during pseudohyphal growth. By in vitro analysis, Snf1 directly phosphorylates Kcs1, predominantly at amino acids 537 and 646. A yeast strain carrying kcs1 encoding Ser-to-Ala point mutations at these residues (kcs1-S537A,S646A) shows elevated levels of pyrophosphorylated InsP7, comparable to InsP7 levels observed upon deletion of SNF1. The kcs1-S537A,S646A mutant exhibits decreased pseudohyphal growth, invasive growth, and cell elongation. Transcriptional profiling indicates extensive perturbation of metabolic pathways in kcs1-S537A,S646A. Growth of kcs1-S537A,S646A is affected on medium containing sucrose and antimycin A, consistent with decreased Snf1p signaling. This work identifies Snf1 phosphorylation of Kcs1, collectively highlighting the interconnectedness of AMPK activity and InsP signaling in coordinating nutrient availability, energy homoeostasis, and cell growth.


Assuntos
Fosfotransferases (Aceptor do Grupo Fosfato) , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Inositol/metabolismo , Fosforilação , Polifosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Biotechnol Lett ; 46(1): 69-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064042

RESUMO

D-Glucaric acid is a potential biobased platform chemical. Previously mainly Escherichia coli, but also the yeast Saccharomyces cerevisiae, and Pichia pastoris, have been engineered for conversion of D-glucose to D-glucaric acid via myo-inositol. One reason for low yields from the yeast strains is the strong flux towards glycolysis. Thus, to decrease the flux of D-glucose to biomass, and to increase D-glucaric acid yield, the four step D-glucaric acid pathway was introduced into a phosphoglucose isomerase deficient (Pgi1p-deficient) Saccharomyces cerevisiae strain. High D-glucose concentrations are toxic to the Pgi1p-deficient strains, so various feeding strategies and use of polymeric substrates were studied. Uniformly labelled 13C-glucose confirmed conversion of D-glucose to D-glucaric acid. In batch bioreactor cultures with pulsed D-fructose and ethanol provision 1.3 g D-glucaric acid L-1 was produced. The D-glucaric acid titer (0.71 g D-glucaric acid L-1) was lower in nitrogen limited conditions, but the yield, 0.23 g D-glucaric acid [g D-glucose consumed]-1, was among the highest that has so far been reported from yeast. Accumulation of myo-inositol indicated that myo-inositol oxygenase activity was limiting, and that there would be potential to even higher yield. The Pgi1p-deficiency in S. cerevisiae provides an approach that in combination with other reported modifications and bioprocess strategies would promote the development of high yield D-glucaric acid yeast strains.


Assuntos
Glucose-6-Fosfato Isomerase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Ácido Glucárico/metabolismo , Escherichia coli/metabolismo , Inositol/metabolismo , Glucose/metabolismo
6.
Free Radic Biol Med ; 211: 24-34, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043868

RESUMO

The intricate relationship between calcium (Ca2+) homeostasis and mitochondrial function is crucial for cellular metabolic adaptation in tumor cells. Ca2+-initiated signaling maintains mitochondrial respiratory capacity and ATP synthesis, influencing critical cellular processes in cancer development. Previous studies by our group have shown that the homocysteine-inducible ER Protein with Ubiquitin-Like Domain 1 (HERPUD1) regulates inositol 1,4,5-trisphosphate receptor (ITPR3) levels and intracellular Ca2+ signals in tumor cells. This study explores the role of HERPUD1 in regulating mitochondrial function and tumor cell migration by controlling ITPR3-dependent Ca2+ signals. We found HERPUD1 levels correlated with mitochondrial function in tumor cells, with HERPUD1 deficiency leading to enhanced mitochondrial activity. HERPUD1 knockdown increased intracellular Ca2+ release and mitochondrial Ca2+ influx, which was prevented using the ITPR3 antagonist xestospongin C or the Ca2+ chelator BAPTA-AM. Furthermore, HERPUD1 expression reduced tumor cell migration by controlling ITPR3-mediated Ca2+ signals. HERPUD1-deficient cells exhibited increased migratory capacity, which was attenuated by treatment with xestospongin C or BAPTA-AM. Additionally, HERPUD1 deficiency led to reactive oxygen species-dependent activation of paxillin and FAK proteins, which are associated with enhanced cell migration. Our findings highlight the pivotal role of HERPUD1 in regulating mitochondrial function and cell migration by controlling intracellular Ca2+ signals mediated by ITPR3. Understanding the interplay between HERPUD1 and mitochondrial Ca2+ regulation provides insights into potential therapeutic targets for cancer treatment and other pathologies involving altered energy metabolism.


Assuntos
Cálcio , Neoplasias , Humanos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo
7.
mBio ; 15(2): e0306223, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38133430

RESUMO

The inositol pyrophosphate signaling molecule 1,5-IP8 is an agonist of RNA 3'-processing and transcription termination in fission yeast that regulates the expression of phosphate acquisition genes pho1, pho84, and tgp1. IP8 is synthesized from 5-IP7 by the Asp1 N-terminal kinase domain and catabolized by the Asp1 C-terminal pyrophosphatase domain. asp1-STF mutations that delete or inactivate the Asp1 pyrophosphatase domain elicit growth defects in yeast extract with supplements (YES) medium ranging from severe sickness to lethality. We now find that the toxicity of asp1-STF mutants is caused by a titratable constituent of yeast extract. Via a genetic screen for spontaneous suppressors, we identified a null mutation of glycerophosphodiester transporter tgp1 that abolishes asp1-STF toxicity in YES medium. This result, and the fact that tgp1 mRNA expression is increased by >40-fold in asp1-STF cells, prompted discovery that: (i) glycerophosphocholine (GPC) recapitulates the toxicity of yeast extract to asp1-STF cells in a Tgp1-dependent manner, and (ii) induced overexpression of tgp1 in asp1+ cells also elicits toxicity dependent on GPC. asp1-STF suppressor screens yielded a suite of single missense mutations in the essential IP6 kinase Kcs1 that generates 5-IP7, the immediate precursor to IP8. Transcription profiling of the kcs1 mutants in an asp1+ background revealed the downregulation of the same phosphate acquisition genes that were upregulated in asp1-STF cells. The suppressor screen also returned single missense mutations in Plc1, the fission yeast phospholipase C enzyme that generates IP3, an upstream precursor for the synthesis of inositol pyrophosphates.IMPORTANCEThe inositol pyrophosphate metabolite 1,5-IP8 governs repression of fission yeast phosphate homeostasis genes pho1, pho84, and tgp1 by lncRNA-mediated transcriptional interference. Asp1 pyrophosphatase mutations that increase IP8 levels elicit precocious lncRNA termination, leading to derepression of the PHO genes. Deletions of the Asp1 pyrophosphatase domain result in growth impairment or lethality via IP8 agonism of transcription termination. It was assumed that IP8 toxicity ensues from dysregulation of essential genes. In this study, a suppressor screen revealed that IP8 toxicosis of Asp1 pyrophosphatase mutants is caused by: (i) a >40-fold increase in the expression of the inessential tgp1 gene encoding a glycerophosphodiester transporter and (ii) the presence of glycerophosphocholine in the growth medium. The suppressor screen yielded missense mutations in two upstream enzymes of inositol polyphosphate metabolism: the phospholipase C enzyme Plc1 that generates IP3 and the essential Kcs1 kinase that converts IP6 to 5-IP7, the immediate precursor of IP8.


Assuntos
Fragmentos de Peptídeos , Fosfotransferases (Aceptor do Grupo Fosfato) , RNA Longo não Codificante , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Tireoglobulina , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Inositol/metabolismo , Difosfatos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , RNA Longo não Codificante/genética , Proteínas de Membrana Transportadoras/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , Fosfatos de Inositol/metabolismo
8.
Hum Brain Mapp ; 44(18): 6429-6438, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909379

RESUMO

This study aims to explore the changes of the aspartate (Asp) level in the medial-prefrontal cortex (mPFC) of subjects with nicotine addiction (nicotine addicts [NAs]) using the J-edited 1 H MR spectroscopy (MRS), which may provide a positive imaging evidence for intervention of NA. From March to August 2022, 45 males aged 40-60 years old were recruited from Henan Province, including 21 in NA and 24 in nonsmoker groups. All subjects underwent routine magnetic resonance imaging (MRI) and J-edited MRS scans on a 3.0 T MRI scanner. The Asp level in mPFC was quantified with reference to the total creatine (Asp/Cr) and water (Aspwater-corr , with correction of the brain tissue composition) signals, respectively. Two-tailed independent samples t-test was used to analyze the differences in levels of Asp and other coquantified metabolites (including total N-acetylaspartate [tNAA], total cholinine [tCho], total creatine [tCr], and myo-Inositol [mI]) between the two groups. Finally, the correlations of the Asp level with clinical characteristic assessment scales were performed using the Spearman criteria. Compared with the control group (n = 22), NAs (n = 18) had higher levels of Asp (Asp/Cr: p = .005; Aspwater-corr : p = .004) in the mPFC, and the level of Asp was positively correlated with the daily smoking amount (Asp/Cr: p < .001; Aspwater-corr : p = .004). No significant correlation was found between the level of Asp and the years of nicotine use, Fagerstrom Nicotine Dependence (FTND), Russell Reason for Smoking Questionnaire (RRSQ), or Barratt Impulsivity Scale (BIS-11) score. The elevated Asp level was observed in mPFC of NAs in contrast to nonsmokers, and the Asp level was positively correlated with the amount of daily smoking, which suggests that nicotine addiction may result in elevated Asp metabolism in the human brain.


Assuntos
Nicotina , Tabagismo , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Nicotina/metabolismo , Ácido Aspártico/metabolismo , Tabagismo/diagnóstico por imagem , Creatina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Inositol/metabolismo , Córtex Pré-Frontal/metabolismo , Água/metabolismo
9.
Biomolecules ; 13(10)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892232

RESUMO

Myo-inositol belongs to one of the sugar alcohol groups known as cyclitols. Phosphatidylinositols are one of the derivatives of Myo-inositol, and constitute important mediators in many intracellular processes such as cell growth, cell differentiation, receptor recycling, cytoskeletal organization, and membrane fusion. They also have even more functions that are essential for cell survival. Mutations in genes encoding phosphatidylinositols and their derivatives can lead to many disorders. This review aims to perform an in-depth analysis of these connections. Many authors emphasize the significant influence of phosphatidylinositols and phosphatidylinositols' phosphates in the pathogenesis of myotubular myopathies, neurodegenerative disorders, carcinogenesis, and other less frequently observed diseases. In our review, we have focused on three of the most often mentioned groups of disorders. Inositols are the topic of many studies, and yet, there are no clear results of successful clinical trials. Analysis of the available literature gives promising results and shows that further research is still needed.


Assuntos
Miopatias Congênitas Estruturais , Doenças Neurodegenerativas , Humanos , Fosfatidilinositóis/metabolismo , Inositol/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Carcinogênese/genética , Patrimônio Genético , Redes e Vias Metabólicas , Doenças Neurodegenerativas/genética
10.
Biosci Biotechnol Biochem ; 87(11): 1274-1284, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37573142

RESUMO

Arabinogalactan proteins (AGPs) are plant extracellular proteoglycans associated with the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. This moiety is thought to be cleaved by phospholipase for secretion. Salt-adapted tobacco BY-2 cells were reported to secrete large amounts of AGPs into the medium. To investigate this mechanism, we expressed a fusion protein of tobacco sweet potato sporamin and AGP (SPO-AGP) in BY-2 cells and analyzed its fate after salt-adapting the cells. A two-phase separation analysis using Triton X-114 indicated that a significant proportion of SPO-AGP in the medium was recovered in the detergent phase, suggesting that this protein is GPI-anchored. Differential ultracentrifugation and a gradient density fractionation implicated extracellular vesicles or particles with SPO-AGP in the medium. Endogenous AGP secreted from salt-adapted and nontransgenic BY-2 cells behaved similarly to SPO-AGP. These results suggest that a part of the secreted AGPs from salt-adapted tobacco BY-2 cells are GPI-anchored and associated with particles or vesicles.


Assuntos
Glicosilfosfatidilinositóis , Nicotiana , Nicotiana/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Plantas/metabolismo , Mucoproteínas/metabolismo , Inositol/metabolismo
11.
Int J Biol Sci ; 19(9): 2787-2802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324953

RESUMO

Novel molecular targets for cervical cancer must be identified. This study examined the role of SLC5A3, a myo-inositol transporter, in the pathogenesis of cervical cancer. Through boinformatics analysis, we showed that the SLC5A3 mRNA levels were upregulated in cervical cancer tissues. The upregulated SLC5A3 mRNA levels were negatively correlated with survival and progression-free interval. Genes co-expressed with SLC5A3 were enriched in multiple signaling cascades involved in cancer progression. In primary/established cervical cancer cells, SLC5A3 shRNA/knockout (KO) exerted growth-inhibitory effects and promoted cell death/apoptosis. Furthermore, SLC5A3 knockdown or KO downregulated myo-inositol levels, induced oxidative injury, and decreased Akt-mTOR activation in cervical cancer cells. In contrast, supplementation of myo-inositol or n-acetyl-L-cysteine or transduction of a constitutively active Akt1 construct mitigated SLC5A3 KO-induced cytotoxicity in cervical cancer cells. Lentiviral SLC5A3 overexpression construct transduction upregulated the cellular myo-inositol level and promoted Akt-mTOR activation, enhancing cervical cancer cell proliferation and migration. The binding of TonEBP to the SLC5A3 promoter was upregulated in cervical cancer. In vivo studies showed that intratumoral injection of SLC5A3 shRNA-expressing virus arrested cervical cancer xenograft growth in mice. SLC5A3 KO also inhibited pCCa-1 cervical cancer xenograft growth. The SLC5A3-depleted xenograft tissues exhibited myo-inositol downregulation, Akt-mTOR inactivation, and oxidative injury. Transduction of sh-TonEBP AAV construct downregulated SLC5A3 expression and inhibited pCCa-1 cervical cancer xenograft growth. Together, overexpressed SLC5A3 promotes growth of cervical cancer cells, representing as a novel therapeutic oncotarget for the devastating disease.


Assuntos
Simportadores , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo do Útero/genética , RNA Mensageiro , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Inositol/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Proteínas de Choque Térmico/genética , Simportadores/genética
12.
Metab Eng ; 78: 1-10, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146873

RESUMO

d-chiro-Inositol (DCI) is a promising drug candidate for treating insulin resistance and associated diseases such as type 2 diabetes or polycystic ovary syndrome. In this study, we developed two production processes for DCI using Corynebacterium glutamicum as host. In the first process, myo-inositol (MI) is oxidized to 2-keto-myo-inositol (2KMI) by the inositol dehydrogenase (IDH) IolG and then isomerized to 1-keto-d-chiro-inositol (1KDCI) by the isomerases Cg0212 or Cg2312, both of which were identified in this work. 1KDCI is then reduced to DCI by IolG. Overproduction of IolG and Cg0212 in a chassis strain unable to degrade inositols allowed the production of 1.1 g/L DCI from 10 g/L MI. As both reactions involved are reversible, only a partial conversion of MI to DCI can be achieved. To enable higher conversion ratios, a novel route towards DCI was established by utilizing the promiscuous activity of two plant-derived enzymes, the NAD+-dependent d-ononitol dehydrogenase MtOEPa and the NADPH-dependent d-pinitol dehydrogenase MtOEPb from Medicago truncatula (barrelclover). Heterologous production of these enzymes in the chassis strain led to the production of 1.6 g/L DCI from 10 g/L MI. For replacing the substrate MI by glucose, the two plant genes were co-expressed with the endogenous myo-inositol-1-phosphate synthase gene ino1 either as a synthetic operon or using a novel, bicistronic T7-based expression vector. With the single operon construct, 0.75 g/L DCI was formed from 20 g/L glucose, whereas with the bicistronic construct 1.2 g/L DCI was obtained, disclosing C. glutamicum as an attractive host for of d-chiro-inositol production.


Assuntos
Corynebacterium glutamicum , Diabetes Mellitus Tipo 2 , Síndrome do Ovário Policístico , Humanos , Feminino , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inositol/genética , Inositol/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Glucose , Oxirredutases
13.
Plant Cell Physiol ; 64(8): 893-905, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233621

RESUMO

Phosphorus (P) is a growth-limiting nutrient for plants, which is taken up by root tissue from the environment as inorganic phosphate (Pi). To maintain an appropriate status of cellular Pi, plants have developed sophisticated strategies to sense the Pi level and modulate their root system architecture (RSA) under the ever-changing growth conditions. However, the molecular basis underlying the mechanism remains elusive. Inositol polyphosphate kinase (IPK2) is a key enzyme in the inositol phosphate metabolism pathway, which catalyzes the phosphorylation of IP3 into IP5 by consuming ATP. In this study, the functions of a rice inositol polyphosphate kinase gene (OsIPK2) in plant Pi homeostasis and thus physiological response to Pi signal were characterized. As a biosynthetic gene for phytic acid in rice, overexpression of OsIPK2 led to distinct changes in inositol polyphosphate profiles and an excessive accumulation of Pi levels in transgenic rice under Pi-sufficient conditions. The inhibitory effects of OsIPK2 on root growth were alleviated by Pi-deficient treatment compared with wild-type plants, suggesting the involvement of OsIPK2 in the Pi-regulated reconstruction of RSA. In OsIPK2-overexpressing plants, the altered acid phosphatase (APase) activities and misregulation of Pi-starvation-induced (PSI) genes were observed in roots under different Pi supply conditions. Notably, the expression of OsIPK2 also altered the Pi homeostasis and RSA in transgenic Arabidopsis. Taken together, our findings demonstrate that OsIPK2 plays an important role in Pi homeostasis and RSA adjustment in response to different environmental Pi levels in plants.


Assuntos
Arabidopsis , Oryza , Polifosfatos/metabolismo , Oryza/metabolismo , Inositol/metabolismo , Fosfatos/metabolismo , Arabidopsis/genética , Homeostase , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Respir Res ; 24(1): 132, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37194070

RESUMO

BACKGROUND: Myo-inositol (or inositol) and its derivatives not only function as important metabolites for multiple cellular processes but also act as co-factors and second messengers in signaling pathways. Although inositol supplementation has been widely studied in various clinical trials, little is known about its effect on idiopathic pulmonary fibrosis (IPF). Recent studies have demonstrated that IPF lung fibroblasts display arginine dependency due to loss of argininosuccinate synthase 1 (ASS1). However, the metabolic mechanisms underlying ASS1 deficiency and its functional consequence in fibrogenic processes are yet to be elucidated. METHODS: Metabolites extracted from primary lung fibroblasts with different ASS1 status were subjected to untargeted metabolomics analysis. An association of ASS1 deficiency with inositol and its signaling in lung fibroblasts was assessed using molecular biology assays. The therapeutic potential of inositol supplementation in fibroblast phenotypes and lung fibrosis was evaluated in cell-based studies and a bleomycin animal model, respectively. RESULTS: Our metabolomics studies showed that ASS1-deficient lung fibroblasts derived from IPF patients had significantly altered inositol phosphate metabolism. We observed that decreased inositol-4-monophosphate abundance and increased inositol abundance were associated with ASS1 expression in fibroblasts. Furthermore, genetic knockdown of ASS1 expression in primary normal lung fibroblasts led to the activation of inositol-mediated signalosomes, including EGFR and PKC signaling. Treatment with inositol significantly downregulated ASS1 deficiency-mediated signaling pathways and reduced cell invasiveness in IPF lung fibroblasts. Notably, inositol supplementation also mitigated bleomycin-induced fibrotic lesions and collagen deposition in mice. CONCLUSION: These findings taken together demonstrate a novel function of inositol in fibrometabolism and pulmonary fibrosis. Our study provides new evidence for the antifibrotic activity of this metabolite and suggests that inositol supplementation may be a promising therapeutic strategy for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Inositol , Camundongos , Animais , Inositol/farmacologia , Inositol/uso terapêutico , Inositol/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Bleomicina/toxicidade , Transdução de Sinais/genética , Fibroblastos/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(22): e2216857120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216546

RESUMO

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are one of the two types of tetrameric ion channels that release calcium ion (Ca2+) from the endoplasmic reticulum (ER) into the cytosol. Ca2+ released via IP3Rs is a fundamental second messenger for numerous cell functions. Disturbances in the intracellular redox environment resulting from various diseases and aging interfere with proper calcium signaling, however, the details are unclear. Here, we elucidated the regulatory mechanisms of IP3Rs by protein disulfide isomerase family proteins localized in the ER by focusing on four cysteine residues residing in the ER lumen of IP3Rs. First, we revealed that two of the cysteine residues are essential for functional tetramer formation of IP3Rs. Two other cysteine residues, on the contrary, were revealed to be involved in the regulation of IP3Rs activity; its oxidation by ERp46 and the reduction by ERdj5 caused the activation and the inactivation of IP3Rs activity, respectively. We previously reported that ERdj5 can activate the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2b (SERCA2b) using its reducing activity [Ushioda et al., Proc. Natl. Acad. Sci. U.S.A. 113, E6055-E6063 (2016)]. Thus, we here established that ERdj5 exerts the reciprocal regulatory function for IP3Rs and SERCA2b by sensing the ER luminal Ca2+ concentration, which contributes to the calcium homeostasis in the ER.


Assuntos
Cálcio , Inositol , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Cálcio/metabolismo , Inositol/metabolismo , Cisteína/metabolismo , Retículo Endoplasmático/metabolismo , Sinalização do Cálcio/fisiologia , Oxirredução , Inositol 1,4,5-Trifosfato/metabolismo
16.
mBio ; 14(3): e0010223, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37074217

RESUMO

Cells stabilize intracellular inorganic phosphate (Pi) to compromise between large biosynthetic needs and detrimental bioenergetic effects of Pi. Pi homeostasis in eukaryotes uses Syg1/Pho81/Xpr1 (SPX) domains, which are receptors for inositol pyrophosphates. We explored how polymerization and storage of Pi in acidocalcisome-like vacuoles supports Saccharomyces cerevisiae metabolism and how these cells recognize Pi scarcity. Whereas Pi starvation affects numerous metabolic pathways, beginning Pi scarcity affects few metabolites. These include inositol pyrophosphates and ATP, a low-affinity substrate for inositol pyrophosphate-synthesizing kinases. Declining ATP and inositol pyrophosphates may thus be indicators of impending Pi limitation. Actual Pi starvation triggers accumulation of the purine synthesis intermediate 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), which activates Pi-dependent transcription factors. Cells lacking inorganic polyphosphate show Pi starvation features already under Pi-replete conditions, suggesting that vacuolar polyphosphate supplies Pi for metabolism even when Pi is abundant. However, polyphosphate deficiency also generates unique metabolic changes that are not observed in starving wild-type cells. Polyphosphate in acidocalcisome-like vacuoles may hence be more than a global phosphate reserve and channel Pi to preferred cellular processes. IMPORTANCE Cells must strike a delicate balance between the high demand of inorganic phosphate (Pi) for synthesizing nucleic acids and phospholipids and its detrimental bioenergetic effects by reducing the free energy of nucleotide hydrolysis. The latter may stall metabolism. Therefore, microorganisms manage the import and export of phosphate, its conversion into osmotically inactive inorganic polyphosphates, and their storage in dedicated organelles (acidocalcisomes). Here, we provide novel insights into metabolic changes that yeast cells may use to signal declining phosphate availability in the cytosol and differentiate it from actual phosphate starvation. We also analyze the role of acidocalcisome-like organelles in phosphate homeostasis. This study uncovers an unexpected role of the polyphosphate pool in these organelles under phosphate-rich conditions, indicating that its metabolic roles go beyond that of a phosphate reserve for surviving starvation.


Assuntos
Difosfatos , Saccharomyces cerevisiae , Difosfatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Polifosfatos/metabolismo , Inositol/metabolismo , Trifosfato de Adenosina/metabolismo
17.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108582

RESUMO

White adipose tissue/brown adipose tissue trans-differentiation is one of the main study targets for therapies against obesity and metabolic diseases. In recent years, numerous molecules able to induce such trans-differentiation have been identified; however, their effect in obesity therapies has not been as expected. In the present study, we investigated whether myo-inositol and its stereoisomer D-chiro-inositol could be involved in the browning of white adipose tissue. Our preliminary results clearly indicate that both, at 60 µM concentration, induce the upregulation of uncoupling protein 1 mRNA expression, the main brown adipose tissue marker, and increase mitochondrial copy number as well as oxygen consumption ratio. These changes demonstrate an activation of cell metabolism. Therefore, our results show that human differentiated adipocytes (SGBS and LiSa-2), assume the features typical of brown adipose tissue after both treatments. Furthermore, in the cell lines examined, we proved that D-chiro-inositol and myo-Inositol induce an increase in the expression of estrogen receptor mRNAs, suggesting a possible modulation by these isomers. We also found an increase in the mRNA of peroxisome proliferator-activated receptor gamma, a very important target in lipid metabolism and metabolic diseases. Our results open new opportunities for the use of inositols in therapeutic strategies to counteract obesity and its metabolic complications.


Assuntos
Adipócitos , Inositol , Humanos , Inositol/farmacologia , Inositol/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdiferenciação Celular
18.
Cell Signal ; 107: 110688, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37105506

RESUMO

Cancer stem cells (CSCs) play a central role in ovarian cancer (OC), understanding regulatory mechanisms governing their stemness is critical. Here, we report ISYNA1, the rate-limiting enzyme in myo-inositol biosynthesis, as a suppressor of OC regulating cancer stemness. We identified ISYNA1 as a differentially expressed gene in normal ovary and ovarian cancer tissues, as well as OC cells and OCSCs. Low ISYNA1 expression correlated with poor prognosis in OC patients. In addition, ISYNA1 was negatively correlated with cancer stem cell (CSC) markers, and ISYNA1-related pathways were enriched in Wnt, Notch, and other critical cancer pathways. ISYNA1 deficiency promoted OC cell growth, migration, and invasion ability in vitro and in vivo. Knockdown of ISYNA1 increased stemness of OC cells, including self-renewal, CSC markers expression, ALDH activity, and proportion of CD44+/CD117+ CSCs. Conversely, ectopic overexpression of ISYNA1 suppresses cell proliferation, migration, invasion and stemness of OC cells. Mechanistically, ISYNA1 inhibits OC stemness by regulating myo-inositol to suppress Notch1 signaling. In summary, these data provide evidence that ISYNA1 act as a tumor suppressor in OC and a regulator of stemness, providing insight into potentially targetable pathways for ovarian cancer therapy.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Inositol/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/patologia , Receptor Notch1/metabolismo , Transdução de Sinais
19.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047265

RESUMO

Polycystic ovarian syndrome (PCOS) is the most common endocrinological disorder in women, in which, besides chronic anovulation/oligomenorrhea and ovarian cysts, hyperandrogenism plays a critical role in a large fraction of subjects. Inositol isomers-myo-Inositol and D-Chiro-Inositol-have recently been pharmacologically effective in managing many PCOS symptoms while rescuing ovarian fertility. However, some disappointing clinical results prompted the reconsideration of their specific biological functions. Surprisingly, D-Chiro-Ins stimulates androgen synthesis and decreases the ovarian estrogen pathway; on the contrary, myo-Ins activates FSH response and aromatase activity, finally mitigating ovarian hyperandrogenism. However, when the two isomers are given in association-according to the physiological ratio of 40:1-patients could benefit from myo-Ins enhanced FSH and estrogen responsiveness, while taking advantage of the insulin-sensitizing effects displayed mostly by D-Chiro-Ins. We need not postulate insulin resistance to explain PCOS pathogenesis, given that insulin hypersensitivity is likely a shared feature of PCOS ovaries. Indeed, even in the presence of physiological insulin stimulation, the PCOS ovary synthesizes D-Chiro-Ins four times more than that measured in control theca cells. The increased D-Chiro-Ins within the ovary is detrimental in preserving steroidogenic control, and this failure can easily explain why treatment strategies based upon high D-Chiro-Ins have been recognized as poorly effective. Within this perspective, two factors emerge as major determinants in PCOS: hyperandrogenism and reduced aromatase expression. Therefore, PCOS could no longer be considered a disease only due to increased androgen synthesis without considering the contemporary downregulation of aromatase and FSH receptors. Furthermore, these findings suggest that inositols can be specifically effective only for those PCOS phenotypes featured by hyperandrogenism.


Assuntos
Hiperandrogenismo , Resistência à Insulina , Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Inositol/metabolismo , Hiperandrogenismo/tratamento farmacológico , Aromatase/genética , Androgênios/uso terapêutico , Resistência à Insulina/fisiologia , Insulina/uso terapêutico , Hormônio Foliculoestimulante/uso terapêutico , Estrogênios/uso terapêutico
20.
NMR Biomed ; 36(7): e4897, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36628927

RESUMO

Obesity is associated with adverse effects on brain health, including an increased risk of neurodegenerative diseases. Changes in cerebral metabolism may underlie or precede structural and functional brain changes. While bariatric surgery is known to be effective in inducing weight loss and improving obesity-related medical comorbidities, few studies have examined whether it may be able to improve brain metabolism. In the present study, we examined changes in cerebral metabolite concentrations in participants with obesity who underwent bariatric surgery. Thirty-five patients with obesity (body mass index ≥ 35 kg/m2 ) were recruited from a bariatric surgery candidate nutrition class. They completed single voxel proton magnetic resonance spectroscopy at baseline (presurgery) and within 1 year postsurgery. Spectra were obtained from a large medial frontal brain region using a PRESS sequence on a 3-T Siemens Verio scanner. The acquisition parameters were TR = 3000 ms and TE = 37 ms. Tissue-corrected metabolite concentrations were determined using Osprey. Paired t-tests were used to examine within-subject change in metabolite concentrations, and correlations were used to relate these changes to other health-related outcomes, including weight loss and glycated hemoglobin (HbA1c ), a measure of blood sugar levels. Bariatric surgery was associated with a reduction in cerebral choline-containing compounds (Cho; t [34] = - 3.79, p < 0.001, d = -0.64) and myo-inositol (mI; t [34] = - 2.81, p < 0.01, d = -0.47) concentrations. There were no significant changes in N-acetyl-aspartate, creatine, or glutamate and glutamine concentrations. Reductions in Cho were associated with greater weight loss (r = 0.40, p < 0.05), and reductions in mI were associated with greater reductions in HbA1c (r = 0.44, p < 0.05). In conclusion, participants who underwent bariatric surgery exhibited reductions in cerebral Cho and mI concentrations, which were associated with improvements in weight loss and glycemic control. Given that elevated levels of Cho and mI have been implicated in neuroinflammation, reduction in these metabolites after bariatric surgery may reflect amelioration of obesity-related neuroinflammatory processes. As such, our results provide evidence that bariatric surgery may improve brain health and metabolism in individuals with obesity.


Assuntos
Cirurgia Bariátrica , Humanos , Obesidade/cirurgia , Creatina/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Redução de Peso , Colina/metabolismo , Inositol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA